Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231.061
Filtrar
Mais filtros

Temas
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 455-488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360546

RESUMO

Ten-eleven translocation (TET) proteins are iron-dependent and α-ketoglutarate-dependent dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. TET proteins are recruited by transcription factors and by RNA polymerase II to modify 5mC at enhancers and gene bodies, thereby regulating gene expression during development, cell lineage specification, and cell activation. It is not yet clear, however, how the established biochemical activities of TET enzymes in oxidizing 5mC and mediating DNA demethylation relate to the known association of TET deficiency with inflammation, clonal hematopoiesis, and cancer. There are hints that the ability of TET deficiency to promote cell proliferation in a signal-dependent manner may be harnessed for cancer immunotherapy. In this review, we draw upon recent findings in cells of the immune system to illustrate established as well as emerging ideas of how TET proteins influence cellular function.


Assuntos
Desmetilação do DNA , Dioxigenases , Imunoterapia , Inflamação , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Inflamação/metabolismo , Inflamação/imunologia , Imunoterapia/métodos , Dioxigenases/metabolismo , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Epigênese Genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética
2.
Annu Rev Immunol ; 41: 375-404, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37126421

RESUMO

Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.


Assuntos
Monócitos , Neutrófilos , Camundongos , Humanos , Animais , Macrófagos , Células Mieloides , Inflamação , Diferenciação Celular
3.
Annu Rev Immunol ; 41: 277-300, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36716750

RESUMO

Emerging and re-emerging respiratory viral infections pose a tremendous threat to human society, as exemplified by the ongoing COVID-19 pandemic. Upon viral invasion of the respiratory tract, the host initiates coordinated innate and adaptive immune responses to defend against the virus and to promote repair of the damaged tissue. However, dysregulated host immunity can also cause acute morbidity, hamper lung regeneration, and/or lead to chronic tissue sequelae. Here, we review our current knowledge of the immune mechanisms regulating antiviral protection, host pathogenesis, inflammation resolution, and lung regeneration following respiratory viral infections, mainly using influenza virus and SARS-CoV-2 infections as examples. We hope that this review sheds light on future research directions to elucidate the cellular and molecular cross talk regulating host recovery and to pave the way to the development of pro-repair therapeutics to augment lung regeneration following viral injury.


Assuntos
COVID-19 , Humanos , Animais , Imunidade Inata , Pandemias , SARS-CoV-2 , Inflamação/patologia
4.
Annu Rev Immunol ; 40: 195-220, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35044795

RESUMO

Tissue-resident immune cells span both myeloid and lymphoid cell lineages, have been found in multiple human tissues, and play integral roles at all stages of the immune response, from maintaining homeostasis to responding to infectious challenges to resolution of inflammation to tissue repair. In humans, studying immune cells and responses in tissues is challenging, although recent advances in sampling and high-dimensional profiling have provided new insights into the ontogeny, maintenance, and functional role of tissue-resident immune cells. Each tissue contains a specific complement of resident immune cells. Moreover, resident immune cells for each lineage share core properties, along with tissue-specific adaptations. Here we propose a five-point checklist for defining resident immune cell types in humans and describe the currently known features of resident immune cells, their mechanisms of development, and their putative functional roles within various human organs. We also consider these aspects of resident immune cells in the context of future studies and therapeutics.


Assuntos
Imunidade Inata , Linfócitos , Animais , Linhagem da Célula , Homeostase , Humanos , Inflamação
5.
Annu Rev Immunol ; 39: 557-581, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33651964

RESUMO

There is a growing interest in understanding tissue organization, homeostasis, and inflammation. However, despite an abundance of data, the organizing principles of tissue biology remain poorly defined. Here, we present a perspective on tissue organization based on the relationships between cell types and the functions that they perform. We provide a formal definition of tissue homeostasis as a collection of circuits that regulate specific variables within the tissue environment, and we describe how the functional organization of tissues allows for the maintenance of both tissue and systemic homeostasis. This leads to a natural definition of inflammation as a response to deviations from homeostasis that cannot be reversed by homeostatic mechanisms alone. We describe how inflammatory signals act on the same cellular functions involved in normal tissue organization and homeostasis in order to coordinate emergency responses to perturbations and ultimately return the system to a homeostatic state. Finally, we consider the hierarchy of homeostatic and inflammatory circuits and the implications for the development of inflammatory diseases.


Assuntos
Inflamação , Animais , Homeostase , Humanos
6.
Annu Rev Immunol ; 39: 279-311, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544645

RESUMO

The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.


Assuntos
Imunidade Inata , Inflamação , Animais , Epigênese Genética , Humanos , Imunidade Inata/genética , Inflamação/genética
7.
Annu Rev Immunol ; 39: 199-226, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33524273

RESUMO

Multiple sclerosis (MS) is a chronic disease that is characterized by the inappropriate invasion of lymphocytes and monocytes into the central nervous system (CNS), where they orchestrate the demyelination of axons, leading to physical and cognitive disability. There are many reasons immunologists should be interested in MS. Aside from the fact that there is still significant unmet need for patients living with the progressive form of the disease, MS is a case study for how immune cells cross CNS barriers and subsequently interact with specialized tissue parenchymal cells. In this review, we describe the types of immune cells that infiltrate the CNS and then describe interactions between immune cells and glial cells in different types of lesions. Lastly, we provide evidence for CNS-compartmentalized immune cells and speculate on how this impacts disease progression for MS patients.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Sistema Nervoso Central , Humanos , Inflamação , Monócitos
8.
Annu Rev Immunol ; 39: 77-101, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33441019

RESUMO

Nearly all animal cells contain proteins evolved to trigger the destruction of the cell in which they reside. The activation of these proteins occurs via sequential programs, and much effort has been expended in delineating the molecular mechanisms underlying the resulting processes of programmed cell death (PCD). These efforts have led to the definition of apoptosis as a form of nonimmunogenic PCD that is required for normal development and tissue homeostasis, and of pyroptosis and necroptosis as forms of PCD initiated by pathogen infection that are associated with inflammation and immune activation. While this paradigm has served the field well, numerous recent studies have highlighted cross talk between these programs, challenging the idea that apoptosis, pyroptosis, and necroptosis are linear pathways with defined immunological outputs. Here, we discuss the emerging idea of cell death as a signaling network, considering connections between cell death pathways both as we observe them now and in their evolutionary origins. We also discuss the engagement and subversion of cell death pathways by pathogens, as well as the key immunological outcomes of these processes.


Assuntos
Necroptose , Piroptose , Animais , Apoptose , Humanos , Inflamação , Transdução de Sinais
9.
Annu Rev Immunol ; 38: 567-595, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017655

RESUMO

Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.


Assuntos
Caspases/metabolismo , Morte Celular , Inflamação/etiologia , Inflamação/metabolismo , Proteínas de Neoplasias/genética , Piroptose/genética , Animais , Apoptose , Biomarcadores , Caspases/genética , Morte Celular/genética , Suscetibilidade a Doenças , Ativação Enzimática , Humanos , Inflamação/patologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais
10.
Annu Rev Immunol ; 38: 49-77, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340580

RESUMO

Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.


Assuntos
Suscetibilidade a Doenças , Inflamação/etiologia , Inflamação/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Imunidade Adaptativa , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Imunidade Inata , Inflamação/diagnóstico , Mediadores da Inflamação/metabolismo , Transdução de Sinais
11.
Annu Rev Immunol ; 37: 325-347, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676821

RESUMO

ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.


Assuntos
Inflamação/imunologia , Purinas/metabolismo , Receptores Purinérgicos/metabolismo , ADP-Ribosilação , Trifosfato de Adenosina/metabolismo , Animais , Metilação de DNA , Humanos , Inflamação/genética , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais
12.
Annu Rev Immunol ; 37: 439-456, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026415

RESUMO

Monocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16- in humans and Ly6Chi in mice), intermediate (CD14+CD16+ in humans and Ly6C+Treml4+ in mice), and nonclassical (CD14-CD16+ in humans and Ly6Clo in mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.


Assuntos
Artrite Reumatoide/imunologia , Aterosclerose/imunologia , Vasos Sanguíneos/fisiologia , Monócitos/imunologia , Infarto do Miocárdio/imunologia , Animais , Autoimunidade , Hematopoese , Homeostase , Humanos , Inflamação , Camundongos
13.
Annu Rev Immunol ; 37: 269-293, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30649988

RESUMO

Myeloid cells are a major cellular compartment of the immune system comprising monocytes, dendritic cells, tissue macrophages, and granulocytes. Models of cellular ontogeny, activation, differentiation, and tissue-specific functions of myeloid cells have been revisited during the last years with surprising results; for example, most tissue macrophages are yolk sac derived, monocytes and macrophages follow a multidimensional model of activation, and tissue signals have a significant impact on the functionality of all these cells. While these exciting results have brought these cells back to center stage, their enormous plasticity and heterogeneity, during both homeostasis and disease, are far from understood. At the same time, the ongoing revolution in single-cell genomics, with single-cell RNA sequencing (scRNA-seq) leading the way, promises to change this. Prevailing models of hematopoiesis with distinct intermediates are challenged by scRNA-seq data suggesting more continuous developmental trajectories in the myeloid cell compartment. Cell subset structures previously defined by protein marker expression need to be revised based on unbiased analyses of scRNA-seq data. Particularly in inflammatory conditions, myeloid cells exhibit substantially vaster heterogeneity than previously anticipated, and work performed within large international projects, such as the Human Cell Atlas, has already revealed novel tissue macrophage subsets. Based on these exciting developments, we propose the next steps to a full understanding of the myeloid cell compartment in health and diseases.


Assuntos
Diferenciação Celular , Microambiente Celular , Inflamação/imunologia , Células Mieloides/fisiologia , Animais , Biomarcadores , Plasticidade Celular , Homeostase , Humanos , Análise de Sequência de RNA
14.
Annu Rev Immunol ; 37: 599-624, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026411

RESUMO

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Microbioma Gastrointestinal/imunologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Animais , Autoimunidade , Diabetes Mellitus Tipo 1/imunologia , Homeostase , Humanos , Tolerância Imunológica , Imunomodulação , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia
15.
Annu Rev Immunol ; 37: 125-144, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30485751

RESUMO

Platelets have dual physiologic roles as both cellular mediators of thrombosis and immune modulatory cells. Historically, the thrombotic function of platelets has received significant research and clinical attention, but emerging research indicates that the immune regulatory roles of platelets may be just as important. We now know that in addition to their role in the acute thrombotic event at the time of myocardial infarction, platelets initiate and accelerate inflammatory processes that are part of the pathogenesis of atherosclerosis and myocardial infarction expansion. Furthermore, it is increasingly apparent from recent studies that platelets impact the pathogenesis of many vascular inflammatory processes such as autoimmune diseases, sepsis, viral infections, and growth and metastasis of many types of tumors. Therefore, we must consider platelets as immune cells that affect all phases of immune responses.


Assuntos
Aterosclerose/imunologia , Doenças Autoimunes/imunologia , Plaquetas/imunologia , Inflamação , Infarto do Miocárdio/imunologia , Trombose/imunologia , Viroses/imunologia , Animais , Carcinogênese/imunologia , Humanos , Imunomodulação
16.
Annu Rev Immunol ; 36: 73-101, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29144836

RESUMO

The cellular degradative pathway of autophagy has a fundamental role in immunity. Here, we review the function of autophagy and autophagy proteins in inflammation. We discuss how the autophagy machinery controls the burden of infectious agents while simultaneously limiting inflammatory pathologies, which often involves processes that are distinct from conventional autophagy. Among the newly emerging processes we describe are LC3-associated phagocytosis and targeting by autophagy proteins, both of which require many of the same proteins that mediate conventional autophagy. We also discuss how autophagy contributes to differentiation of myeloid and lymphoid cell types, coordinates multicellular immunity, and facilitates memory responses. Together, these functions establish an intimate link between autophagy, mucosal immunity, and chronic inflammatory diseases. Finally, we offer our perspective on current challenges and barriers to translation.


Assuntos
Autofagia , Suscetibilidade a Doenças , Inflamação/etiologia , Animais , Biomarcadores , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Inflamação/diagnóstico , Inflamação/metabolismo , Transdução de Sinais
17.
Annu Rev Immunol ; 35: 337-370, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28142321

RESUMO

Transcriptomics, the high-throughput characterization of RNAs, has been instrumental in defining pathogenic signatures in human autoimmunity and autoinflammation. It enabled the identification of new therapeutic targets in IFN-, IL-1- and IL-17-mediated diseases. Applied to immunomonitoring, transcriptomics is starting to unravel diagnostic and prognostic signatures that stratify patients, track molecular changes associated with disease activity, define personalized treatment strategies, and generally inform clinical practice. Herein, we review the use of transcriptomics to define mechanistic, diagnostic, and predictive signatures in human autoimmunity and autoinflammation. We discuss some of the analytical approaches applied to extract biological knowledge from high-dimensional data sets. Finally, we touch upon emerging applications of transcriptomics to study eQTLs, B and T cell repertoire diversity, and isoform usage.


Assuntos
Doenças Autoimunes/diagnóstico , Inflamação/diagnóstico , Transcriptoma , Doenças Autoimunes/imunologia , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inflamação/imunologia , Armazenamento e Recuperação da Informação , Terapia de Alvo Molecular , Monitorização Imunológica , Prognóstico
18.
Annu Rev Immunol ; 35: 469-499, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28226228

RESUMO

Professional antigen-presenting cells (APCs) in the skin include dendritic cells, monocytes, and macrophages. They are highly dynamic, with the capacity to enter skin from the peripheral circulation, patrol within tissue, and migrate through lymphatics to draining lymph nodes. Skin APCs are endowed with antigen-sensing, -processing, and -presenting machinery and play key roles in initiating, modulating, and resolving cutaneous inflammation. Skin APCs are a highly heterogeneous population with functionally specialized subsets that are developmentally imprinted and modulated by local tissue microenvironmental and inflammatory cues. This review explores recent advances that have allowed for a more accurate taxonomy of APC subsets found in both mouse and human skin. It also examines the functional specificity of individual APC subsets and their collaboration with other immune cell types that together promote adaptive T cell and regional cutaneous immune responses during homeostasis, inflammation, and disease.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Dendríticas/imunologia , Células de Langerhans/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Pele/imunologia , Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Movimento Celular , Homeostase , Humanos , Inflamação , Ativação Linfocitária , Camundongos
19.
Annu Rev Immunol ; 35: 285-311, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446061

RESUMO

IgG antibodies mediate a diversity of immune functions by coupling of antigen specificity through the Fab domain to signal transduction via Fc-Fc receptor interactions. Indeed, balanced IgG signaling through type I and type II Fc receptors is required for the control of proinflammatory, anti-inflammatory, and immunomodulatory processes. In this review, we discuss the mechanisms that govern IgG-Fc receptor interactions, highlighting the diversity of Fc receptor-mediated effector functions that regulate immunity and inflammation as well as determine susceptibility to infection and autoimmunity and responsiveness to antibody-based therapeutics and vaccines.


Assuntos
Anticorpos/uso terapêutico , Doenças Autoimunes/imunologia , Imunoglobulina G/metabolismo , Imunoterapia/métodos , Infecções/imunologia , Receptores Fc/metabolismo , Animais , Doenças Autoimunes/terapia , Suscetibilidade a Doenças , Humanos , Imunidade Humoral , Infecções/terapia , Inflamação , Transdução de Sinais
20.
Annu Rev Immunol ; 35: 1-30, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27912315

RESUMO

Genome technologies have defined a complex genetic architecture in major infectious, inflammatory, and autoimmune disorders. High density marker arrays and Immunochips have powered genome-wide association studies (GWAS) that have mapped nearly 450 genetic risk loci in 22 major inflammatory diseases, including a core of common genes that play a central role in pathological inflammation. Whole-exome and whole-genome sequencing have identified more than 265 genes in which mutations cause primary immunodeficiencies and rare forms of severe inflammatory bowel disease. Combined analysis of inflammatory disease GWAS and primary immunodeficiencies point to shared proteins and pathways that are required for immune cell development and protection against infections and are also associated with pathological inflammation. Finally, sequencing of chromatin immunoprecipitates containing specific transcription factors, with parallel RNA sequencing, has charted epigenetic regulation of gene expression by proinflammatory transcription factors in immune cells, providing complementary information to characterize morbid genes at infectious and inflammatory disease loci.


Assuntos
Doenças Autoimunes/genética , Síndromes de Imunodeficiência/genética , Infecções/genética , Inflamação/genética , Vacinas/imunologia , Animais , Epigênese Genética , Exoma/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade/genética , Infecções/imunologia , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA