Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.858
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Genes Dev ; 35(11-12): 835-840, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33985971

RESUMO

Myocardin, a potent coactivator of serum response factor (SRF), competes with ternary complex factor (TCF) proteins for SRF binding to balance opposing mitogenic and myogenic gene programs in cardiac and smooth muscle. Here we identify a cardiac lncRNA transcribed adjacent to myocardin, named CARDINAL, which antagonizes SRF-dependent mitogenic gene transcription in the heart. CARDINAL-deficient mice show ectopic TCF/SRF-dependent mitogenic gene expression and decreased cardiac contractility in response to age and ischemic stress. CARDINAL forms a nuclear complex with SRF and inhibits TCF-mediated transactivation of the promitogenic gene c-fos, suggesting CARDINAL functions as an RNA cofactor for SRF in the heart.


Assuntos
Regulação da Expressão Gênica/genética , Coração/fisiologia , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Deleção de Genes , Fatores de Transcrição MEF2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Fator de Resposta Sérica/genética , Transativadores/genética , Ativação Transcricional
2.
Nature ; 608(7924): 766-777, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948637

RESUMO

Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.


Assuntos
Remodelamento Atrial , Montagem e Desmontagem da Cromatina , Perfilação da Expressão Gênica , Infarto do Miocárdio , Análise de Célula Única , Remodelação Ventricular , Remodelamento Atrial/genética , Estudos de Casos e Controles , Cromatina/genética , Epigenoma , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Tempo , Remodelação Ventricular/genética
3.
Circ Res ; 135(4): 518-536, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38989590

RESUMO

BACKGROUND: Macrophage-driven inflammation critically involves in cardiac injury and repair following myocardial infarction (MI). However, the intrinsic mechanisms that halt the immune response of macrophages, which is critical to preserve homeostasis and effective infarct repair, remain to be fully defined. Here, we aimed to determine the ubiquitination-mediated regulatory effects on averting exaggerated inflammatory responses in cardiac macrophages. METHODS: We used transcriptome analysis of mouse cardiac macrophages and bone marrow-derived macrophages to identify the E3 ubiquitin ligase RNF149 (ring finger protein 149) as a modulator of macrophage response to MI. Employing loss-of-function methodologies, bone marrow transplantation approaches, and adenovirus-mediated RNF149 overexpression in macrophages, we elucidated the functional role of RNF149 in MI. We explored the underlying mechanisms through flow cytometry, transcriptome analysis, immunoprecipitation/mass spectrometry analysis, and functional experiments. RNF149 expression was measured in the cardiac tissues of patients with acute MI and healthy controls. RESULTS: RNF149 was highly expressed in murine and human cardiac macrophages at the early phase of MI. Knockout of RNF149, transplantation of Rnf149-/- bone marrow, and bone marrow macrophage-specific RNF149-knockdown markedly exacerbated cardiac dysfunction in murine MI models. Conversely, overexpression of RNF149 in macrophages attenuated the ischemia-induced decline in cardiac contractile function. RNF149 deletion increased infiltration of proinflammatory monocytes/macrophages, accompanied by a hastened decline in reparative subsets, leading to aggravation of myocardial apoptosis and impairment of infarct healing. Our data revealed that RNF149 in infiltrated macrophages restricted inflammation by promoting ubiquitylation-dependent proteasomal degradation of IFNGR1 (interferon gamma receptor 1). Loss of IFNGR1 rescued deleterious effects of RNF149 deficiency on MI. We further demonstrated that STAT1 (signal transducer and activator of transcription 1) activation induced Rnf149 transcription, which, in turn, destabilized the IFNGR1 protein to counteract type-II IFN (interferon) signaling, creating a feedback control mechanism to fine-tune macrophage-driven inflammation. CONCLUSIONS: These findings highlight the significance of RNF149 as a molecular brake on macrophage response to MI and uncover a macrophage-intrinsic posttranslational mechanism essential for maintaining immune homeostasis and facilitating cardiac repair following MI.


Assuntos
Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio , Ubiquitina-Proteína Ligases , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Macrófagos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Camundongos , Humanos , Ubiquitinação , Masculino , Células Cultivadas
4.
Circ Res ; 135(8): 841-855, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39234697

RESUMO

BACKGROUND: Excess fibrotic remodeling causes cardiac dysfunction in ischemic heart disease, driven by MAP (mitogen-activated protein) kinase-dependent TGF-ß1 (transforming growth factor-ß1) activation by coagulation signaling of myeloid cells. How coagulation-inflammatory circuits can be specifically targeted to achieve beneficial macrophage reprogramming after myocardial infarction (MI) is not completely understood. METHODS: Mice with permanent ligation of the left anterior descending artery were used to model nonreperfused MI and analyzed by single-cell RNA sequencing, protein expression changes, confocal microscopy, and longitudinal monitoring of recovery. We probed the role of the tissue factor (TF)-FVIIa (activated factor VII)-integrin ß1-PAR2 (protease-activated receptor 2) signaling complex by utilizing genetic mouse models and pharmacological intervention. RESULTS: Cleavage-insensitive PAR2R38E and myeloid cell integrin ß1-deficient mice had improved cardiac function after MI compared with controls. Proximity ligation assays of monocytic cells demonstrated that colocalization of FVIIa with integrin ß1 was diminished in monocyte/macrophage FVII-deficient mice after MI. Compared with controls, F7fl/fl CX3CR1 (CX3C motif chemokine receptor 1)Cre mice showed reduced TGF-ß1 and MAP kinase activation, as well as cardiac dysfunction after MI, despite unaltered overall recruitment of myeloid cells. Single-cell mRNA sequencing of CD45 (cluster of differentiation 45)+ cells 3 and 7 days after MI uncovered a trajectory from recruited monocytes to inflammatory TF+/TREM (triggered receptor expressed on myeloid cells) 1+ macrophages requiring F7. As early as 7 days after MI, macrophage F7 deletion led to an expansion of reparative Olfml 3 (olfactomedin-like protein 3)+ macrophages and, conversely, to a reduction of TF+/TREM1+ macrophages, which were also reduced in PAR2R38E mice. Short-term treatment from days 1 to 5 after nonreperfused MI with a monoclonal antibody inhibiting the macrophage TF-FVIIa-PAR2 signaling complex without anticoagulant activity improved cardiac dysfunction, decreased excess fibrosis, attenuated vascular endothelial dysfunction, and increased survival 28 days after MI. CONCLUSIONS: Extravascular TF-FVIIa-PAR2 complex signaling drives inflammatory macrophage polarization in ischemic heart disease. Targeting this signaling complex for specific therapeutic macrophage reprogramming following MI attenuates cardiac fibrosis and improves cardiovascular function.


Assuntos
Macrófagos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Receptor PAR-2 , Remodelação Ventricular , Animais , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/deficiência , Camundongos , Fator VIIa/metabolismo , Masculino , Transdução de Sinais , Camundongos Knockout , Fator de Crescimento Transformador beta1/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Tromboplastina/metabolismo , Tromboplastina/genética , Fibrose
5.
Circulation ; 149(25): 1982-2001, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38390737

RESUMO

BACKGROUND: Reparative macrophages play a crucial role in limiting excessive fibrosis and promoting cardiac repair after myocardial infarction (MI), highlighting the significance of enhancing their reparative phenotype for wound healing. Metabolic adaptation orchestrates the phenotypic transition of macrophages; however, the precise mechanisms governing metabolic reprogramming of cardiac reparative macrophages remain poorly understood. In this study, we investigated the role of NPM1 (nucleophosmin 1) in the metabolic and phenotypic shift of cardiac macrophages in the context of MI and explored the therapeutic effect of targeting NPM1 for ischemic tissue repair. METHODS: Peripheral blood mononuclear cells were obtained from healthy individuals and patients with MI to explore NPM1 expression and its correlation with prognostic indicators. Through RNA sequencing, metabolite profiling, histology, and phenotype analyses, we investigated the role of NPM1 in postinfarct cardiac repair using macrophage-specific NPM1 knockout mice. Epigenetic experiments were conducted to study the mechanisms underlying metabolic reprogramming and phenotype transition of NPM1-deficient cardiac macrophages. The therapeutic efficacy of antisense oligonucleotide and inhibitor targeting NPM1 was then assessed in wild-type mice with MI. RESULTS: NPM1 expression was upregulated in the peripheral blood mononuclear cells from patients with MI that closely correlated with adverse prognostic indicators of MI. Macrophage-specific NPM1 deletion reduced infarct size, promoted angiogenesis, and suppressed tissue fibrosis, in turn improving cardiac function and protecting against adverse cardiac remodeling after MI. Furthermore, NPM1 deficiency boosted the reparative function of cardiac macrophages by shifting macrophage metabolism from the inflammatory glycolytic system to oxygen-driven mitochondrial energy production. The oligomeric NPM1 recruited histone demethylase KDM5b to the promoter of Tsc1 (TSC complex subunit 1), the mTOR (mechanistic target of rapamycin kinase) complex inhibitor, reduced histone H3K4me3 modification, and inhibited TSC1 expression, which then facilitated mTOR-related inflammatory glycolysis and antagonized the reparative function of cardiac macrophages. The in vivo administration of antisense oligonucleotide targeting NPM1 or oligomerization inhibitor NSC348884 substantially ameliorated tissue injury and enhanced cardiac recovery in mice after MI. CONCLUSIONS: Our findings uncover the key role of epigenetic factor NPM1 in impeding postinfarction cardiac repair by remodeling metabolism pattern and impairing the reparative function of cardiac macrophages. NPM1 may serve as a promising prognostic biomarker and a valuable therapeutic target for heart failure after MI.


Assuntos
Epigênese Genética , Macrófagos , Infarto do Miocárdio , Proteínas Nucleares , Nucleofosmina , Animais , Macrófagos/metabolismo , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Camundongos Knockout , Masculino , Reprogramação Celular , Feminino , Glicólise , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
6.
Circulation ; 150(6): 451-465, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38682338

RESUMO

BACKGROUND: Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS: We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS: In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS: These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Humanos , Camundongos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Neovascularização Fisiológica , Proliferação de Células , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Regeneração , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Transgênicos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/citologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Linhagem da Célula
7.
Circulation ; 150(14): 1101-1120, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39005211

RESUMO

BACKGROUND: Activation of the immune system contributes to cardiovascular diseases. The role of human-specific long noncoding RNAs in cardioimmunology is poorly understood. METHODS: Single-cell sequencing in peripheral blood mononuclear cells revealed a novel human-specific long noncoding RNA called HEAT4 (heart failure-associated transcript 4). HEAT4 expression was assessed in several in vitro and ex vivo models of immune cell activation, as well as in the blood of patients with heart failure (HF), acute myocardial infarction, or cardiogenic shock. The transcriptional regulation of HEAT4 was verified through cytokine treatment and single-cell sequencing. Loss-of-function and gain-of-function studies and multiple RNA-protein interaction assays uncovered a mechanistic role of HEAT4 in the monocyte anti-inflammatory gene program. HEAT4 expression and function was characterized in a vascular injury model in NOD.CB17-Prkdc scid/Rj mice. RESULTS: HEAT4 expression was increased in the blood of patients with HF, acute myocardial infarction, or cardiogenic shock. HEAT4 levels distinguished patients with HF from people without HF and predicted all-cause mortality in a cohort of patients with HF over 7 years of follow-up. Monocytes, particularly anti-inflammatory CD16+ monocytes, which are increased in patients with HF, are the primary source of HEAT4 expression in the blood. HEAT4 is transcriptionally activated by treatment with anti-inflammatory interleukin-10. HEAT4 activates anti-inflammatory and inhibits proinflammatory gene expression. Increased HEAT4 levels result in a shift toward more CD16+ monocytes. HEAT4 binds to S100A9, causing a monocyte subtype switch, thereby reducing inflammation. As a result, HEAT4 improves endothelial barrier integrity during inflammation and promotes vascular healing after injury in mice. CONCLUSIONS: These results characterize a novel endogenous anti-inflammatory pathway that involves the conversion of monocyte subtypes into anti-inflammatory CD16+ monocytes. The data identify a novel function for the class of long noncoding RNAs by preventing protein secretion and suggest long noncoding RNAs as potential targets for interventions in the field of cardioimmunology.


Assuntos
Inflamação , Monócitos , RNA Longo não Codificante , Humanos , Monócitos/metabolismo , Monócitos/imunologia , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Inflamação/metabolismo , Camundongos , Masculino , Feminino , Camundongos SCID , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia
8.
Circulation ; 150(11): 848-866, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38708602

RESUMO

BACKGROUND: Exercise-induced physiological cardiac growth regulators may protect the heart from ischemia/reperfusion (I/R) injury. Homeobox-containing 1 (Hmbox1), a homeobox family member, has been identified as a putative transcriptional repressor and is downregulated in the exercised heart. However, its roles in exercise-induced physiological cardiac growth and its potential protective effects against cardiac I/R injury remain largely unexplored. METHODS: We studied the function of Hmbox1 in exercise-induced physiological cardiac growth in mice after 4 weeks of swimming exercise. Hmbox1 expression was then evaluated in human heart samples from deceased patients with myocardial infarction and in the animal cardiac I/R injury model. Its role in cardiac I/R injury was examined in mice with adeno-associated virus 9 (AAV9) vector-mediated Hmbox1 knockdown and in those with cardiac myocyte-specific Hmbox1 ablation. We performed RNA sequencing, promoter prediction, and binding assays and identified glucokinase (Gck) as a downstream effector of Hmbox1. The effects of Hmbox1 together with Gck were examined in cardiomyocytes to evaluate their cell size, proliferation, apoptosis, mitochondrial respiration, and glycolysis. The function of upstream regulator of Hmbox1, ETS1, was investigated through ETS1 overexpression in cardiac I/R mice in vivo. RESULTS: We demonstrated that Hmbox1 downregulation was required for exercise-induced physiological cardiac growth. Inhibition of Hmbox1 increased cardiomyocyte size in isolated neonatal rat cardiomyocytes and human embryonic stem cell-derived cardiomyocytes but did not affect cardiomyocyte proliferation. Under pathological conditions, Hmbox1 was upregulated in both human and animal postinfarct cardiac tissues. Furthermore, both cardiac myocyte-specific Hmbox1 knockout and AAV9-mediated Hmbox1 knockdown protected against cardiac I/R injury and heart failure. Therapeutic effects were observed when sh-Hmbox1 AAV9 was administered after I/R injury. Inhibition of Hmbox1 activated the Akt/mTOR/P70S6K pathway and transcriptionally upregulated Gck, leading to reduced apoptosis and improved mitochondrial respiration and glycolysis in cardiomyocytes. ETS1 functioned as an upstream negative regulator of Hmbox1 transcription, and its overexpression was protective against cardiac I/R injury. CONCLUSIONS: Our studies unravel a new role for the transcriptional repressor Hmbox1 in exercise-induced physiological cardiac growth. They also highlight the therapeutic potential of targeting Hmbox1 to improve myocardial survival and glucose metabolism after I/R injury.


Assuntos
Glucose , Proteínas de Homeodomínio , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Camundongos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Glucose/metabolismo , Glucose/deficiência , Masculino , Sobrevivência Celular , Ratos , Camundongos Endogâmicos C57BL , Glicólise , Transdução de Sinais , Apoptose , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética
9.
Am J Hum Genet ; 109(9): 1638-1652, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055212

RESUMO

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are currently under clinical development for treating anemia in chronic kidney disease (CKD), but it is important to monitor their cardiovascular safety. Genetic variants can be used as predictors to help inform the potential risk of adverse effects associated with drug treatments. We therefore aimed to use human genetics to help assess the risk of adverse cardiovascular events associated with therapeutically altered EPO levels to help inform clinical trials studying the safety of HIF-PHIs. By performing a genome-wide association meta-analysis of EPO (n = 6,127), we identified a cis-EPO variant (rs1617640) lying in the EPO promoter region. We validated this variant as most likely causal in controlling EPO levels by using genetic and functional approaches, including single-base gene editing. Using this variant as a partial predictor for therapeutic modulation of EPO and large genome-wide association data in Mendelian randomization tests, we found no evidence (at p < 0.05) that genetically predicted long-term rises in endogenous EPO, equivalent to a 2.2-unit increase, increased risk of coronary artery disease (CAD, OR [95% CI] = 1.01 [0.93, 1.07]), myocardial infarction (MI, OR [95% CI] = 0.99 [0.87, 1.15]), or stroke (OR [95% CI] = 0.97 [0.87, 1.07]). We could exclude increased odds of 1.15 for cardiovascular disease for a 2.2-unit EPO increase. A combination of genetic and functional studies provides a powerful approach to investigate the potential therapeutic profile of EPO-increasing therapies for treating anemia in CKD.


Assuntos
Anemia , Doença da Artéria Coronariana , Infarto do Miocárdio , Insuficiência Renal Crônica , Anemia/tratamento farmacológico , Anemia/genética , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Infarto do Miocárdio/genética , Insuficiência Renal Crônica/genética
10.
Stem Cells ; 42(1): 29-41, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37933895

RESUMO

Poor proliferative capacity of adult cardiomyocytes is the primary cause of heart failure after myocardial infarction (MI), thus exploring the molecules and mechanisms that promote the proliferation of adult cardiomyocytes is crucially useful for cardiac repair after MI. Here, we found that miR-130b-5p was highly expressed in mouse embryonic and neonatal hearts and able to promote cardiomyocyte proliferation both in vitro and in vivo. Mechanistic studies revealed that miR-130b-5p mainly promoted the cardiomyocyte proliferation through the MAPK-ERK signaling pathway, and the dual-specific phosphatase 6 (Dusp6), a negative regulator of the MAPK-ERK signaling, was the direct target of miR-130b-5p. Moreover, we found that overexpression of miR-130b-5p could promote the proliferation of cardiomyocytes and improve cardiac function in mice after MI. These studies thus revealed the critical role of miR-130b-5p and its targeted MAPK-ERK signaling in the cardiomyocyte proliferation of adult hearts and proved that miR-130b-5p could be a potential target for cardiac repair after MI.


Assuntos
MicroRNAs , Infarto do Miocárdio , Camundongos , Animais , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Apoptose
11.
Circ Res ; 132(9): e134-e150, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36999436

RESUMO

BACKGROUND: IL-37 (interleukin-37), a natural suppressor of innate inflammatory and immune responses, is increased in patients with myocardial infarction. Platelets play an important role in the progress of myocardial infarction, but the direct effects of IL-37 on platelet activation and thrombosis, as well as the underlying mechanisms, still remain unclear. METHODS: We evaluated the direct effects of IL-37 on agonists-induced platelet activation and thrombus formation, as well as revealed the underlying mechanisms using platelet-specific IL-1R8 (IL-1 receptor 8)-deficient mice. Using myocardial infarct model, we explored the effects of IL-37 on microvascular obstruction and myocardial injury. RESULTS: IL-37 directly inhibited agonists-induced platelet aggregation, dense granule ATP release, P-selectin exposure, integrin αIIbß3 activation, platelet spreading, and clot retraction. IL-37 inhibited thrombus formation in vivo in a FeCl3-injured mesenteric arteriole thrombosis mouse model and ex vivo in a microfluidic whole-blood perfusion assay. Mechanistic studies using platelet-specific IL-1R8-deficient mice revealed that IL-37 bound to platelet IL-1R8 and IL-18Rα, and IL-1R8 deficiency impaired the inhibitory effects of IL-37 on platelet activation. Using PTEN (phosphatase and tensin homolog)-specific inhibitor and PTEN-deficient platelets, we found that IL-37 combined with IL-1R8 to enhance PTEN activity, inhibit Akt (protein kinase B), mitogen-activated protein kinases, and spleen tyrosine kinase pathways, as well as decrease the generation of reactive oxygen species to regulate platelet activation. Exogenous IL-37 injection suppressed microvascular thrombosis to protect against myocardial injury in wild-type mice but not in platelet-specific IL-1R8-deficient mice after permanent ligation of the left anterior descending coronary. Finally, a negative correlation between plasma IL-37 concentration and platelet aggregation was observed in patients with myocardial infarction. CONCLUSIONS: IL-37 directly attenuated platelet activation, thrombus formation, and myocardial injury via IL-1R8 receptor. Accumulated IL-37 in plasma inhibited platelet activation to ameliorate atherothrombosis and infarction expansion, and thus may have therapeutic advantages as potential antiplatelet drugs.


Assuntos
Infarto do Miocárdio , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais , Trombose/genética , Trombose/prevenção & controle
12.
Circ Res ; 132(9): 1110-1126, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36974722

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA)-induced myocardial inflammation is intimately involved in cardiac remodeling. ZBP1 (Z-DNA binding protein 1) is a pattern recognition receptor positively regulating inflammation in response to mtDNA in inflammatory cells, fibroblasts, and endothelial cells. However, the role of ZBP1 in myocardial inflammation and cardiac remodeling remains unclear. The aim of this study was to elucidate the role of ZBP1 in mtDNA-induced inflammation in cardiomyocytes and failing hearts. METHODS: mtDNA was administrated into isolated cardiomyocytes. Myocardial infarctionwas conducted in wild type and ZBP1 knockout mice. RESULTS: We here found that, unlike in macrophages, ZBP1 knockdown unexpectedly exacerbated mtDNA-induced inflammation such as increases in IL (interleukin)-1ß and IL-6, accompanied by increases in RIPK3 (receptor interacting protein kinase 3), phosphorylated NF-κB (nuclear factor-κB), and NLRP3 (nucleotide-binding domain and leucine-rich-repeat family pyrin domain containing 3) in cardiomyocytes. RIPK3 knockdown canceled further increases in phosphorylated NF-κB, NLRP3, IL-1ß, and IL-6 by ZBP1 knockdown in cardiomyocytes in response to mtDNA. Furthermore, NF-κB knockdown suppressed such increases in NLRP3, IL-1ß, and IL-6 by ZBP1 knockdown in response to mtDNA. CpG-oligodeoxynucleotide, a Toll-like receptor 9 stimulator, increased RIPK3, IL-1ß, and IL-6 and ZBP1 knockdown exacerbated them. Dloop, a component of mtDNA, but not Tert and B2m, components of nuclear DNA, was increased in cytosolic fraction from noninfarcted region of mouse hearts after myocardial infarction compared with control hearts. Consistent with this change, ZBP1, RIPK3, phosphorylated NF-κB, NLRP3, IL-1ß, and IL-6 were increased in failing hearts. ZBP1 knockout mice exacerbated left ventricular dilatation and dysfunction after myocardial infarction, accompanied by further increases in RIPK3, phosphorylated NF-κB, NLRP3, IL-1ß, and IL-6. In histological analysis, ZBP1 knockout increased interstitial fibrosis and myocardial apoptosis in failing hearts. CONCLUSIONS: Our study reveals unexpected protective roles of ZBP1 against cardiac remodeling as an endogenous suppressor of mtDNA-induced myocardial inflammation.


Assuntos
Infarto do Miocárdio , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , DNA Mitocondrial/genética , Interleucina-6/metabolismo , Remodelação Ventricular , Células Endoteliais/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/patologia , Inflamação/metabolismo , Camundongos Knockout , Interleucina-1beta/metabolismo , Proteínas de Ligação a RNA
13.
Arterioscler Thromb Vasc Biol ; 44(2): 452-464, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38126173

RESUMO

BACKGROUND: Aortic valve sclerosis (AVSc) presents similar pathogenetic mechanisms to coronary artery disease and is associated with short- and long-term mortality in patients with coronary artery disease. Evidence of AVSc-specific pathophysiological traits in acute myocardial infarction (AMI) is currently lacking. Thus, we aimed to identify a blood-based transcriptional signature that could differentiate AVSc from no-AVSc patients during AMI. METHODS: Whole-blood transcriptome of AVSc (n=44) and no-AVSc (n=66) patients with AMI was assessed by RNA sequencing on hospital admission. Feature selection, differential expression, and enrichment analyses were performed to identify gene expression patterns discriminating AVSc from no-AVSc and infer functional associations. Multivariable Cox regression analysis was used to estimate the hazard ratios of cardiovascular events in AVSc versus no-AVSc patients. RESULTS: This cross-sectional study identified a panel of 100 informative genes capable of distinguishing AVSc from no-AVSc patients with 94% accuracy. Further analysis revealed significant mean differences in 143 genes, of which 30 genes withstood correction for age and previous AMI or coronary interventions. Functional inference unveiled a significant association between AVSc and key biological processes, including acute inflammatory responses, type I IFN (interferon) response, platelet activation, and hemostasis. Notably, patients with AMI with AVSc exhibited a significantly higher incidence of adverse cardiovascular events during a 10-year follow-up period, with a full adjusted hazard ratio of 2.4 (95% CI, 1.3-4.5). CONCLUSIONS: Our findings shed light on the molecular mechanisms underlying AVSc and provide potential prognostic insights for patients with AMI with AVSc. During AMI, patients with AVSc showed increased type I IFN (interferon) response and earlier adverse cardiovascular outcomes. Novel pharmacological therapies aiming at limiting type I IFN response during or immediately after AMI might improve poor cardiovascular outcomes of patients with AMI with AVSc.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/patologia , Valva Aórtica/patologia , Transcriptoma , Esclerose/patologia , Estudos Transversais , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Infarto do Miocárdio/epidemiologia , Imunidade , Interferons
14.
Nature ; 569(7756): 418-422, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068698

RESUMO

Prompt coronary catheterization and revascularization have markedly improved the outcomes of myocardial infarction, but have also resulted in a growing number of surviving patients with permanent structural damage of the heart, which frequently leads to heart failure. There is an unmet clinical need for treatments for this condition1, particularly given the inability of cardiomyocytes to replicate and thereby regenerate the lost contractile tissue2. Here we show that expression of human microRNA-199a in infarcted pig hearts can stimulate cardiac repair. One month after myocardial infarction and delivery of this microRNA through an adeno-associated viral vector, treated animals showed marked improvements in both global and regional contractility, increased muscle mass and reduced scar size. These functional and morphological findings correlated with cardiomyocyte de-differentiation and proliferation. However, subsequent persistent and uncontrolled expression of the microRNA resulted in sudden arrhythmic death of most of the treated pigs. Such events were concurrent with myocardial infiltration of proliferating cells displaying a poorly differentiated myoblastic phenotype. These results show that achieving cardiac repair through the stimulation of endogenous cardiomyocyte proliferation is attainable in large mammals, however dosage of this therapy needs to be tightly controlled.


Assuntos
Morte Súbita Cardíaca/etiologia , MicroRNAs/efeitos adversos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Sus scrofa/genética , Animais , Proliferação de Células/genética , Coração/fisiologia , Coração/fisiopatologia , Masculino , MicroRNAs/administração & dosagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Regeneração/genética
15.
Mol Ther ; 32(3): 646-662, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38291755

RESUMO

The upregulation of Orai1 and subsequent store-operated Ca2+ entry (SOCE) has been associated with adverse cardiac remodeling and heart failure (HF). However, the mechanism underlying Orai1 upregulation and its role in myocardial infarction remains unclear. Our study investigated the role of Orai1 in activating adenylyl cyclase 8 (AC8) and cyclic AMP (cAMP) response element-binding protein (CREB), as well as its contribution to cardiac dysfunction induced by ischemia and reperfusion (I/R). We found that I/R evoked an increase in the expression of Orai1 and AC8 in rats' hearts, resulting in a substantial rise in diastolic Ca2+ concentration ([Ca2+]i), and reduced ventricular contractions. The expression of Orai1 and AC8 was also increased in ventricular biopsies of post-ischemic HF patients. Mechanistically, we demonstrate that I/R activation of Orai1 stimulated AC8, which produced cAMP and phosphorylated CREB. Subsequently, p-CREB activated the ORAI1 promoter, resulting in Orai1 upregulation and SOCE exacerbation. Intramyocardial administration of AAV9 carrying AC8 short hairpin RNA decreased the expression of AC8, Orai1 and CREB, which restored diastolic [Ca2+]i and improved cardiac contraction. Therefore, our data suggests that the axis composed by Orai1/AC8/CREB plays a critical role in I/R-induced cardiac dysfunction, representing a potential new therapeutic target to limit the progression of the disease toward HF.


Assuntos
Adenilil Ciclases , Infarto do Miocárdio , Humanos , Ratos , Animais , Regulação para Cima , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Sinalização do Cálcio , Infarto do Miocárdio/genética , Cálcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
16.
Eur Heart J ; 45(29): 2660-2673, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-38865332

RESUMO

BACKGROUND AND AIMS: Extracellular vesicles (EVs) secreted by cardiosphere-derived cells exert immunomodulatory effects through the transmission of small non-coding RNAs. METHODS: The mechanism and role of yREX3, a small Y RNA abundant in EVs in myocardial injury, was investigated. RESULTS: yREX3 attenuates cardiac ischaemic injury by selective DNA methylation. Synthetic yREX3 encapsulated in lipid nanoparticles triggers broad transcriptomic changes in macrophages, localizes to the nucleus, and mediates epigenetic silencing of protein interacting with C kinase-1 (Pick1) through methylation of upstream CpG sites. Moreover, yREX3 interacts with polypyrimidine tract binding protein 3 (PTBP3) to methylate the Pick1 gene locus in a DNA methyltransferase-dependent manner. Suppression of Pick1 in macrophages potentiates Smad3 signalling and enhances efferocytosis, minimizing heart necrosis in rats with myocardial infarction. Adoptive transfer of Pick1-deficient macrophages recapitulates the cardioprotective effects of yREX3 in vivo. CONCLUSIONS: These findings highlight the role of a small Y RNA mined from EVs with a novel gene-methylating mechanism.


Assuntos
Vesículas Extracelulares , Macrófagos , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Animais , Humanos , Metilação de DNA , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Infarto do Miocárdio/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ratos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Masculino
17.
J Mol Cell Cardiol ; 192: 48-64, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734060

RESUMO

INTRODUCTION: Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS: We analyzed the B and T cell populations isolated from previously published single cell RNA-sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS: Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both mouse and human post-MI hearts. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION: These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.


Assuntos
Linfócitos B , Infarto do Miocárdio , Miocárdio , Análise de Sequência de RNA , Análise de Célula Única , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Humanos , Animais , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Linfócitos B/metabolismo , Linfócitos B/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia , Imunidade Adaptativa/genética , Regulação da Expressão Gênica , Perfilação da Expressão Gênica , Transcriptoma/genética , Transcrição Gênica , Estudo de Associação Genômica Ampla
18.
J Mol Cell Cardiol ; 190: 48-61, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582260

RESUMO

We have demonstrated that directly reprogramming cardiac fibroblasts into new cardiomyocytes via miR combo improves cardiac function in the infarcted heart. However, major challenges exist with delivery and efficacy. During a screening based approach to improve delivery, we discovered that C166-derived EVs were effective delivery agents for miR combo both in vitro and in vivo. In the latter, EV mediated delivery of miR combo induced significant conversion of cardiac fibroblasts into cardiomyocytes (∼20%), reduced fibrosis and improved cardiac function in a myocardial infarction injury model. When compared to lipid-based transfection, C166 EV mediated delivery of miR combo enhanced reprogramming efficacy. Improved reprogramming efficacy was found to result from a miRNA within the exosome: miR-148a-3p. The target of miR-148a-3p was identified as Mdfic. Over-expression and targeted knockdown studies demonstrated that Mdfic was a repressor of cardiomyocyte specific gene expression. In conclusion, we have demonstrated that C166-derived EVs are an effective method for delivering reprogramming factors to cardiac fibroblasts and we have identified a novel miRNA contained within C166-derived EVs which enhances reprogramming efficacy.


Assuntos
Reprogramação Celular , Fibroblastos , MicroRNAs , Miócitos Cardíacos , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Reprogramação Celular/genética , Miócitos Cardíacos/metabolismo , Fibroblastos/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Exossomos/metabolismo , Regulação da Expressão Gênica , Humanos
19.
J Mol Cell Cardiol ; 191: 76-87, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718920

RESUMO

The reactivated adult epicardium produces epicardium-derived cells (EPDCs) via epithelial-mesenchymal transition (EMT) to benefit the recovery of the heart after myocardial infarction (MI). SMARCA4 is the core catalytic subunit of the chromatin re-modeling complex, which has the potential to target some reactivated epicardial genes in MI. However, the effects of epicardial SMARCA4 on MI remain uncertain. This study found that SMARCA4 was activated over time in epicardial cells following MI, and some of activated cells belonged to downstream differentiation types of EPDCs. This study used tamoxifen to induce lineage tracing and SMARCA4 deletion from epicardial cells in Wt1-CreER;Smarca4fl/fl;Rosa26-RFP adult mice. Epicardial SMARCA4 deletion reduces the number of epicardial cells in adult mice, which was related to changes in the activation, proliferation, and apoptosis of epicardial cells. Epicardial SMARCA4 deletion reduced collagen deposition and angiogenesis in the infarcted area, exacerbated cardiac injury in MI. The exacerbation of cardiac injury was related to the inhibition of generation and differentiation of EPDCs. The alterations in EPDCs were associated with inhibited transition between E-CAD and N-CAD during the epicardial EMT, coupled with the down-regulation of WT1, SNAIL1, and PDGF signaling. In conclusion, this study suggests that Epicardial SMARCA4 plays a critical role in cardiac injury caused by MI, and its regulatory mechanism is related to epicardial EMT. Epicardial SMARCA4 holds potential as a novel molecular target for treating MI.


Assuntos
DNA Helicases , Transição Epitelial-Mesenquimal , Deleção de Genes , Infarto do Miocárdio , Pericárdio , Fatores de Transcrição , Animais , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Transição Epitelial-Mesenquimal/genética , Pericárdio/patologia , Pericárdio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Camundongos , Diferenciação Celular , Apoptose/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/deficiência , Proliferação de Células , Modelos Animais de Doenças
20.
Am J Physiol Cell Physiol ; 326(2): C457-C472, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145299

RESUMO

Cardiac fibroblasts are essential for the homeostasis of the extracellular matrix, whose remodeling in many cardiovascular diseases leads to fibrosis. Long noncoding RNAs (lncRNAs) are associated with cardiac pathologies, but their functions in cardiac fibroblasts and contributions to cardiac fibrosis remain unclear. Here, we aimed to identify fibroblast-enriched lncRNAs essential in myocardial infarction (MI)-induced fibrosis and explore the molecular mechanisms responsible for their functions. Global lncRNA profiling was performed in post-MI mouse heart ventricles and transforming growth factor-ß (TGF-ß)-treated primary cardiac fibroblasts and confirmed in published data sets. We identified the cardiac fibroblast-enriched lncPostn, whose expression is stimulated in cardiac fibrosis induced by MI and the extracellular growth factor TGF-ß. The promoter of lncPostn contains a functional TGF-ß response element, and lncPostn knockdown suppresses TGF-ß-stimulated cardiac fibroblast activation and improves cardiac functions post-MI. LncPostn stabilizes and recruits EP300 to the profibrotic periostin's promoter, representing a major mechanism for its transcriptional activation. Moreover, both MI and TGF-ß enhance lncPostn expression while suppressing the cellular growth gatekeeper p53. TGF-ß and p53 knockdown-induced profibrotic gene expression and fibrosis occur mainly through lncPostn and show additive effects. Finally, levels of serum lncPostn are significantly increased in patients' postacute MI and show a strong correlation with fibrosis markers, revealing a potential biomarker of cardiac fibrosis. Our findings identify the fibroblast-enriched lncPostn as a potent profibrotic factor, providing a transcriptional link between TGF-ß and p53 signaling pathways to regulate fibrosis in cardiac fibroblasts.NEW & NOTEWORTHY Cardiac fibroblasts are essential for the homeostasis of the extracellular matrix, whose remodeling in many cardiovascular diseases leads to fibrosis. Long noncoding RNAs are functional and contribute to the biological processes of cardiovascular development and disorders. Our findings identify the fibroblast-enriched lncPostn as a potent profibrotic factor and demonstrate that serum lncPostn level may serve as a potential biomarker of human cardiac fibrosis postacute myocardial infarction.


Assuntos
Cardiomiopatias , Infarto do Miocárdio , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Fibrose , Fibroblastos/metabolismo , Transdução de Sinais , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA