Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Pathog ; 16(3): e1008412, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226041

RESUMO

Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra virus (HeV) which causes severe clinical disease in humans and other susceptible hosts. Our understanding of the ability of bats to avoid clinical disease following infection with viruses such as HeV has come predominantly from in vitro studies focusing on innate immunity. Information on the early host response to infection in vivo is lacking and there is no comparative data on responses in bats compared with animals that succumb to disease. In this study, we examined the sites of HeV replication and the immune response of infected Australian black flying foxes and ferrets at 12, 36 and 60 hours post exposure (hpe). Viral antigen was detected at 60 hpe in bats and was confined to the lungs whereas in ferrets there was evidence of widespread viral RNA and antigen by 60 hpe. The mRNA expression of IFNs revealed antagonism of type I and III IFNs and a significant increase in the chemokine, CXCL10, in bat lung and spleen following infection. In ferrets, there was an increase in the transcription of IFN in the spleen following infection. Liquid chromatography tandem mass spectrometry (LC-MS/MS) on lung tissue from bats and ferrets was performed at 0 and 60 hpe to obtain a global overview of viral and host protein expression. Gene Ontology (GO) enrichment analysis of immune pathways revealed that six pathways, including a number involved in cell mediated immunity were more likely to be upregulated in bat lung compared to ferrets. GO analysis also revealed enrichment of the type I IFN signaling pathway in bats and ferrets. This study contributes important comparative data on differences in the dissemination of HeV and the first to provide comparative data on the activation of immune pathways in bats and ferrets in vivo following infection.


Assuntos
Antígenos Virais/imunologia , Vírus Hendra/imunologia , Infecções por Henipavirus/imunologia , Imunidade Celular , Imunidade Inata , Pulmão/imunologia , Modelos Imunológicos , Animais , Antígenos Virais/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quirópteros , Furões , Vírus Hendra/genética , Infecções por Henipavirus/genética , Infecções por Henipavirus/patologia , Interferons/genética , Interferons/imunologia , Pulmão/patologia , Pulmão/virologia , Especificidade da Espécie
2.
Proc Natl Acad Sci U S A ; 116(41): 20707-20715, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548390

RESUMO

Cedar virus (CedV) is a bat-borne henipavirus related to Nipah virus (NiV) and Hendra virus (HeV), zoonotic agents of fatal human disease. CedV receptor-binding protein (G) shares only ∼30% sequence identity with those of NiV and HeV, although they can all use ephrin-B2 as an entry receptor. We demonstrate that CedV also enters cells through additional B- and A-class ephrins (ephrin-B1, ephrin-A2, and ephrin-A5) and report the crystal structure of the CedV G ectodomain alone and in complex with ephrin-B1 or ephrin-B2. The CedV G receptor-binding site is structurally distinct from other henipaviruses, underlying its capability to accommodate additional ephrin receptors. We also show that CedV can enter cells through mouse ephrin-A1 but not human ephrin-A1, which differ by 1 residue in the key contact region. This is evidence of species specific ephrin receptor usage by a henipavirus, and implicates additional ephrin receptors in potential zoonotic transmission.


Assuntos
Efrina-B1/metabolismo , Efrina-B2/metabolismo , Efrina-B3/metabolismo , Infecções por Henipavirus/virologia , Henipavirus/fisiologia , Receptores Virais/metabolismo , Proteínas do Envelope Viral/química , Animais , Fusão Celular , Efrina-B1/genética , Efrina-B2/genética , Efrina-B3/genética , Infecções por Henipavirus/genética , Infecções por Henipavirus/metabolismo , Humanos , Camundongos , Mutação , Ligação Proteica , Conformação Proteica , Receptores Virais/genética , Especificidade da Espécie , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
3.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32321809

RESUMO

Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus in the Paramyxoviridae family, are recently emerged, highly lethal zoonotic pathogens. The NiV and HeV nonsegmented, negative-sense RNA genomes encode nine proteins, including the W protein. Expressed from the P gene through mRNA editing, W shares a common N-terminus with P and V but has a unique C-terminus. Expressed alone, W modulates innate immune responses by several mechanisms, and elimination of W from NiV alters the course of infection in experimentally infected ferrets. However, the specific host interactions that allow W to modulate innate immunity are incompletely understood. This study demonstrates that the NiV and HeV W proteins interact with all seven isoforms of the 14-3-3 family, regulatory molecules that preferentially bind phosphorylated target proteins to regulate a wide range of cellular functions. The interaction is dependent on the penultimate amino acid residue in the W sequence, a conserved, phosphorylated serine. The cocrystal structure of the W C-terminal binding motif with 14-3-3 provides only the second structure of a complex containing a mode III interactor, which is defined as a 14-3-3 interaction with a phosphoserine/phosphothreonine at the C-termini of the target protein. Transcriptomic analysis of inducible cell lines infected with an RNA virus and expressing either wild-type W or W lacking 14-3-3 binding, identifies new functions for W. These include the regulation of cellular metabolic processes, extracellular matrix organization, and apoptosis.IMPORTANCE Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus, are recently emerged, highly lethal zoonotic pathogens that cause yearly outbreaks. NiV and HeV each encode a W protein that has roles in regulating host signaling pathways, including antagonism of the innate immune response. However, the mechanisms used by W to regulate these host responses are not clear. Here, characterization of the interaction of NiV and HeV W with 14-3-3 identifies modulation of 14-3-3-regulated host signaling pathways not previously associated with W, suggesting new avenues of research. The cocrystal structure of the NiV W:14-3-3 complex, as only the second structure of a 14-3-3 mode III interactor, provides further insight into this less-well-understood 14-3-3 binding motif.


Assuntos
Proteínas 14-3-3/metabolismo , Regulação da Expressão Gênica , Vírus Hendra/metabolismo , Infecções por Henipavirus/metabolismo , Vírus Nipah/metabolismo , Proteínas Virais/metabolismo , Proteínas 14-3-3/genética , Células HEK293 , Vírus Hendra/genética , Infecções por Henipavirus/genética , Humanos , Vírus Nipah/genética , Proteínas Virais/genética
4.
Curr Top Microbiol Immunol ; 419: 191-213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28674944

RESUMO

Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are zoonotic RNA viruses that cause lethal disease in humans and are designated as Biosafety Level 4 (BSL4) agents. Moreover, henipaviruses belong to the same group of viruses that cause disease more commonly in humans such as measles, mumps and respiratory syncytial virus. Due to the relatively recent emergence of the henipaviruses and the practical constraints of performing functional genomics studies at high levels of containment, our understanding of the henipavirus infection cycle is incomplete. In this chapter we describe recent loss-of-function (i.e. RNAi) functional genomics screens that shed light on the henipavirus-host interface at a genome-wide level. Further to this, we cross-reference RNAi results with studies probing host proteins targeted by henipavirus proteins, such as nuclear proteins and immune modulators. These functional genomics studies join a growing body of evidence demonstrating that nuclear and nucleolar host proteins play a crucial role in henipavirus infection. Furthermore these studies will underpin future efforts to define the role of nucleolar host-virus interactions in infection and disease.


Assuntos
Genômica , Vírus Hendra/imunologia , Infecções por Henipavirus/genética , Infecções por Henipavirus/imunologia , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Vírus Nipah/imunologia , Proteínas Nucleares/metabolismo , Infecções por Henipavirus/metabolismo , Infecções por Henipavirus/virologia , Humanos , MicroRNAs/genética , Proteínas Nucleares/genética
5.
PLoS Pathog ; 12(10): e1005974, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27783670

RESUMO

Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.


Assuntos
Infecções por Henipavirus/genética , MicroRNAs/genética , Internalização do Vírus , Animais , Furões , Imunofluorescência , Estudo de Associação Genômica Ampla , Henipavirus , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Humanos , Reação em Cadeia da Polimerase em Tempo Real
6.
PLoS Pathog ; 12(9): e1005880, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27622505

RESUMO

For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNß induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for development of therapeutic interventions against NiV infections.


Assuntos
Infecções por Henipavirus/imunologia , Quinase I-kappa B/imunologia , Evasão da Resposta Imune , Interferon Tipo I/imunologia , Vírus Nipah/imunologia , Proteínas com Motivo Tripartido/imunologia , Ubiquitina-Proteína Ligases/imunologia , Proteínas Virais/imunologia , Células A549 , Animais , Chlorocebus aethiops , Células HeLa , Infecções por Henipavirus/genética , Humanos , Quinase I-kappa B/genética , Imunidade Inata , Interferon Tipo I/genética , Vírus Nipah/genética , Poliubiquitina/genética , Poliubiquitina/imunologia , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Ubiquitinação/imunologia , Células Vero , Proteínas Virais/genética
7.
Proc Natl Acad Sci U S A ; 112(17): E2156-65, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25825759

RESUMO

The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus-receptor interaction crystallographically. Compared with extant HNV-G-ephrinB2 structures, there was significant structural variation in the six-bladed ß-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus-host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure-function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations.


Assuntos
Efrina-B2 , Infecções por Henipavirus/metabolismo , Henipavirus , Proteínas Virais , Internalização do Vírus , Efrina-B2/química , Efrina-B2/genética , Efrina-B2/metabolismo , Efrina-B3/química , Efrina-B3/genética , Efrina-B3/metabolismo , Células HEK293 , Henipavirus/química , Henipavirus/fisiologia , Infecções por Henipavirus/genética , Humanos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
J Gen Virol ; 97(4): 839-843, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26781134

RESUMO

Incorporation of reporter genes within virus genomes is an indispensable tool for interrogation of virus biology and pathogenesis. In previous work, we incorporated a fluorophore into a viral ORF by attaching it to the viral gene via a P2A ribosomal skipping sequence. This recombinant Nipah virus, however, was attenuated in vitro relative to WT virus. In this work, we determined that inefficient ribosomal skipping was a major contributing factor to this attenuation. Inserting a GSG linker before the P2A sequence resulted in essentially complete skipping, significantly improved growth in vitro, and WT lethality in vivo. To the best of our knowledge, this represents the first time a recombinant virus of Mononegavirales with integration of a reporter into a viral ORF has been compared with the WT virus in vivo. Incorporating the GSG linker for improved skipping efficiency whenever functionally important is a critical consideration for recombinant virus design.


Assuntos
Genes Reporter , Engenharia Genética/métodos , Infecções por Henipavirus/genética , Vírus Nipah/genética , Proteínas Ribossômicas/genética , Sequência de Aminoácidos , Animais , Feminino , Regulação da Expressão Gênica , Infecções por Henipavirus/mortalidade , Infecções por Henipavirus/patologia , Infecções por Henipavirus/virologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mesocricetus , Dados de Sequência Molecular , Mutagênese Insercional , Vírus Nipah/patogenicidade , Faloidina/genética , Faloidina/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Análise de Sobrevida , Transcrição Gênica , Replicação Viral/genética , Proteína Vermelha Fluorescente
9.
J Virol ; 89(15): 7550-66, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25972557

RESUMO

UNLABELLED: Bats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response of Pteropus vampyrus bat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. The Pteropus genus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells. IMPORTANCE: Bats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral maintenance, research into their immune system and mechanisms for viral control has only recently begun. Nipah virus and Hendra virus are two paramyxoviruses associated with high mortality rates in humans and whose reservoir is the Pteropus genus of bats. Greater knowledge of the innate immune response of P. vampyrus bats to viral infection may elucidate how bats serve as a reservoir for so many viruses.


Assuntos
Quirópteros/imunologia , Reservatórios de Doenças/virologia , Perfilação da Expressão Gênica , Infecções por Henipavirus/imunologia , Imunidade Inata , Interferons/imunologia , Vírus Nipah/imunologia , Animais , Quirópteros/genética , Quirópteros/virologia , Vírus Hendra/genética , Vírus Hendra/imunologia , Vírus Hendra/fisiologia , Infecções por Henipavirus/genética , Infecções por Henipavirus/virologia , Humanos , Evasão da Resposta Imune , Interferons/genética , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/fisiologia , Vírus Nipah/genética , Vírus Nipah/fisiologia
10.
PLoS Pathog ; 9(10): e1003684, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130486

RESUMO

The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Vírus Hendra/química , Proteínas Virais de Fusão/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Reações Cruzadas , Cristalografia por Raios X , Vírus Hendra/genética , Vírus Hendra/imunologia , Infecções por Henipavirus/genética , Infecções por Henipavirus/imunologia , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
11.
PLoS Pathog ; 9(11): e1003770, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278018

RESUMO

Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion), and for syncytia formation (cell-cell fusion), often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV)]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G) triggers the fusion glycoprotein (F) to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Fusão de Membrana/metabolismo , Vírus Nipah/fisiologia , Receptores Virais/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Animais , Células CHO , Cricetinae , Cricetulus , Glicoproteínas/genética , Infecções por Henipavirus/genética , Infecções por Henipavirus/metabolismo , Proteínas de Fusão de Membrana/genética , Receptores Virais/genética , Proteínas Virais/genética
12.
PLoS Pathog ; 8(8): e1002836, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879820

RESUMO

The genus Henipavirus in the family Paramyxoviridae contains two viruses, Hendra virus (HeV) and Nipah virus (NiV) for which pteropid bats act as the main natural reservoir. Each virus also causes serious and commonly lethal infection of people as well as various species of domestic animals, however little is known about the associated mechanisms of pathogenesis. Here, we report the isolation and characterization of a new paramyxovirus from pteropid bats, Cedar virus (CedPV), which shares significant features with the known henipaviruses. The genome size (18,162 nt) and organization of CedPV is very similar to that of HeV and NiV; its nucleocapsid protein displays antigenic cross-reactivity with henipaviruses; and it uses the same receptor molecule (ephrin-B2) for entry during infection. Preliminary challenge studies with CedPV in ferrets and guinea pigs, both susceptible to infection and disease with known henipaviruses, confirmed virus replication and production of neutralizing antibodies although clinical disease was not observed. In this context, it is interesting to note that the major genetic difference between CedPV and HeV or NiV lies within the coding strategy of the P gene, which is known to play an important role in evading the host innate immune system. Unlike HeV, NiV, and almost all known paramyxoviruses, the CedPV P gene lacks both RNA editing and also the coding capacity for the highly conserved V protein. Preliminary study indicated that CedPV infection of human cells induces a more robust IFN-ß response than HeV.


Assuntos
Quirópteros/virologia , Genoma Viral/imunologia , Infecções por Henipavirus , Henipavirus , Evasão da Resposta Imune , Imunidade Inata , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Austrália , Quirópteros/imunologia , Furões , Cobaias , Henipavirus/genética , Henipavirus/imunologia , Henipavirus/isolamento & purificação , Infecções por Henipavirus/sangue , Infecções por Henipavirus/genética , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Humanos
13.
J Virol ; 86(7): 3736-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278224

RESUMO

Proteolytic activation of the fusion protein of the highly pathogenic Nipah virus (NiV F) is a prerequisite for the production of infectious particles and for virus spread via cell-to-cell fusion. Unlike other paramyxoviral fusion proteins, functional NiV F activation requires endocytosis and pH-dependent cleavage at a monobasic cleavage site by endosomal proteases. Using prototype Vero cells, cathepsin L was previously identified to be a cleavage enzyme. Compared to Vero cells, MDCK cells showed substantially higher F cleavage rates in both NiV-infected and NiV F-transfected cells. Surprisingly, this could not be explained either by an increased F endocytosis rate or by elevated cathepsin L activities. On the contrary, MDCK cells did not display any detectable cathepsin L activity. Though we could confirm cathepsin L to be responsible for F activation in Vero cells, inhibitor studies revealed that in MDCK cells, cathepsin B was required for F-protein cleavage and productive replication of pathogenic NiV. Supporting the idea of an efficient F cleavage in early and recycling endosomes of MDCK cells, endocytosed F proteins and cathepsin B colocalized markedly with the endosomal marker proteins early endosomal antigen 1 (EEA-1), Rab4, and Rab11, while NiV F trafficking through late endosomal compartments was not needed for F activation. In summary, this study shows for the first time that endosomal cathepsin B can play a functional role in the activation of highly pathogenic NiV.


Assuntos
Catepsina B/metabolismo , Endossomos/enzimologia , Infecções por Henipavirus/enzimologia , Infecções por Henipavirus/virologia , Vírus Nipah/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Catepsina B/genética , Catepsina L/genética , Catepsina L/metabolismo , Linhagem Celular , Cães , Endocitose , Endossomos/virologia , Infecções por Henipavirus/genética , Infecções por Henipavirus/fisiopatologia , Humanos , Camundongos , Camundongos Knockout , Vírus Nipah/genética , Proteínas Virais de Fusão/genética
14.
Biosensors (Basel) ; 13(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36832018

RESUMO

Nipah virus (NiV) is a zoonotic RNA virus which infects humans and animals in Asian countries. Infection in humans occurs in different forms, from asymptomatic infection to fatal encephalitis, and death occurred in 40-70% of those infected in outbreaks that occurred between 1998 and 2018. Modern diagnostics is carried out by real-time PCR to identify pathogens or by ELISA to detect antibodies. Both technologies are labor-intensive and require the use of expensive stationary equipment. Thus, there is a need to develop alternative simple, fast and accurate test systems for virus detection. The aim of this study was to develop a highly specific and easily standardized system for the detection of Nipah virus RNA. In our work, we have developed a design for a Dz_NiV biosensor based on a split catalytic core of deoxyribozyme 10-23. It was shown that the assembly of active 10-23 DNAzymes occurred only in the presence of synthetic target Nipah virus RNA and that this was accompanied by stable fluorescence signals from the cleaved fluorescent substrates. This process was realized at 37 °C, pH 7.5, and in the presence of magnesium ions, with a 10 nM limit of detection achieved for the synthetic target RNA. Constructed via a simple and easily modifiable process, our biosensor may be used for the detection of other RNA viruses.


Assuntos
DNA Catalítico , Infecções por Henipavirus , Vírus Nipah , Animais , Humanos , Vírus Nipah/genética , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/genética , RNA Viral , Ensaio de Imunoadsorção Enzimática
15.
Methods Mol Biol ; 2682: 281-299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610589

RESUMO

Ferrets are commonly used as experimental models of infection for a variety of viruses due to their susceptibility to human respiratory viruses and the close resemblance of pathological outcomes found in human infections. Even though ferret-specific reagents are limited, the use of ferrets as a preclinical experimental model of infection has gained considerable interest since the publication of the ferret transcriptome and draft ferret genome. These advances have made it feasible to easily perform whole-genome gene expression analysis in the ferret infection model. Here, we describe methods for genome-wide gene expression analysis using RNA sequence (RNAseq) data obtained from the lung and brain tissues obtained from experimental infections of Hendra (HeV) and Nipah (NiV) viruses in ferrets. We provide detailed methods for RNAseq and representative data for host gene expression profiles of the lung tissues that show early activation of interferon pathways and later activation of inflammation-related pathways.


Assuntos
Coronavirus , Infecções por Henipavirus , Animais , Humanos , Furões , Infecções por Henipavirus/genética , Perfilação da Expressão Gênica , Transcriptoma
16.
Sci Adv ; 9(31): eadh4057, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540755

RESUMO

Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Vacinas Virais , Cricetinae , Humanos , Animais , Camundongos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/genética , Vacinação , Modelos Animais de Doenças , Vírus Nipah/genética , Replicon
17.
PLoS Pathog ; 6(11): e1001186, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21085610

RESUMO

Paramyxoviruses are known to replicate in the cytoplasm and bud from the plasma membrane. Matrix is the major structural protein in paramyxoviruses that mediates viral assembly and budding. Curiously, the matrix proteins of a few paramyxoviruses have been found in the nucleus, although the biological function associated with this nuclear localization remains obscure. We report here that the nuclear-cytoplasmic trafficking of the Nipah virus matrix (NiV-M) protein and associated post-translational modification play a critical role in matrix-mediated virus budding. Nipah virus (NiV) is a highly pathogenic emerging paramyxovirus that causes fatal encephalitis in humans, and is classified as a Biosafety Level 4 (BSL4) pathogen. During live NiV infection, NiV-M was first detected in the nucleus at early stages of infection before subsequent localization to the cytoplasm and the plasma membrane. Mutations in the putative bipartite nuclear localization signal (NLS) and the leucine-rich nuclear export signal (NES) found in NiV-M impaired its nuclear-cytoplasmic trafficking and also abolished NiV-M budding. A highly conserved lysine residue in the NLS served dual functions: its positive charge was important for mediating nuclear import, and it was also a potential site for monoubiquitination which regulates nuclear export of the protein. Concordantly, overexpression of ubiquitin enhanced NiV-M budding whereas depletion of free ubiquitin in the cell (via proteasome inhibitors) resulted in nuclear retention of NiV-M and blocked viral budding. Live Nipah virus budding was exquisitely sensitive to proteasome inhibitors: bortezomib, an FDA-approved proteasome inhibitor for treating multiple myeloma, reduced viral titers with an IC(50) of 2.7 nM, which is 100-fold less than the peak plasma concentration that can be achieved in humans. This opens up the possibility of using an "off-the-shelf" therapeutic against acute NiV infection.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Infecções por Henipavirus/virologia , Vírus Nipah/patogenicidade , Ubiquitina/metabolismo , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Ácidos Borônicos/farmacologia , Bortezomib , Núcleo Celular/efeitos dos fármacos , Chlorocebus aethiops , Citoplasma/efeitos dos fármacos , Imunofluorescência , Células HeLa , Infecções por Henipavirus/genética , Infecções por Henipavirus/metabolismo , Humanos , Imunoprecipitação , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Dados de Sequência Molecular , Mutação/genética , Sinais de Localização Nuclear , Inibidores de Proteases/farmacologia , Processamento de Proteína Pós-Traducional , Transporte Proteico , Pirazinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Células Vero , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/genética , Montagem de Vírus/efeitos dos fármacos , Eliminação de Partículas Virais
18.
FEBS Lett ; 595(23): 2854-2871, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757622

RESUMO

SARS-CoV-2 has infected hundreds of millions of people with over four million dead, resulting in one of the worst global pandemics in recent history. Neurological symptoms associated with COVID-19 include anosmia, ageusia, headaches, confusion, delirium, and strokes. These may manifest due to viral entry into the central nervous system (CNS) through the blood-brain barrier (BBB) by means of ill-defined mechanisms. Here, we summarize the abilities of SARS-CoV-2 and other neurotropic RNA viruses, including Zika virus and Nipah virus, to cross the BBB into the CNS, highlighting the role of magnetic resonance imaging (MRI) in assessing presence and severity of brain structural changes in COVID-19 patients. We present new insight into key mutations in SARS-CoV-2 variants B.1.1.7 (P681H) and B.1.617.2 (P681R), which may impact on neuropilin 1 (NRP1) binding and CNS invasion. We postulate that SARS-CoV-2 may infect both peripheral cells capable of crossing the BBB and brain endothelial cells to traverse the BBB and spread into the brain. COVID-19 patients can be followed up with MRI modalities to better understand the long-term effects of COVID-19 on the brain.


Assuntos
Barreira Hematoencefálica , Infecções por Henipavirus , Vírus Nipah , SARS-CoV-2 , Infecção por Zika virus , Zika virus , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Barreira Hematoencefálica/virologia , COVID-19/epidemiologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/fisiopatologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/genética , Infecções por Henipavirus/metabolismo , Infecções por Henipavirus/fisiopatologia , Humanos , Mutação , Vírus Nipah/genética , Vírus Nipah/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Zika virus/genética , Zika virus/metabolismo , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/fisiopatologia
19.
Nat Commun ; 11(1): 3849, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737300

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr Virus (EBV) establish life-long infections and are associated with malignancies. Striking geographic variation in incidence and the fact that virus alone is insufficient to cause disease, suggests other co-factors are involved. Here we present epidemiological analysis and genome-wide association study (GWAS) in 4365 individuals from an African population cohort, to assess the influence of host genetic and non-genetic factors on virus antibody responses. EBV/KSHV co-infection (OR = 5.71(1.58-7.12)), HIV positivity (OR = 2.22(1.32-3.73)) and living in a more rural area (OR = 1.38(1.01-1.89)) are strongly associated with immunogenicity. GWAS reveals associations with KSHV antibody response in the HLA-B/C region (p = 6.64 × 10-09). For EBV, associations are identified for VCA (rs71542439, p = 1.15 × 10-12). Human leucocyte antigen (HLA) and trans-ancestry fine-mapping substantiate that distinct variants in HLA-DQA1 (p = 5.24 × 10-44) are driving associations for EBNA-1 in Africa. This study highlights complex interactions between KSHV and EBV, in addition to distinct genetic architectures resulting in important differences in pathogenesis and transmission.


Assuntos
Anticorpos Antivirais/biossíntese , Resistência à Doença/genética , Infecções por Vírus Epstein-Barr/genética , Infecções por Henipavirus/genética , Interações Hospedeiro-Patógeno/genética , Sarcoma de Kaposi/genética , Adolescente , Adulto , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Coinfecção , Infecções por Vírus Epstein-Barr/epidemiologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , HIV/genética , HIV/imunologia , HIV/patogenicidade , Cadeias alfa de HLA-DQ/genética , Cadeias alfa de HLA-DQ/imunologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/imunologia , Herpesvirus Humano 8/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , População Rural , Sarcoma de Kaposi/epidemiologia , Sarcoma de Kaposi/imunologia , Sarcoma de Kaposi/virologia , Uganda/epidemiologia , População Urbana
20.
Sci Rep ; 8(1): 15994, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375468

RESUMO

Continued outbreaks of Henipaviruses in South Asia and Australia cause severe and lethal disease in both humans and animals. Together, with evidence of human to human transmission for Nipah virus and the lack of preventative or therapeutic measures, its threat to cause a widespread outbreak and its potential for weaponization has increased. In this study we demonstrate how overexpression of the Nipah virus nucleocapsid protein regulates viral polymerase activity and viral RNA production. By overexpressing the Nipah virus nucleocapsid protein in trans viral transcription was inhibited; however, an increase in viral genome synthesis was observed. Together, the bias of polymerase activity towards genome production led to the severe inhibition of viral progeny. We identified two domains within the nucleocapsid protein, which were each independently capable of binding the viral phosphoprotein. Evident by our data, we propose that the nucleocapsid protein's ability to interact with the phosphoprotein of the polymerase complex causes a change in polymerase activity and subsequent deficiency in viral replication. This study not only provides insights into the dynamics of Henipavirus RNA synthesis and replication, but also provides insight into potential targets for antiviral drug development.


Assuntos
Infecções por Henipavirus/genética , Vírus Nipah/genética , Proteínas do Nucleocapsídeo/genética , Replicação Viral/genética , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/virologia , Humanos , Vírus Nipah/patogenicidade , Fosfoproteínas/genética , Ligação Proteica/genética , RNA Viral/genética , Proteínas Virais/genética , Vírion/genética , Vírion/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA