Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.817
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 40(20): e108614, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34487375

RESUMO

Circadian rhythms in mammals are governed by the hypothalamic suprachiasmatic nucleus (SCN), in which 20,000 clock cells are connected together into a powerful time-keeping network. In the absence of network-level cellular interactions, the SCN fails as a clock. The topology and specific roles of its distinct cell populations (nodes) that direct network functions are, however, not understood. To characterise its component cells and network structure, we conducted single-cell sequencing of SCN organotypic slices and identified eleven distinct neuronal sub-populations across circadian day and night. We defined neuropeptidergic signalling axes between these nodes, and built neuropeptide-specific network topologies. This revealed their temporal plasticity, being up-regulated in circadian day. Through intersectional genetics and real-time imaging, we interrogated the contribution of the Prok2-ProkR2 neuropeptidergic axis to network-wide time-keeping. We showed that Prok2-ProkR2 signalling acts as a key regulator of SCN period and rhythmicity and contributes to defining the network-level properties that underpin robust circadian co-ordination. These results highlight the diverse and distinct contributions of neuropeptide-modulated communication of temporal information across the SCN.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Hormônios Gastrointestinais/genética , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Núcleo Supraquiasmático/metabolismo , Transcriptoma , Animais , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Hormônios Gastrointestinais/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Transdução de Sinais , Análise de Célula Única , Núcleo Supraquiasmático/citologia , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo , Vasopressinas/genética , Vasopressinas/metabolismo
2.
Semin Cell Dev Biol ; 123: 74-81, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34303607

RESUMO

Gut hormones secreted from enteroendocrine cells following nutrient ingestion modulate metabolic processes including glucose homeostasis and food intake, and several of these gut hormones are involved in the regulation of the energy demanding process of bone remodelling. Here, we review the gut hormones considered or known to be involved in the gut-bone crosstalk and their role in orchestrating adaptions of bone formation and resorption as demonstrated in cellular and physiological experiments and clinical trials. Understanding the physiology and pathophysiology of the gut-bone axis may identify adverse effects of investigational drugs aimed to treat metabolic diseases such as type 2 diabetes and obesity and new therapeutic candidates for the treatment of bone diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Diabetes Mellitus Tipo 2/metabolismo , Células Enteroendócrinas/metabolismo , Hormônios Gastrointestinais/metabolismo , Trato Gastrointestinal/metabolismo , Humanos , Obesidade/metabolismo
3.
J Biol Chem ; 299(1): 102814, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539034

RESUMO

Energy homeostasis is a complex system involving multiple hormones, neuropeptides, and receptors. Prokineticins (PK1 and PK2) are agonists to two G protein-coupled receptors, prokineticin receptor 1 and 2 (PKR1 and PKR2), which decrease food intake when injected in rodents. The relative contribution of PKR1 and PKR2 to the anorexigenic effect of PK2 and their site of action in the brain have not yet been elucidated. While PKR1 and PKR2 are both expressed in the hypothalamus, a central region involved in the control of energy homeostasis, PKR2 is also present in the amygdala, which has recently been shown to regulate food intake in response to several anorexigenic signals. PKR trafficking and signaling are inhibited by the melanocortin receptor accessory protein 2 (MRAP2), thus suggesting that MRAP2 has the potential to alter the anorexigenic activity of PK2 in vivo. In this study, we investigated the importance of PKR1 and PKR2 for PK2-mediated inhibition of food intake, the brain region involved in this function, and the effect of MRAP2 on PK2 action in vivo. Using targeted silencing of PKR2 and chemogenetic manipulation of PKR2 neurons, we show that the anorexigenic effect of PK2 is mediated by PKR2 in the amygdala and that altering MRAP2 expression in PKR2 neurons modulates the activity of PK2. Collectively, our results provide evidence that inhibition of food intake by PKs is not mediated through activation of hypothalamic neurons but rather amygdala PKR2 neurons and further establishes the importance of MRAP2 in the regulation of energy homeostasis.


Assuntos
Hormônios Gastrointestinais , Neuropeptídeos , Proteínas de Transporte/metabolismo , Hormônios Gastrointestinais/genética , Hormônios Gastrointestinais/metabolismo , Hormônios Gastrointestinais/farmacologia , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
4.
Am J Physiol Endocrinol Metab ; 327(3): E396-E410, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39082900

RESUMO

Ghrelin is an appetite-stimulating hormone secreted from the gastric mucosa in the fasting state, and secretion decreases in response to food intake. After sleeve gastrectomy (SG), plasma concentrations of ghrelin decrease markedly. Whether this affects appetite and glucose tolerance postoperatively is unknown. We investigated the effects of ghrelin infusion on appetite and glucose tolerance in individuals with obesity before and 3 mo after SG. Twelve participants scheduled for SG were included. Before and 3 mo after surgery, a mixed-meal test followed by an ad libitum meal test was performed with concomitant infusions of acyl-ghrelin (1 pmol/kg/min) or placebo. Infusions began 60 min before meal intake to reach a steady state before the mixed-meal and were continued throughout the study day. Two additional experimental days with 0.25 pmol/kg/min and 10 pmol/kg/min of acyl-ghrelin infusions were conducted 3 mo after surgery. Both before and after SG, postprandial glucose concentrations increased dose dependently during ghrelin infusions compared with placebo. Ghrelin infusions inhibited basal and postprandial insulin secretion rates, resulting in lowered measures of ß-cell function, but no effect on insulin sensitivity was seen. Ad libitum meal intake was unaffected by the administration of ghrelin. In conclusion, ghrelin infusion increases postprandial plasma glucose concentrations and impairs ß-cell function before and after SG but has no effect on ad libitum meal intake. We speculate that the lower concentration of ghrelin after SG may impact glucose metabolism following this procedure.NEW & NOTEWORTHY Ghrelin's effect on glucose tolerance and food intake following sleeve gastrectomy (SG) was evaluated. Acyl-ghrelin was infused during a mixed-meal and ad libitum meals before and 3 mo after surgery. Postprandial glucose concentrations increased during ghrelin infusions, both before and after surgery, while insulin production was inhibited. However, ad libitum meal intake did not differ during ghrelin administration compared with placebo. The decreased ghrelin concentration following SG may contribute to the glycemic control after surgery.


Assuntos
Apetite , Glicemia , Ingestão de Alimentos , Gastrectomia , Grelina , Período Pós-Prandial , Humanos , Grelina/sangue , Grelina/análogos & derivados , Masculino , Adulto , Feminino , Apetite/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Período Pós-Prandial/efeitos dos fármacos , Pessoa de Meia-Idade , Insulina/sangue , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , Hormônios Gastrointestinais/metabolismo , Hormônios Gastrointestinais/sangue , Teste de Tolerância a Glucose , Resistência à Insulina/fisiologia , Método Duplo-Cego , Obesidade/cirurgia , Obesidade/metabolismo
5.
Mol Biol Rep ; 51(1): 656, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740671

RESUMO

BACKGROUND: Prokineticin 2 (PROK2), an important neuropeptide that plays a key role in the neuronal migration of gonadotropin-releasing hormone (GnRH) in the hypothalamus, is known to have regulatory effects on the gonads. In the present study, the impact of intracerebroventricular (icv) PROK2 infusion on hypothalamic-pituitary-gonadal axis (HPG) hormones, testicular tissues, and sperm concentration was investigated. METHODS AND RESULTS: Rats were randomly divided into four groups: control, sham, PROK2 1.5 and PROK2 4.5. Rats in the PROK2 1.5 and PROK2 4.5 groups were administered 1.5 nmol and 4.5 nmol PROK2 intracerebroventricularly for 7 days via an osmotic mini pump (1 µl/h), respectively. Rat blood serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone hormone levels were determined with the ELISA method in the blood samples after 7 days of infusion. GnRH mRNA expression was determined with the RT-PCR in hypothalamus tissues. analyze Sperm concentration was determined, and testicular tissue was examined histologically with the hematoxylin-eosin staining method. It was observed that GnRH mRNA expression increased in both PROK2 infusion groups. Serum FSH, LH and testosterone hormone levels also increased in these groups. Although sperm concentration increased in PROK2 infusion groups when compared to the control and sham, the differences were not statistically significant. Testicular tissue seminiferous epithelial thickness was higher in the PROK2 groups when compared to the control and sham groups. CONCLUSION: The present study findings demonstrated that icv PROK2 infusion induced the HPG axis. It could be suggested that PROK2 could be a potential agent in the treatment of male infertility induced by endocrinological defects.


Assuntos
Hormônio Foliculoestimulante , Hormônios Gastrointestinais , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Neuropeptídeos , Testículo , Testosterona , Animais , Masculino , Ratos , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/metabolismo , Hormônios Gastrointestinais/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Eixo Hipotalâmico-Hipofisário-Gonadal/efeitos dos fármacos , Eixo Hipotalâmico-Hipofisário-Gonadal/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Infusões Intraventriculares , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Ratos Sprague-Dawley , Contagem de Espermatozoides , Testículo/metabolismo , Testículo/efeitos dos fármacos , Testosterona/sangue , Testosterona/metabolismo
6.
Int J Med Sci ; 21(1): 27-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164347

RESUMO

Prokineticin 1 (PROK1) is a secreted protein involved in a range of physiological activities such as cell proliferation, migration, angiogenesis, and neuronal cell proliferation. Emerging evidences show that PROK1/PROK receptors (PROKRs) are expressed by trophoblasts, and decidual stroma cells at the maternal-fetal interface. PROK1 plays a critical role in successful pregnancy establishment by regulating the decidualization, implantation and placental development. Dysregulation of prokineticin signaling has been described in certain pathological states associated with pregnancy, including pre-eclampsia, recurrent miscarriage and fetal growth restriction. In this review, the expression and pleiotropic roles of PROK1 under physiological and pathological pregnancy conditions are discussed.


Assuntos
Hormônios Gastrointestinais , Pré-Eclâmpsia , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina , Gravidez , Feminino , Humanos , Placenta/metabolismo , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/genética , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/metabolismo , Transdução de Sinais/genética , Trofoblastos , Pré-Eclâmpsia/genética , Hormônios Gastrointestinais/genética , Hormônios Gastrointestinais/metabolismo
7.
Ecotoxicol Environ Saf ; 281: 116612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896898

RESUMO

T-2 toxin is one of trichothecene mycotoxins, which can impair appetite and decrease food intake. However, the specific mechanisms for T-2 toxin-induced anorexia are not fully clarified. Multiple research results had shown that gut microbiota have a significant effect on appetite regulation. Hence, this study purposed to explore the potential interactions of the gut microbiota and appetite regulate factors in anorexia induced by T-2 toxin. The study divided the mice into control group (CG, 0 mg/kg BW T-2 toxin) and T-2 toxin-treated group (TG, 1 mg/kg BW T-2 toxin), which oral gavage for 4 weeks, to construct a subacute T-2 toxin poisoning mouse model. This data proved that T-2 toxin was able to induce an anorexia in mice by increased the contents of gastrointestinal hormones (CCK, GIP, GLP-1 and PYY), neurotransmitters (5-HT and SP), as well as pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) in serum of mice. T-2 toxin disturbed the composition of gut microbiota, especially, Faecalibaculum and Allobaculum, which was positively correlated with CCK, GLP-1, 5-HT, IL-1ß, IL-6 and TNF-α, which played a certain role in regulating host appetite. In conclusion, gut microbiota changes (especially an increase in the abundance of Faecalibaculum and Allobaculum) promote the upregulation of gastrointestinal hormones, neurotransmitters, and pro-inflammatory cytokines, which may be a potential mechanism of T-2 toxin-induced anorexia.


Assuntos
Anorexia , Microbioma Gastrointestinal , Toxina T-2 , Animais , Toxina T-2/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Anorexia/induzido quimicamente , Camundongos , Citocinas/metabolismo , Hormônios Gastrointestinais/metabolismo , Masculino
8.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834794

RESUMO

The brain, particularly the hypothalamus and brainstem, monitors and integrates circulating metabolic signals, including gut hormones. Gut-brain communication is also mediated by the vagus nerve, which transmits various gut-derived signals. Recent advances in our understanding of molecular gut-brain communication promote the development of next-generation anti-obesity medications that can safely achieve substantial and lasting weight loss comparable to metabolic surgery. Herein, we comprehensively review the current knowledge about the central regulation of energy homeostasis, gut hormones involved in the regulation of food intake, and clinical data on how these hormones have been applied to the development of anti-obesity drugs. Insight into and understanding of the gut-brain axis may provide new therapeutic perspectives for the treatment of obesity and diabetes.


Assuntos
Fármacos Antiobesidade , Cirurgia Bariátrica , Hormônios Gastrointestinais , Humanos , Obesidade/metabolismo , Encéfalo/metabolismo , Hormônios Gastrointestinais/metabolismo , Transdução de Sinais , Metabolismo Energético , Regulação do Apetite/fisiologia
9.
Ann Surg ; 276(5): 814-821, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880762

RESUMO

OBJECTIVE: Metabolic dysfunction-associated fatty liver disease (MAFLD) reflects the multifactorial pathogenesis of fatty liver disease in metabolically sick patients. The effects of metabolic surgery on MAFLD have not been investigated. This study assesses the impact of Roux-en-Y gastric bypass (RYGB) on MAFLD in a prototypical cohort outside the guidelines for obesity surgery. METHODS: Twenty patients were enrolled in this prospective, single-arm trial investigating the effects of RYGB on advanced metabolic disease (DRKS00004605). Inclusion criteria were an insulin-dependent type 2 diabetes, body mass index of 25 to 35 kg/m 2 , glucagon-stimulated C-peptide of >1.5 ng/mL, glycated hemoglobin >7%, and age 18 to 70 years. A RYGB with intraoperative liver biopsies and follow-up liver biopsies 3 years later was performed. Steatohepatitis was assessed by expert liver pathologists. Data were analyzed using the Wilcoxon rank sum test and a P value <0.05 was defined as significant. RESULTS: MAFLD completely resolved in all patients 3 years after RYGB while fibrosis improved as well. Fifty-five percent were off insulin therapy with a significant reduction in glycated hemoglobin (8.45±0.27% to 7.09±0.26%, P =0.0014). RYGB reduced systemic and hepatic nitrotyrosine levels likely through upregulation of NRF1 and its dependent antioxidative and mitochondrial genes. In addition, central metabolic regulators such as SIRT1 and FOXO1 were upregulated while de novo lipogenesis was reduced and ß-oxidation was improved in line with an improvement of insulin resistance. Lastly, gastrointestinal hormones and adipokines secretion were changed favorably. CONCLUSIONS: RYGB is a promising therapy for MAFLD even in low-body mass index patients with insulin-treated type 2 diabetes with complete histologic resolution. RYGB restores the oxidative balance, adipose tissue function, and gastrointestinal hormones.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Hormônios Gastrointestinais , Hepatopatias , Obesidade Mórbida , Adipocinas , Adolescente , Adulto , Idoso , Glicemia/metabolismo , Índice de Massa Corporal , Peptídeo C , Diabetes Mellitus Tipo 2/complicações , Hormônios Gastrointestinais/metabolismo , Glucagon , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina , Hepatopatias/complicações , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Sirtuína 1 , Adulto Jovem
10.
Int J Obes (Lond) ; 46(2): 255-268, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34732837

RESUMO

OBJECTIVE: To determine the acute effect of fasted and fed exercise on energy intake, energy expenditure, subjective hunger and gastrointestinal hormone release. METHODS: CENTRAL, Embase, MEDLINE, PsycInfo, PubMed, Scopus and Web of Science databases were searched to identify randomised, crossover studies in healthy individuals that compared the following interventions: (i) fasted exercise with a standardised post-exercise meal [FastEx + Meal], (ii) fasted exercise without a standardised post-exercise meal [FastEx + NoMeal], (iii) fed exercise with a standardised post-exercise meal [FedEx + Meal], (iv) fed exercise without a standardised post-exercise meal [FedEx + NoMeal]. Studies must have measured ad libitum meal energy intake, within-lab energy intake, 24-h energy intake, energy expenditure, subjective hunger, acyl-ghrelin, peptide YY, and/or glucagon-like peptide 1. Random-effect network meta-analyses were performed for outcomes containing ≥5 studies. RESULTS: 17 published articles (23 studies) were identified. Ad libitum meal energy intake was significantly lower during FedEx + Meal compared to FedEx + NoMeal (MD: -489 kJ; 95% CI, -898 to -80 kJ; P = 0.019). Within-lab energy intake was significantly lower during FastEx + NoMeal compared to FedEx + NoMeal (MD: -1326 kJ; 95% CI, -2102 to -550 kJ; P = 0.001). Similarly, 24-h energy intake following FastEx + NoMeal was significantly lower than FedEx + NoMeal (MD: -2095 kJ; 95% CI, -3910 kJ to -280 kJ; P = 0.024). Energy expenditure was however significantly lower during FastEx + NoMeal compared to FedEx+NoMeal (MD: -0.67 kJ/min; 95% CI, -1.10 to -0.23 kJ/min; P = 0.003). Subjective hunger was significantly higher during FastEx + Meal (MD: 13 mm; 95% CI, 5-21 mm; P = 0.001) and FastEx + NoMeal (MD: 23 mm; 95% CI, 16-30 mm; P < 0.001) compared to FedEx + NoMeal. CONCLUSION: FastEx + NoMeal appears to be the most effective strategy to produce a short-term decrease in energy intake, but also results in increased hunger and lowered energy expenditure. Concerns regarding experimental design however lower the confidence in these findings, necessitating future research to rectify these issues when investigating exercise meal timing and energy balance. PROSPERO REGISTRATION NUMBER: CRD42020208041. KEY POINTS: Fed exercise with a standardised post-exercise meal resulted in the lowest energy intake at the ad libitum meal served following exercise completion. Fasted exercise without a standardised post-exercise meal resulted in the lowest within-lab and 24-h energy intake, but also produced the lowest energy expenditure and highest hunger. Methodological issues lower the confidence in these findings and necessitate future work to address identified problems.


Assuntos
Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Jejum/efeitos adversos , Hormônios Gastrointestinais/análise , Jejum/sangue , Jejum/metabolismo , Hormônios Gastrointestinais/sangue , Hormônios Gastrointestinais/metabolismo , Humanos , Fome/fisiologia
11.
Handb Exp Pharmacol ; 274: 487-513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419620

RESUMO

Mimetics of the anorexigenic gut hormone glucagon-like peptide 1 (GLP-1) were originally developed as insulinotropic anti-diabetic drugs but also evoke significant weight loss, leading to their recent approval as obesity therapeutics. Co-activation of receptors for GLP-1 and other gut hormones which reduce food intake - peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP) - is now being explored clinically to enhance efficacy. An alternative approach involves pharmacologically stimulating endogenous secretion of these hormones from enteroendocrine cells (EECs) to recapitulate the metabolic consequences of bariatric surgery, where highly elevated postprandial levels of GLP-1 and PYY3-36 are thought to contribute to improved glycaemia and weight loss.


Assuntos
Polipeptídeo Inibidor Gástrico , Hormônios Gastrointestinais , Polipeptídeo Inibidor Gástrico/metabolismo , Hormônios Gastrointestinais/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Humanos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Peptídeo YY/metabolismo , Redução de Peso
12.
Ecotoxicol Environ Saf ; 237: 113510, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35468440

RESUMO

Nitrite in the aquatic environment potentially disturbs thyroid hormone (TH) homeostasis in peripheral tissues, but little is known about TH metabolism in the intestine. This study investigated the serum concentrations of THs and thyroid-stimulating hormone (TSH) as well as the activity of intestinal iodothyronine deiodinases (IDs) of grass carp (Ctenopharyngodon idellus) exposed to various concentrations of nitrite (0, 8, 25, or 50 mg/L) for 96 h. Acute nitrite exposure significantly altered the triiodothyronine (T3) levels and the morphology of thyroid follicles at 96 h. Thyroxine (T4), free T4 levels and intestinal IDs activities showed an increase trend under nitrite stress. After 96 h exposure, nitrite down-regulated the expressions levels of intestinal Akt1 protein, sugar transporter genes, and thyroid hormone receptor (TR) signaling pathway genes except for tr É‘1 and tr É‘2. Moreover, the expressions levels of pparγ, cpt1α, cd36, fabp2 and fatp4 were down-regulated, whereas fabp6 and lpl were up-regulated in the 50 mg/L exposure group at 96 h. The results indicate that acute nitrite exposure has the potential to disturb the homeostasis of intestinal TH metabolism, which in turn alters TRs genes transcription, down-regulates sugar transporter activities, and promotes the energy expenditure in gut of grass carp.


Assuntos
Carpas , Hormônios Gastrointestinais , Animais , Carpas/metabolismo , Hormônios Gastrointestinais/metabolismo , Homeostase , Iodeto Peroxidase/genética , Nitritos , Açúcares/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Tiroxina , Tri-Iodotironina/metabolismo
13.
Annu Rev Physiol ; 80: 117-141, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29029594

RESUMO

The gastrointestinal tract represents the largest interface between the human body and the external environment. It must continuously monitor and discriminate between nutrients that need to be assimilated and harmful substances that need to be expelled. The different cells of the gut epithelium are therefore equipped with a subtle chemosensory system that communicates the sensory information to several effector systems involved in the regulation of appetite, immune responses, and gastrointestinal motility. Disturbances or adaptations in the communication of this sensory information may contribute to the development or maintenance of disease. This is a new emerging research field in which perception of taste can be considered as a novel key player participating in the regulation of gut function. Specific diets or agonists that target these chemosensory signaling pathways may be considered as new therapeutic targets to tune adequate physiological processes in the gut in health and disease.


Assuntos
Células Quimiorreceptoras/metabolismo , Trato Gastrointestinal/metabolismo , Transdução de Sinais/fisiologia , Animais , Hormônios Gastrointestinais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Paladar/fisiologia
14.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328759

RESUMO

Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut-brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut-brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Eixo Encéfalo-Intestino , Diabetes Mellitus Tipo 2/metabolismo , Hormônios Gastrointestinais/metabolismo , Humanos , Obesidade/metabolismo , Obesidade/cirurgia
15.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216267

RESUMO

Bladder cancer (BC) has a high recurrence rate worldwide. The aim of this study was to evaluate the role of fatty acid binding protein 6 (FABP6) in proliferation and migration in human bladder cancer cells. Cell growth was confirmed by MTT and colony formation assay. Western blotting was used to explore protein expressions. Wound healing and Transwell assays were performed to evaluate the migration ability. A xenograft animal model with subcutaneous implantation of BC cells was generated to confirm the tumor progression. Knockdown of FABP6 reduced cell growth in low-grade TSGH-8301 and high-grade T24 cells. Cell cycle blockade was observed with the decrease of CDK2, CDK4, and Ki67 levels in FABP6-knockdown BC cells. Interestingly, knockdown of FBAP6 led to downregulation of autophagic markers and activation of AKT-mTOR signaling. The application of PI3K/AKT inhibitor decreased cell viability mediated by FABP6-knockdown additionally. Moreover, FABP6-knockdown reduced peroxisome proliferator-activated receptor γ and retinoid X receptor α levels but increased p-p65 expression. Knockdown of FABP6 also inhibited BC cell motility with focal adhesive complex reduction. Finally, shFABP6 combined with cisplatin suppressed tumor growth in vivo. These results provide evidence that FABP6 may be a potential target in BC cells progression.


Assuntos
Autofagia/fisiologia , Ciclo Celular/fisiologia , Movimento Celular/fisiologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Hormônios Gastrointestinais/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Regulação para Baixo/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
16.
Am J Physiol Endocrinol Metab ; 320(1): E7-E18, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103448

RESUMO

Dietary carbohydrate restriction may improve the phenotype of Type 2 diabetes (T2D) patients. We aimed to investigate 6 wk of carbohydrate restriction on postprandial glucose metabolism, pancreatic α- and ß-cell function, gut hormone secretion, and satiety in T2D patients. Methods In a crossover design, 28 T2D patients (mean HbA1c: 60 mmol/mol) were randomized to 6 wk of carbohydrate-reduced high-protein (CRHP) diet and 6 wk of conventional diabetes (CD) diet (energy-percentage carbohydrate/protein/fat: 30/30/40 vs. 50/17/33). Twenty-four-hour continuous glucose monitoring (CGM) and mixed-meal tests were undertaken and fasting intact proinsulin (IP), 32,33 split proinsulin concentrations (SP), and postprandial insulin secretion rates (ISR), insulinogenic index (IGI), ß-cell sensitivity to glucose (Bup), glucagon, and gut hormones were measured. Gastric emptying was evaluated by postprandial paracetamol concentrations and satiety by visual analog scale ratings. A CRHP diet reduced postprandial glucose area under curve (net AUC) by 60% (P < 0.001), 24 h glucose by 13% (P < 0.001), fasting IP and SP concentrations (both absolute and relative to C-peptide, P < 0.05), and postprandial ISR (24%, P = 0.015), while IGI and Bup improved by 31% and 45% (both P < 0.001). The CRHP diet increased postprandial glucagon net AUC by 235% (P < 0.001), subjective satiety by 18% (P = 0.03), delayed gastric emptying by 15 min (P < 0.001), decreased gastric inhibitory polypeptide net AUC by 29% (P < 0.001), but had no significant effect on glucagon-like-peptide-1, total peptide YY, and cholecystokinin responses. A CRHP diet reduced glucose excursions and improved ß-cell function, including proinsulin processing, and increased subjective satiety in patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/metabolismo , Dieta com Restrição de Carboidratos , Hormônios Gastrointestinais/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Resposta de Saciedade , Adulto , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/psicologia , Dieta com Restrição de Carboidratos/efeitos adversos , Proteínas Alimentares , Feminino , Esvaziamento Gástrico , Humanos , Secreção de Insulina , Masculino , Proinsulina/sangue , Resultado do Tratamento
17.
Am J Physiol Endocrinol Metab ; 320(4): E671-E679, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459181

RESUMO

Bile acids (BA) regulate postprandial metabolism directly and indirectly by affecting the secretion of gut hormones like glucagon-like peptide-1 (GLP-1). The postprandial effects of BA on the secretion of other metabolically active hormones are not well understood. The objective of this study was to investigate the effects of oral ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) on postprandial secretion of GLP-1, oxyntomodulin (OXM), peptide YY (PYY), glucose-dependent insulinotropic peptide (GIP), glucagon, and ghrelin. Twelve healthy volunteers underwent a mixed meal test 60 min after ingestion of UDCA (12-16 mg/kg), CDCA (13-16 mg/kg), or no BA in a randomized crossover study. Glucose, insulin, GLP-1, OXM, PYY, GIP, glucagon, ghrelin, and fibroblast growth factor 19 were measured prior to BA administration at -60 and 0 min (just prior to mixed meal) and 15, 30, 60, 120, 180, and 240 min after the meal. UDCA and CDCA provoked differential gut hormone responses; UDCA did not have any significant effects, but CDCA provoked significant increases in GLP-1 and OXM and a profound reduction in GIP. CDCA increased fasting GLP-1 and OXM secretion in parallel with an increase in insulin. On the other hand, CDCA reduced postprandial secretion of GIP, with an associated reduction in postprandial insulin secretion. Exogenous CDCA can exert multiple salutary effects on the secretion of gut hormones; if these effects are confirmed in obesity and type 2 diabetes, CDCA may be a potential therapy for these conditions.NEW & NOTEWORTHY Oral CDCA and UDCA have different effects on gut and pancreatic hormone secretion. A single dose of CDCA increased fasting secretion of the hormones GLP-1 and OXM with an accompanying increase in insulin secretion. CDCA also reduced postprandial GIP secretion, which was associated with reduced insulin. In contrast, UDCA did not change gut hormone secretion fasting or postprandially. Oral CDCA could be beneficial to patients with obesity and diabetes.


Assuntos
Ácidos e Sais Biliares/farmacologia , Hormônios Gastrointestinais/metabolismo , Período Pós-Prandial/efeitos dos fármacos , Administração Oral , Adulto , Ácidos e Sais Biliares/administração & dosagem , Ácidos e Sais Biliares/sangue , Ácido Quenodesoxicólico/administração & dosagem , Ácido Quenodesoxicólico/farmacologia , Estudos Cross-Over , Ingestão de Alimentos/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Via Secretória/efeitos dos fármacos , Reino Unido , Ácido Ursodesoxicólico/administração & dosagem , Ácido Ursodesoxicólico/farmacologia , Adulto Jovem
18.
Mol Hum Reprod ; 27(11)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34643696

RESUMO

Evidence accumulated in recent years has revealed that neutrophils are involved in the initial establishment of endometriosis, which is well-known as a chronic inflammatory disease. So far, why and how neutrophils promote the formation of early endometriosis are still unclear. In this study, using a mouse model of endometriosis, we demonstrated that endometriosis mice (EMs mice) had a significantly increased number of neutrophils in peritoneal fluids and lesions, and increased levels of granulocyte colony-stimulating factor (G-CSF) and IL-6 in serum and peritoneal fluids compared to the control group. In the neutrophils and uterine fragments co-injection experiment, neutrophils regulated by G-CSF and IL-6 had a similar effect to neutrophils from EMs mice, increasing the number, area, weight and microvessel density (MVD) of endometriotic lesions. Blocking the effect of G-CSF and IL-6 in EMs mice resulted in a decrease in the number, area and weight of endometriotic lesions. Following the depletion of neutrophils in vivo using a anti-Ly6G antibody, the MVD in the lesions of mice treated with neutrophils from EMs mice and neutrophils from pG/pI6 mice were significantly reduced. Neutrophils from EMs mice and neutrophils from pG/pI6 mice altered the expression levels of Mmp9, Bv8 and Trail genes compared to the neutrophils from PBS-treated mice. IL-6 together with G-CSF induced a higher expression of phospho-STAT3 and STAT3 in neutrophils. These findings suggest that neutrophils modulated by G-CSF and IL-6 through the STAT3 pathway alter the expression levels of the angiogenesis-related genes Mmp9, Bv8 and Trail, and may promote the establishment of early endometriosis.


Assuntos
Endometriose/metabolismo , Endométrio/irrigação sanguínea , Endométrio/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Interleucina-6/metabolismo , Neovascularização Patológica , Neutrófilos/metabolismo , Animais , Modelos Animais de Doenças , Endometriose/imunologia , Endometriose/patologia , Endométrio/imunologia , Feminino , Hormônios Gastrointestinais/genética , Hormônios Gastrointestinais/metabolismo , Fator Estimulador de Colônias de Granulócitos/genética , Interleucina-6/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Densidade Microvascular , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neutrófilos/imunologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
19.
Cell Biochem Funct ; 39(2): 308-316, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32876972

RESUMO

Cancer cell derived exosomes play important roles in cancer progression and modulation of the tumour microenvironment. This study aims to investigate the role of prokineticin receptor 1 (PKR1) positive exosomes on angiogenesis. In the present study, PKR1 expression in tumour samples from ovarian cancer patients were examined firstly. Then, two ovarian cancer cell lines, namely A2780 and HO-8910 cells, were used to isolate and obtain the PKR1 positive exosomes from the serum free medium. The function analysis of PKR1 positive exosomes on angiogenesis was conducted by cell proliferation and migration assay, tube formation analysis, and tumour volume assay. The results showed that PKR1 expression was down regulated in tumour samples of ovarian cancer patients compared with adjacent normal tissues. The intracellular expression of PKR1 could be detected in A2780 and HO-8910 cells. And, the isolated exosomes from the serum free medium were confirmed by transmission electron microscopic and NTA analysis, as well as the co-presence of PKR1 with exosome marker CD63. The function analysis of PKR1 positive exosomes on angiogenesis demonstrated the uptake of PKR1 positive exosomes by human umbilical vein endothelial cells through immunofluorescence staining. The angiogenesis assays in vitro indicated that PKR1 positive exosomes promoted migration and tube formation of HUVECs but not proliferation. The endogenous PKR1 was also verified to help to enhance migration and promote tube formation of vascular endothelial cells, which might involved in the phosphorylation of STAT3. Additionally, The tumour volume from exosomes treated A2780 tumour-bearing mice was significantly increased compared with the control group, accompanied with the induced PKR1 expression and phosphorylation of STAT3 level. SIGNIFICANCE OF THE STUDY: This study proved the important role of PKR1 positive exosomes released from ovarian cancer cells on promoting angiogenesis. The data indicated that PKR1 derived from ovarian cancer cells could act as an important tumour associated antigen and biomolecular factor for cellular communication in tumour microenvironment.


Assuntos
Exossomos/metabolismo , Hormônios Gastrointestinais/metabolismo , Neovascularização Fisiológica , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Exossomos/transplante , Feminino , Hormônios Gastrointestinais/antagonistas & inibidores , Hormônios Gastrointestinais/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transplante Heterólogo , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/antagonistas & inibidores , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/genética
20.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208631

RESUMO

Thiosulfate in the form of sodium thiosulfate (STS) is a major oxidation product of hydrogen sulfide (H2S), an endogenous signaling molecule and the third member of the gasotransmitter family. STS is currently used in the clinical treatment of acute cyanide poisoning, cisplatin toxicities in cancer therapy, and calciphylaxis in dialysis patients. Burgeoning evidence show that STS has antioxidant and anti-inflammatory properties, making it a potential therapeutic candidate molecule that can target multiple molecular pathways in various diseases and drug-induced toxicities. This review discusses the biochemical and molecular pathways in the generation of STS from H2S, its clinical usefulness, and potential clinical applications, as well as the molecular mechanisms underlying these clinical applications and a future perspective in kidney transplantation.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Oxirredução , Tiossulfatos/metabolismo , Animais , Hormônios Gastrointestinais/metabolismo , Humanos , Redes e Vias Metabólicas , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA