Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Virol ; 98(3): e0146923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38345385

RESUMO

Grass carp reovirus (GCRV), particularly the highly prevalent type II GCRV (GCRV-II), causes huge losses in the aquaculture industry. However, little is known about the mechanisms by which GCRV-II invades grass carp and further disseminates among tissues. In the present study, monocytes/macrophages (Mo/Mφs) were isolated from the peripheral blood of grass carp and infected with GCRV-II. The results of indirect immunofluorescent microscopy, transmission electron microscopy, real-time quantitative RT-PCR (qRT-PCR), western blot (WB), and flow cytometry analysis collectively demonstrated that GCRV-II invaded Mo/Mφs and replicated in them. Additionally, we observed that GCRV-II induced different types (M1 and M2) of polarization of Mo/Mφs in multiple tissues, especially in the brain, head kidney, and intestine. To assess the impact of different types of polarization on GCRV-II replication, we recombinantly expressed and purified the intact cytokines CiIFN-γ2, CiIL-4/13A, and CiIL-4/13B and successfully induced M1 and M2 type polarization of macrophages using these cytokines through in vitro experiments. qRT-PCR, WB, and flow cytometry analyses showed that M2 macrophages had higher susceptibility to GCRV-II infection than other types of Mo/Mφs. In addition, we found GCRV-II induced apoptosis of Mo/Mφs to facilitate virus replication and dissemination and also detected the presence of GCRV-II virus in plasma. Collectively, our findings indicated that GCRV-II could invade immune cells Mo/Mφs and induce apoptosis and polarization of Mo/Mφs for efficient infection and dissemination, emphasizing the crucial role of Mo/Mφs as a vector for GCRV-II infection.IMPORTANCEType II grass carp reovirus (GCRV) is a prevalent viral strain and causes huge losses in aquaculture. However, the related dissemination pathway and mechanism remain largely unclear. Here, our study focused on phagocytic immune cells, monocytes/macrophages (Mo/Mφs) in blood and tissues, and explored whether GCRV-II can invade Mo/Mφs and replicate and disseminate via Mo/Mφs with their differentiated type M1 and M2 macrophages. Our findings demonstrated that GCRV-II infected Mo/Mφs and replicated in them. Furthermore, GCRV-II infection induces an increased number of M1 and M2 macrophages in grass carp tissues and a higher viral load in M2 macrophages. Furthermore, GCRV-II induced Mo/Mφs apoptosis to release viruses, eventually infecting more cells. Our study identified Mo/Mφs as crucial components in the pathway of GCRV-II dissemination and provides a solid foundation for the development of treatment strategies for GCRV-II infection.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Animais , Apoptose , Citocinas , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Monócitos/metabolismo , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/patologia , Infecções por Reoviridae/veterinária , Replicação Viral
2.
J Virol ; 98(6): e0030524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38771042

RESUMO

Many functions of viral attachment proteins are established, but less is known about the biological importance of viral attachment protein encapsidation efficiency. The mammalian orthoreovirus (reovirus) σ1 attachment protein forms filamentous trimers that incorporate into pentamers of the λ2 capsid protein. Reovirus strains vary in the efficiency of σ1 encapsidation onto progeny virions, which influences viral stability during entry into cells and the efficacy of tumor cell lysis. While the role of σ1 encapsidation has been evaluated in studies using cultured cells, the contribution of attachment protein encapsidation efficiency to viral infection in animals is less clear. Polymorphisms in reovirus σ1 at residues 22 and 249 have been implicated in viral dissemination in mice and susceptibility to proteolysis in the murine intestine, respectively. To determine whether these residues contribute to σ1 encapsidation efficiency, we engineered σ1 mutant viruses with single- and double-residue substitutions at sites 22 and 249. We found that substitutions at these sites alter the encapsidation of σ1 and that reoviruses encapsidating higher amounts of σ1 bind cells more avidly and have a modest replication advantage in a cell-type-specific manner relative to low σ1-encapsidating reoviruses. Furthermore, we found that a high σ1-encapsidating reovirus replicates and disseminates more efficiently in mice relative to a low σ1-encapsidating reovirus. These findings provide evidence of a relationship between viral attachment protein encapsidation efficiency and viral replication in cell culture and animal hosts. IMPORTANCE: Viral attachment proteins can serve multiple functions during viral replication, including attachment to host cells, cell entry and disassembly, and modulation of host immune responses. The relationship between viral attachment protein encapsidation efficiency and viral replication in cells and animals is poorly understood. We engineered and characterized a panel of reoviruses that differ in the capacity to encapsidate the σ1 attachment protein. We found that strains encapsidating σ1 with higher efficiency bind cells more avidly and replicate and spread more efficiently in mice relative to those encapsidating σ1 with lower efficiency. These results highlight a function for σ1 attachment protein capsid abundance in viral replication in cells and animals, which may inform future use of reovirus as an oncolytic therapeutic.


Assuntos
Proteínas do Capsídeo , Infecções por Reoviridae , Replicação Viral , Animais , Camundongos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Infecções por Reoviridae/virologia , Infecções por Reoviridae/metabolismo , Ligação Viral , Polimorfismo Genético , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , Orthoreovirus de Mamíferos/metabolismo , Montagem de Vírus , Linhagem Celular , Capsídeo/metabolismo , Humanos
3.
PLoS Pathog ; 19(4): e1011320, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099596

RESUMO

Viral seasonality in the aquaculture industry is an important scientific issue for decades. While the molecular mechanisms underpinning the temperature-dependent pathogenesis of aquatic viral diseases remain largely unknown. Here we report that temperature-dependent activation of IL6-STAT3 signaling was exploited by grass carp reovirus (GCRV) to promote viral entry via increasing the expression of heat shock protein 90 (HSP90). Deploying GCRV infection as a model system, we discovered that GCRV induces the IL6-STAT3-HSP90 signaling activation to achieve temperature-dependent viral entry. Further biochemical and microscopic analyses revealed that the major capsid protein VP7 of GCRV interacted with HSP90 and relevant membrane-associated proteins to boost viral entry. Accordingly, exogenous expression of either IL6, HSP90, or VP7 in cells increased GCRV entry in a dose-dependent manner. Interestingly, other viruses (e.g., koi herpesvirus, Rhabdovirus carpio, Chinese giant salamander iridovirus) infecting ectothermic vertebrates have evolved a similar mechanism to promote their infection. This work delineates a molecular mechanism by which an aquatic viral pathogen exploits the host temperature-related immune response to promote its entry and replication, instructing us on new ways to develop targeted preventives and therapeutics for aquaculture viral diseases.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Internalização do Vírus , Interleucina-6/metabolismo , Infecções por Reoviridae/metabolismo , Proteínas do Capsídeo/metabolismo , Anticorpos Antivirais/metabolismo
4.
PLoS Pathog ; 18(3): e1010398, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35320319

RESUMO

Successful initiation of infection by many different viruses requires their uptake into the endosomal compartment. While some viruses exit this compartment early, others must reach the degradative, acidic environment of the late endosome. Mammalian orthoreovirus (reovirus) is one such late penetrating virus. To identify host factors that are important for reovirus infection, we performed a CRISPR-Cas9 knockout (KO) screen that targets over 20,000 genes in fibroblasts derived from the embryos of C57/BL6 mice. We identified seven genes (WDR81, WDR91, RAB7, CCZ1, CTSL, GNPTAB, and SLC35A1) that were required for the induction of cell death by reovirus. Notably, CRISPR-mediated KO of WD repeat-containing protein 81 (WDR81) rendered cells resistant to reovirus infection. Susceptibility to reovirus infection was restored by complementing KO cells with human WDR81. Although the absence of WDR81 did not affect viral attachment efficiency or uptake into the endosomal compartments for initial disassembly, it reduced viral gene expression and diminished infectious virus production. Consistent with the role of WDR81 in impacting the maturation of endosomes, WDR81-deficiency led to the accumulation of reovirus particles in dead-end compartments. Though WDR81 was dispensable for infection by VSV (vesicular stomatitis virus), which exits the endosomal system at an early stage, it was required for VSV-EBO GP (VSV that expresses the Ebolavirus glycoprotein), which must reach the late endosome to initiate infection. These results reveal a previously unappreciated role for WDR81 in promoting the replication of viruses that transit through late endosomes.


Assuntos
Infecções por Reoviridae , Reoviridae , Animais , Sistemas CRISPR-Cas , Endossomos/metabolismo , Mamíferos , Camundongos , Reoviridae/genética , Infecções por Reoviridae/metabolismo , Repetições WD40
5.
PLoS Pathog ; 18(3): e1010322, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263388

RESUMO

Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-ß-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.


Assuntos
Infecções por Reoviridae , Reoviridae , Animais , Colesterol/metabolismo , Endossomos/metabolismo , Homeostase , Humanos , Mamíferos , Proteína C1 de Niemann-Pick/metabolismo , Reoviridae/metabolismo , Infecções por Reoviridae/metabolismo
6.
J Virol ; 96(9): e0051522, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35416720

RESUMO

Viral antagonism of innate immune pathways is a common mechanism by which viruses evade immune surveillance. Infection of host cells with reovirus leads to the blockade of NF-κB, a key transcriptional regulator of the hosts' innate immune response. One mechanism by which reovirus infection results in inhibition of NF-κB is through a diminishment in levels of upstream activators, IKKß and NEMO. Here, we demonstrate a second, distinct mechanism by which reovirus blocks NF-κB. We report that expression of a single viral protein, σ3, is sufficient to inhibit expression of NF-κB target genes. Further, σ3-mediated blockade of NF-κB occurs without changes to IκB kinase (IKK) levels or activity. Among NF-κB targets, the expression of type I interferon is significantly diminished by σ3 expression. Expression of NF-κB target genes varies following infection with closely related reovirus strains. Our genetic analysis identifies that these differences are controlled by polymorphisms in the amino acid sequence of σ3. This work identifies a new role for reovirus σ3 as a viral antagonist of NF-κB-dependent antiviral pathways. IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-κB family of proteins is important for the cell to mediate this response. In this study, we show that a single protein, σ3, produced by mammalian reovirus, impairs the function of NF-κB. We demonstrate that by blocking NF-κB, σ3 diminishes the hosts' response to infection to promote viral replication. This work identifies a second, previously unknown, mechanism by which reovirus blocks this aspect of the host cell response.


Assuntos
Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Antivirais , Mamíferos , NF-kappa B/metabolismo , Orthoreovirus/metabolismo , Reoviridae/fisiologia , Infecções por Reoviridae/metabolismo , Transdução de Sinais
7.
PLoS Pathog ; 17(7): e1009494, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34237110

RESUMO

The mammalian orthoreovirus double-stranded (ds) RNA-binding protein σ3 is a multifunctional protein that promotes viral protein synthesis and facilitates viral entry and assembly. The dsRNA-binding capacity of σ3 correlates with its capacity to prevent dsRNA-mediated activation of protein kinase R (PKR). However, the effect of σ3 binding to dsRNA during viral infection is largely unknown. To identify functions of σ3 dsRNA-binding activity during reovirus infection, we engineered a panel of thirteen σ3 mutants and screened them for the capacity to bind dsRNA. Six mutants were defective in dsRNA binding, and mutations in these constructs cluster in a putative dsRNA-binding region on the surface of σ3. Two recombinant viruses expressing these σ3 dsRNA-binding mutants, K287T and R296T, display strikingly different phenotypes. In a cell-type dependent manner, K287T, but not R296T, replicates less efficiently than wild-type (WT) virus. In cells in which K287T virus demonstrates a replication deficit, PKR activation occurs and abundant stress granules (SGs) are formed at late times post-infection. In contrast, the R296T virus retains the capacity to suppress activation of PKR and does not mediate formation of SGs at late times post-infection. These findings indicate that σ3 inhibits PKR independently of its capacity to bind dsRNA. In infected mice, K287T produces lower viral titers in the spleen, liver, lungs, and heart relative to WT or R296T. Moreover, mice inoculated with WT or R296T viruses develop myocarditis, whereas those inoculated with K287T do not. Overall, our results indicate that σ3 functions to suppress PKR activation and subsequent SG formation during viral infection and that these functions correlate with virulence in mice.


Assuntos
Miocardite/virologia , Proteínas de Ligação a RNA/metabolismo , Infecções por Reoviridae/metabolismo , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Células A549 , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/metabolismo , eIF-2 Quinase/metabolismo
8.
PLoS Pathog ; 16(2): e1008380, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32109948

RESUMO

Several barriers protect the central nervous system (CNS) from pathogen invasion. Yet viral infections of the CNS are common and often debilitating. Understanding how neurotropic viruses co-opt host machinery to overcome challenges to neuronal entry and transmission is important to combat these infections. Neurotropic reovirus disseminates through neural routes and invades the CNS to cause lethal encephalitis in newborn animals. To define mechanisms of reovirus neuronal entry and directional transport, we used primary neuron cultures, which reproduce in vivo infection patterns displayed by different reovirus serotypes. Treatment of neurons with small-molecule inhibitors of different endocytic uptake pathways allowed us to discover that the cellular machinery mediating macropinocytosis is required for reovirus neuronal entry. This mechanism of reovirus entry differs from clathrin-mediated endocytosis, which is used by reovirus to invade non-neuronal cells. Analysis of reovirus transport and release from isolated soma or axonal termini of neurons cultivated in microfluidic devices indicates that reovirus is capable of retrograde but only limited anterograde neuronal transmission. The dynamics of retrograde reovirus movement are consistent with fast axonal transport coordinated by dynein along microtubules. Further analysis of viral transport revealed that multiple virions are transported together in axons within non-acidified vesicles. Reovirus-containing vesicles acidify after reaching the soma, where disassembly of virions and release of the viral core into the cytoplasm initiates replication. These results define mechanisms of reovirus neuronal entry and transport and establish a foundation to identify common host factors used by neuroinvasive viruses. Furthermore, our findings emphasize consideration of cell type-specific entry mechanisms in the tailored design of neurotropic viruses as tracers, oncolytic agents, and delivery vectors.


Assuntos
Transporte Axonal/fisiologia , Infecções por Reoviridae/metabolismo , Reoviridae/metabolismo , Animais , Axônios/virologia , Linhagem Celular , Sistema Nervoso Central , Citoplasma/metabolismo , Endocitose , Masculino , Camundongos , Microtúbulos/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Pinocitose/fisiologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Reoviridae/genética , Vírion/metabolismo , Internalização do Vírus
9.
PLoS Pathog ; 16(9): e1008803, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956403

RESUMO

The Dearing isolate of Mammalian orthoreovirus (T3D) is a prominent model of virus-host relationships and a candidate oncolytic virotherapy. Closely related laboratory strains of T3D, originating from the same ancestral T3D isolate, were recently found to exhibit significantly different oncolytic properties. Specifically, the T3DPL strain had faster replication kinetics in a panel of cancer cells and improved tumor regression in an in vivo melanoma model, relative to T3DTD. In this study, we discover that T3DPL and T3DTD also differentially activate host signalling pathways and downstream gene transcription. At equivalent infectious dose, T3DTD induces higher IRF3 phosphorylation and expression of type I IFNs and IFN-stimulated genes (ISGs) than T3DPL. Using mono-reassortants with intermediate replication kinetics and pharmacological inhibitors of reovirus replication, IFN responses were found to inversely correlate with kinetics of virus replication. In other words, slow-replicating T3D strains induce more IFN signalling than fast-replicating T3D strains. Paradoxically, during co-infections by T3DPL and T3DTD, there was still high IRF3 phosphorylation indicating a phenodominant effect by the slow-replicating T3DTD. Using silencing and knock-out of RIG-I to impede IFN, we found that IFN induction does not affect the first round of reovirus replication but does prevent cell-cell spread in a paracrine fashion. Accordingly, during co-infections, T3DPL continues to replicate robustly despite activation of IFN by T3DTD. Using gene expression analysis, we discovered that reovirus can also induce a subset of genes in a RIG-I and IFN-independent manner; these genes were induced more by T3DPL than T3DTD. Polymorphisms in reovirus σ3 viral protein were found to control activation of RIG-I/ IFN-independent genes. Altogether, the study reveals that single amino acid polymorphisms in reovirus genomes can have large impact on host gene expression, by both changing replication kinetics and by modifying viral protein activity, such that two closely related T3D strains can induce opposite cytokine landscapes.


Assuntos
Proteínas do Capsídeo/metabolismo , Interferons/metabolismo , Polimorfismo Genético , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores do Ácido Retinoico/metabolismo , Infecções por Reoviridae/virologia , Replicação Viral , Proteínas do Capsídeo/genética , Citocinas , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Orthoreovirus de Mamíferos/fisiologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Receptores do Ácido Retinoico/genética , Infecções por Reoviridae/genética , Infecções por Reoviridae/metabolismo , Transdução de Sinais
10.
Fish Shellfish Immunol ; 128: 148-156, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35921937

RESUMO

Autophagy impacts the replication cycle of many viruses. Grass Carp Reovirus (GCRV) is an agent that seriously affects the development of the grass carp aquaculture industry. The role of autophagy in GCRV infection is not clearly understood. In this study, we identified that GCRV infection triggered autophagy in CIK cells, which was demonstrated by transmission electron microscopy, the conversion of LC3B I to LC3B II and the level of autophagy substrate p62. Furthermore, we found that GCRV infection activated Akt-mTOR signaling pathway, and the conversion of LC3B I to LC3B II was increased by inhibiting mTOR with rapamycin (Rap) but decreased by activating Akt with insulin. We then assessed the effects of autophagy on GCRV replication. We found that inducing autophagy with Rap promoted GCRV proliferation but inhibiting autophagy with 3 MA or CQ inhibited GCRV replication in CIK cells. Moreover, it was found that enhancing Akt-mTOR activity by insulin, GCRV VP7 protein and viral titers of GCRV were decreased. Collectively, these results indicated that GCRV infection induced autophagy involved in GCRV replication via the Akt-mTOR signal pathway. Thus, new insights into GCRV pathogenesis and antiviral treatment strategies are provided.


Assuntos
Carpas , Doenças dos Peixes , Insulinas , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Antivirais/farmacologia , Autofagia , Insulinas/farmacologia , Insulinas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/veterinária , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Replicação Viral
11.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33087464

RESUMO

Engagement of cell surface receptors by viruses is a critical determinant of viral tropism and disease. The reovirus attachment protein σ1 binds sialylated glycans and proteinaceous receptors to mediate infection, but the specific requirements for different cell types are not entirely known. To identify host factors required for reovirus-induced cell death, we conducted a CRISPR-knockout screen targeting over 20,000 genes in murine microglial BV2 cells. Candidate genes required for reovirus to cause cell death were highly enriched for sialic acid synthesis and transport. Two of the top candidates identified, CMP N-acetylneuraminic acid synthetase (Cmas) and solute carrier family 35 member A1 (Slc35a1), promote sialic acid expression on the cell surface. Two reovirus strains that differ in the capacity to bind sialic acid, T3SA+ and T3SA-, were used to evaluate Cmas and Slc35a1 as potential host genes required for reovirus infection. Following CRISPR-Cas9 disruption of either gene, cell surface expression of sialic acid was diminished. These results correlated with decreased binding of strain T3SA+, which is capable of engaging sialic acid. Disruption of either gene did not alter the low-level binding of T3SA-, which does not engage sialic acid. Furthermore, infectivity of T3SA+ was diminished to levels similar to those of T3SA- in cells lacking Cmas and Slc35a1 by CRISPR ablation. However, exogenous expression of Cmas and Slc35a1 into the respective null cells restored sialic acid expression and T3SA+ binding and infectivity. These results demonstrate that Cmas and Slc35a1, which mediate cell surface expression of sialic acid, are required in murine microglial cells for efficient reovirus binding and infection.IMPORTANCE Attachment factors and receptors are important determinants of dissemination and tropism during reovirus-induced disease. In a CRISPR cell survival screen, we discovered two genes, Cmas and Slc35a1, which encode proteins required for sialic acid expression on the cell surface and mediate reovirus infection of microglial cells. This work elucidates host genes that render microglial cells susceptible to reovirus infection and expands current understanding of the receptors on microglial cells that are engaged by reovirus. Such knowledge may lead to new strategies to selectively target microglial cells for oncolytic applications.


Assuntos
N-Acilneuraminato Citidililtransferase/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Infecções por Reoviridae/virologia , Reoviridae/fisiologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Camundongos , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/genética , Proteínas de Transporte de Nucleotídeos/genética , Receptores Virais/metabolismo , Reoviridae/genética , Reoviridae/metabolismo , Infecções por Reoviridae/metabolismo , Ligação Viral , Replicação Viral
12.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161168

RESUMO

Viruses commonly antagonize innate immune pathways that are primarily driven by nuclear factor kappa B (NF-κB), interferon regulatory factor (IRF), and the signal transducer and activator of transcription proteins (STAT) family of transcription factors. Such a strategy allows viruses to evade immune surveillance and maximize their replication. Using an unbiased transcriptome sequencing (RNA-seq)-based approach to measure gene expression induced by transfected viral genomic RNA (vgRNA) and reovirus infection, we discovered that mammalian reovirus inhibits host cell innate immune signaling. We found that, while vgRNA and reovirus infection both induce a similar IRF-dependent gene expression program, gene expression driven by the NF-κB family of transcription factors is lower in infected cells. Potent agonists of NF-κB such as tumor necrosis factor alpha (TNF-α) and vgRNA failed to induce NF-κB-dependent gene expression in infected cells. We demonstrate that NF-κB signaling is blocked due to loss of critical members of the inhibitor of kappa B kinase (IKK) complex, NF-κB essential modifier (NEMO), and IKKß. The loss of the IKK complex components prevents nuclear translocation and phosphorylation of NF-κB, thereby preventing gene expression. Our study demonstrates that reovirus infection selectively blocks NF-κB, likely to counteract its antiviral effects and promote efficient viral replication.IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-κB family of proteins is important for the cell to mediate this response. In this study, we show that in cells infected with mammalian reovirus, NF-κB is inactive. Further, we demonstrate that NF-κB is rendered inactive because virus infection results in reduced levels of upstream intermediaries (called IKKs) that are needed for NF-κB function. Based on previous evidence that active NF-κB limits reovirus infection, we conclude that inactivating NF-κB is a viral strategy to produce a cellular environment that is favorable for virus replication.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Infecções por Reoviridae/metabolismo , Reoviridae/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Regulação da Expressão Gênica , Quinase I-kappa B/genética , Quinase I-kappa B/farmacologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Reoviridae/genética , Reoviridae/fisiologia , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo
13.
PLoS Pathog ; 15(4): e1007675, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31022290

RESUMO

Fusogenic reoviruses encode fusion-associated small transmembrane (FAST) protein, which induces cell-cell fusion. FAST protein is the only known fusogenic protein in non-enveloped viruses, and its role in virus replication is not yet known. We generated replication-competent, FAST protein-deficient pteropine orthoreovirus and demonstrated that FAST protein was not essential for viral replication, but enhanced viral replication in the early phase of infection. Addition of recombinant FAST protein enhanced replication of FAST-deficient virus and other non-fusogenic viruses in a fusion-dependent and FAST-species-independent manner. In a mouse model, replication and pathogenicity of FAST-deficient virus were severely impaired relative to wild-type virus, indicating that FAST protein is a major determinant of the high pathogenicity of fusogenic reovirus. FAST-deficient virus also conferred effective protection against challenge with lethal homologous virus strains in mice. Our results demonstrate a novel role of a viral fusogenic protein and the existence of a cell-cell fusion-dependent replication system in non-enveloped viruses.


Assuntos
Fusão Celular , Infecções por Reoviridae/virologia , Reoviridae/genética , Reoviridae/patogenicidade , Proteínas Virais de Fusão/metabolismo , Virulência , Replicação Viral , Animais , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutação , Infecções por Reoviridae/genética , Infecções por Reoviridae/metabolismo , Proteínas Virais de Fusão/genética
14.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769442

RESUMO

Complement factor D (Df) is a serine protease well known for activating the alternative pathway (AP) in mammals by promoting the cleavage of complement component 3 (C3), thus becoming involved in innate defense. In teleost fish, however, the functional mechanisms of Df in the AP and against pathogen infection are far from clear. In the present study, we cloned and characterized the Df gene, CiDf, from grass carp (Ctenopharyngodon idella) and analyzed its function in promoting C3 cleavage and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiDf was found to be 753 bp, encoding 250 amino acids with a molecular mass of 27.06 kDa. CiDf harbors a conserved Tryp_SPc domain, with three conserved residues representing the catalytic triad and three conserved binding sites in the substrate specificity pocket. Pairwise alignment showed that CiDf shares the highest identity (96%) and similarity (98%) with Df from Anabarilius grahami. Phylogenetic analysis indicated that CiDf and other fish Dfs formed a distinct evolutionary branch. Similar to most Dfs from other vertebrates, the CiDf gene structure is characterized by four introns and five exons. The incubation of recombinant CiDf protein with grass carp serum significantly increased the C3b content, demonstrating the conserved function of CiDf in the AP in promoting C3 cleavage, similar to Dfs in mammals. CiDf mRNA expression was widely detected in various tissues and levels were relatively higher in the liver, spleen, and intestine of grass carp. During GCRV infection over a 168-hour period, a high level of CiDf mRNA expression in the liver, spleen, and intestine was maintained at 144 and 168 h, suggesting AP activity at the late stage of GCRV infection. Collectively, the above results reveal the conserved structure and function of CiDf and its distinct expression patterns after GCRV infection, which provide a key basis for studying the roles of Df and AP during GCRV infection in the grass carp C. idella.


Assuntos
Carpas/metabolismo , Fator D do Complemento/metabolismo , Proteínas de Peixes/metabolismo , Infecções por Reoviridae/metabolismo , Reoviridae/fisiologia , Sequência de Aminoácidos , Animais , Carpas/genética , Carpas/virologia , Clonagem Molecular/métodos , Fator D do Complemento/genética , Doenças dos Peixes/genética , Doenças dos Peixes/patologia , Proteínas de Peixes/genética , Filogenia , Infecções por Reoviridae/genética , Infecções por Reoviridae/patologia , Infecções por Reoviridae/virologia , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos
15.
Fish Physiol Biochem ; 47(4): 857-867, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33745109

RESUMO

Exosomes are small membrane-enclosed vesicles secreted by various types of cells. Exosomes not only participate in different physiological processes in cells, but also involve in the cellular responses to viral infection. Grass carp reovirus (GCRV) is a non-enveloped virus with segmented, double-stranded RNA genome. Nowadays, the exact role of exosomes in regulating the life cycle of GCRV infection is still unclear. In this study, the exosomes secreted from Ctenopharyngodon idellus kidney (CIK) cells infected or uninfected with GCRV were isolated, and the differential protein expression profiles were analyzed by proteomic technologies. A total of 1297 proteins were identified in the isolated exosomes. The differentially abundant proteins were further analyzed with functional categories, and numerous important pathways were regulated by exosomes in GCRV-infected CIK cells. These exosomal proteins were estimated to interact with the genes (proteins) of the top 10 most enriched signaling pathways. Furthermore, GW4869 exosome inhibitor suppressed the expression level of VP7 in GCRV-infected cells, suggesting that exosomes play a crucial role in the life cycle of GCRV infection. These findings could shed new lights on understanding the functional roles of exosomes in the cellular responses to GCRV infection.


Assuntos
Exossomos/metabolismo , Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Rim/citologia , Infecções por Reoviridae/metabolismo , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Carpas , Células Cultivadas , Exossomos/efeitos dos fármacos , Exossomos/virologia , Doenças dos Peixes/virologia , Rim/virologia , Proteômica , Reoviridae , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia
16.
J Virol ; 93(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375578

RESUMO

Avian reovirus (ARV) p17 protein continuously shuttles between the nucleus and the cytoplasm via transcription-dependent and chromosome region maintenance 1 (CRM1)-independent mechanisms. Nevertheless, whether cellular proteins modulate nucleocytoplasmic shuttling of p17 remains unknown. This is the first report that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 serves as a carrier protein to modulate nucleocytoplasmic shuttling of p17. Both in vitro and in vivo studies indicated that direct interaction of p17 with hnRNP A1 maps within the amino terminus (amino acids [aa] 19 to 40) of p17 and the Gly-rich region of the C terminus of hnRNP A1. Furthermore, our results reveal that the formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Utilizing sequence and mutagenesis analyses, we have identified nuclear export signal (NES) 19LSLRELAI26 of p17. Mutations of these residues causes a nuclear retention of p17. In this work, we uncovered that the N-terminal 21 amino acids (aa 19 to 40) of p17 that comprise the NES can modulate both p17 and hnRNP A1 interaction and nucleocytoplasmic shuttling of p17. In this work, the interaction site of p17 with lamin A/C was mapped within the amino terminus (aa 41 to 60) of p17 and p17 colocalized with lamin A/C at the nuclear envelope. Knockdown of hnRNP A1 or lamin A/C led to inhibition of nucleocytoplasmic shuttling of p17 and reduced virus yield. Collectively, the results of this study provide mechanistic insights into hnRNP A1 and lamin A/C-modulated nucleocytoplasmic shuttling of the ARV p17 protein.IMPORTANCE Avian reoviruses (ARVs) cause considerable economic losses in the poultry industry. The ARV p17 protein continuously shuttles between the nucleus and the cytoplasm to regulate several cellular signaling pathways and interacts with several cellular proteins to cause translation shutoff, cell cycle arrest, and autophagosome formation, all of which enhance virus replication. To date the mechanisms underlying nucleocytoplasmic shuttling of p17 remain largely unknown. Here we report that hnRNP A1 and lamin A/C serve as carrier and mediator proteins to modulate nucleocytoplasmic shuttling of p17. The formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Furthermore, we have identified an NES-containing nucleocytoplasmic shuttling domain (aa 19 to 40) of p17 that is critical for binding to hnRNP A1 and for nucleocytoplasmic shuttling of p17. This study provides novel insights into how hnRNP A1 and lamin A/C modulate nucleocytoplasmic shuttling of the ARV p17 protein.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Interações Hospedeiro-Patógeno , Lamina Tipo A/metabolismo , Orthoreovirus Aviário/fisiologia , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Proteínas da Matriz Viral/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica
17.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30814290

RESUMO

Reovirus encephalitis in mice was used as a model system to investigate astrocyte activation (astrogliosis) following viral infection of the brain. Reovirus infection resulted in astrogliosis, as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and the upregulation of genes that have been previously associated with astrocyte activation. Astrocyte activation occurred in regions of the brain that are targeted by reovirus but extended beyond areas of active infection. Astrogliosis also occurred following reovirus infection of ex vivo brain slice cultures (BSCs), demonstrating that factors intrinsic to the brain are sufficient to activate astrocytes and that this process can occur in the absence of any contribution from the peripheral immune response. In agreement with previous reports, reovirus antigen did not colocalize with GFAP in infected brains, suggesting that reovirus does not infect astrocytes. Reovirus-infected neurons produce interferon beta (IFN-ß). IFN-ß treatment of primary astrocytes resulted in both the upregulation of GFAP and cytokines that are associated with astrocyte activation. In addition, the ability of media from reovirus-infected BSCs to activate primary astrocytes was blocked by anti-IFN-ß antibodies. These results suggest that IFN-ß, likely released from reovirus-infected neurons, results in the activation of astrocytes during reovirus encephalitis. In areas where infection and injury were pronounced, an absence of GFAP staining was consistent with activation-induced cell death as a mechanism of inflammation control. In support of this, activated Bak and cleaved caspase 3 were detected in astrocytes within reovirus-infected brains, indicating that activated astrocytes undergo apoptosis.IMPORTANCE Viral encephalitis is a significant cause of worldwide morbidity and mortality, and specific treatments are extremely limited. Virus infection of the brain triggers neuroinflammation; however, the role of neuroinflammation in the pathogenesis of viral encephalitis is unclear. Initial neuroinflammatory responses likely contribute to viral clearance, but prolonged exposure to proinflammatory cytokines released during neuroinflammation may be deleterious and contribute to neuronal death and tissue injury. Activation of astrocytes is a hallmark of neuroinflammation. Here, we show that reovirus infection of the brain results in the activation of astrocytes via an IFN-ß-mediated process and that these astrocytes later die by Bak-mediated apoptosis. A better understanding of neuroinflammatory responses during viral encephalitis may facilitate the development of new treatment strategies for these diseases.


Assuntos
Astrócitos/imunologia , Interferon beta/metabolismo , Infecções por Reoviridae/imunologia , Animais , Apoptose , Astrócitos/metabolismo , Astrócitos/virologia , Encéfalo/imunologia , Encéfalo/virologia , Morte Celular , Modelos Animais de Doenças , Encefalite Viral/virologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose , Inflamação/metabolismo , Interferon beta/imunologia , Camundongos , Neurogênese , Neurônios/virologia , Reoviridae/metabolismo , Infecções por Reoviridae/metabolismo , Transdução de Sinais/imunologia
18.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462562

RESUMO

Reovirus is undergoing clinical testing as an oncolytic therapy for breast cancer. Given that reovirus naturally evolved to thrive in enteric environments, we sought to better understand how breast tumor microenvironments impinge on reovirus infection. Reovirus was treated with extracellular extracts generated from polyomavirus middle T-antigen-derived mouse breast tumors. Unexpectedly, these breast tumor extracellular extracts inactivated reovirus, reducing infectivity of reovirus particles by 100-fold. Mechanistically, inactivation was attributed to proteolytic cleavage of the viral cell attachment protein σ1, which diminished virus binding to sialic acid (SA)-low tumor cells. Among various specific protease class inhibitors and metal ions, EDTA and ZnCl2 effectively modulated σ1 cleavage, indicating that breast tumor-associated zinc-dependent metalloproteases are responsible for reovirus inactivation. Moreover, media from MCF7, MB468, MD-MB-231, and HS578T breast cancer cell lines recapitulated σ1 cleavage and reovirus inactivation, suggesting that inactivation of reovirus is shared among mouse and human breast cancers and that breast cancer cells by themselves can be a source of reovirus-inactivating proteases. Binding assays and quantification of SA levels on a panel of cancer cells showed that truncated σ1 reduced virus binding to cells with low surface SA. To overcome this restriction, we generated a reovirus mutant with a mutation (T249I) in σ1 that prevents σ1 cleavage and inactivation by breast tumor-associated proteases. The mutant reovirus showed similar replication kinetics in tumorigenic cells, toxicity equivalent to that of wild-type reovirus in a severely compromised mouse model, and increased tumor titers. Overall, the data show that tumor microenvironments have the potential to reduce infectivity of reovirus.IMPORTANCE We demonstrate that metalloproteases in breast tumor microenvironments can inactivate reovirus. Our findings expose that tumor microenvironment proteases could have a negative impact on proteinaceous cancer therapies, such as reovirus, and that modification of such therapies to circumvent inactivation by tumor metalloproteases merits consideration.


Assuntos
Proteínas do Capsídeo/metabolismo , Infecções por Reoviridae/metabolismo , Replicação Viral/genética , Células A549 , Animais , Neoplasias da Mama/terapia , Neoplasias da Mama/virologia , Proteínas do Capsídeo/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Feminino , Células HeLa , Humanos , Metaloproteases/metabolismo , Camundongos , Mutação , Ácido N-Acetilneuramínico/metabolismo , Terapia Viral Oncolítica/métodos , Receptores Virais/metabolismo , Reoviridae/metabolismo , Reoviridae/patogenicidade , Infecções por Reoviridae/imunologia , Microambiente Tumoral/fisiologia , Proteínas Virais/metabolismo , Ligação Viral , Replicação Viral/fisiologia
19.
Virus Genes ; 56(3): 347-353, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32180130

RESUMO

Novel duck reovirus (NDRV), the prototype strain of the species Avian orthoreovirus (ARV), is associated with high mortality in Pekin ducklings. σC is an outer capsid protein encoded by the S1 genome segment of NDRV which mediates attachment to host cells. Our previous studies using immunoprecipitation and mass spectrometry found that σC coprecipitated with some host proteins including Translocation-associated membrane protein 1 (TRAM1). However, the interaction between σC and TRAM1 has not been further confirmed experimentally. In this study, we utilized coimmunoprecipitation assays, glutathione S-transferase pull-down, and confocal microscopy to confirm the interaction between σC and TRAM1. In addition, knockdown of TRAM1 using siRNA and overexpression of TRAM1 gene were conducted to explore its effect on virus replication. The result showed that TRAM1 silencing benefits while overexpression inhibits viral replication. This study confirms the important role TRAM1 during NDRV infection which can help develop new approaches for NDRV disease prevention and control.


Assuntos
Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/metabolismo , Orthoreovirus Aviário/fisiologia , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Proteínas Virais/metabolismo , Animais , Patos , Imunofluorescência , Ligação Proteica , RNA Interferente Pequeno/genética , Replicação Viral
20.
J Biol Chem ; 293(45): 17387-17401, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30237170

RESUMO

Autophagy plays many physiological and pathophysiological roles. However, the roles and the regulatory mechanisms of autophagy in response to viral infections are poorly defined in teleost fish, such as grass carp (Ctenopharyngodon idella), which is one of the most important aquaculture species in China. In this study, we found that both grass carp reovirus (GCRV) infection and hydrogen peroxide (H2O2) treatment induced the accumulation of reactive oxygen species (ROS) in C. idella kidney cells and stimulate autophagy. Suppressing ROS accumulation with N-acetyl-l-cysteine significantly inhibited GCRV-induced autophagy activation and enhanced GCRV replication. Although ROS-induced autophagy, in turn, restricted GCRV replication, further investigation revealed that the multifunctional cellular protein high-mobility group box 1b (HMGB1b) serves as a heat shock protein 70 (HSP70)-dependent, pro-autophagic protein in grass carp. Upon H2O2 treatment, cytoplasmic HSP70 translocated to the nucleus, where it interacted with HMGB1b and promoted cytoplasmic translocation of HMGB1b. Overexpression and siRNA-mediated knockdown assays indicated that HSP70 and HMGB1b synergistically enhance ROS-induced autophagic activation in the cytoplasm. Moreover, HSP70 reinforced an association of HMGB1b with the C. idella ortholog of Beclin 1 (a mammalian ortholog of the autophagy-associated yeast protein ATG6) by directly interacting with C. idella Beclin 1. In summary, this study highlights the antiviral function of ROS-induced autophagy in response to GCRV infection and reveals the positive role of HSP70 in HMGB1b-mediated autophagy initiation in teleost fish.


Assuntos
Autofagia , Cipriniformes , Doenças dos Peixes , Proteínas de Peixes/metabolismo , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Rim/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções por Reoviridae , Reoviridae/metabolismo , Animais , Células Cultivadas , Cipriniformes/metabolismo , Cipriniformes/virologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Rim/patologia , Rim/virologia , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/patologia , Infecções por Reoviridae/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA