Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 96(4): e29605, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634474

RESUMO

Interferon lambda (IFNλ), classified as a type III IFN, is a representative cytokine that plays an important role in innate immunity along with type I IFN. IFNλ can elicit antiviral states by inducing peculiar sets of IFN-stimulated genes (ISGs). In this study, an adenoviral vector expression system with a tetracycline operator system was used to express human IFNλ4 in cells and mice. The formation of recombinant adenovirus (rAd-huIFNλ4) was confirmed using immunohistochemistry assays and transmission electron microscopy. Its purity was verified by quantifying host cell DNA and host cell proteins, as well as by confirming the absence of the replication-competent adenovirus. The transduction of rAd-huIFNλ4 induced ISGs and inhibited four subtypes of the influenza virus in both mouse-derived (LA-4) and human-derived cells (A549). The antiviral state was confirmed in BALB/c mice following intranasal inoculation with 109 PFU of rAd-huIFNλ4, which led to the inhibition of four subtypes of the influenza virus in mouse lungs, with reduced inflammatory lesions. These results imply that human IFNλ4 could induce antiviral status by modulating ISG expression in mice.


Assuntos
Antivirais , Influenza Humana , Interferon lambda , Orthomyxoviridae , Animais , Humanos , Camundongos , Antivirais/farmacologia , Imunidade Inata , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Interferon lambda/metabolismo , Interferon lambda/farmacologia , Interferon Tipo I/genética , Interferons/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vetores Genéticos
2.
J Virol ; 96(24): e0138822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448799

RESUMO

Type III interferons (IFN-λ) are shown to be preferentially produced by epithelial cells, which provide front-line protection at barrier surfaces. Transmissible gastroenteritis virus (TGEV), belonging to the genus Alphacoronavirus of the family Coronaviridae, can cause severe intestinal injuries in porcine, resulting in enormous economic losses for the swine industry, worldwide. Here, we demonstrated that although IFN-λ1 had a higher basal expression, TGEV infection induced more intense IFN-λ3 production in vitro and in vivo than did IFN-λ1. We explored the underlying mechanism of IFN-λ induction by TGEV and found a distinct regulation mechanism of IFN-λ1 and IFN-λ3. The classical RIG-I-like receptor (RLR) pathway is involved in IFN-λ3 but not IFN-λ1 production. Except for the signaling pathways mediated by RIG-I and MDA5, TGEV nsp1 induces IFN-λ1 and IFN-λ3 by activating NF-κB via the unfolded protein responses (UPR) PERK-eIF2α pathway. Furthermore, functional domain analysis indicated that the induction of IFN-λ by the TGEV nsp1 protein was located at amino acids 85 to 102 and was dependent on the phosphorylation of eIF2α and the nuclear translocation of NF-κB. Moreover, the recombinant TGEV with the altered amino acid motif of nsp1 85-102 was constructed, and the nsp1 (85-102sg) mutant virus significantly reduced the production of IFN-λ, compared with the wild strain. Compared to the antiviral activities of IFN-λ1, the administration of IFN-λ3 showed greater antiviral activity against TGEV infections in IPEC-J2 cells. In summary, our data point to the significant role of IFN-λ in the host innate antiviral responses to coronavirus infections within mucosal organs and in the distinct mechanisms of IFN-λ1 and IFN-λ3 regulation. IMPORTANCE Coronaviruses cause infectious diseases in various mammals and birds and exhibit an epithelial cell tropism in enteric and respiratory tracts. It is critical to explore how coronavirus infections modulate IFN-λ, a key innate cytokine against mucosal viral infection. Our results uncovered the different processes of IFN-λ1 and IFN-λ3 production that are involved in the classical RLR pathway and determined that TGEV nsp1 induces IFN-λ1 and IFN-λ3 production by activating NF-κB via the PERK-eIF2α pathway in UPR. These studies highlight the unique regulation of antiviral defense in the intestine during TGEV infection. We also demonstrated that IFN-λ3 induced greater antiviral activity against TGEV replication than did IFN-λ1 in IPEC-J2 cells, which is helpful in finding a novel strategy for the treatment of coronavirus infections.


Assuntos
Gastroenterite Suína Transmissível , Interferon lambda , Vírus da Gastroenterite Transmissível , Animais , Antivirais , Interferon lambda/imunologia , Interferon lambda/farmacologia , NF-kappa B/imunologia , Suínos , Vírus da Gastroenterite Transmissível/fisiologia , Gastroenterite Suína Transmissível/imunologia
3.
mBio ; 15(5): e0055024, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530032

RESUMO

Human metapneumovirus (HMPV) is a primary cause of acute respiratory infection, yet there are no approved vaccines or antiviral therapies for HMPV. Early host responses to HMPV are poorly characterized, and further understanding could identify important antiviral pathways. Type III interferon (IFN-λ) displays potent antiviral activity against respiratory viruses and is being investigated for therapeutic use. However, its role in HMPV infection remains largely unknown. Here, we show that IFN-λ is highly upregulated during HMPV infection in vitro in human and mouse airway epithelial cells and in vivo in mice. We found through several immunological and molecular assays that type II alveolar cells are the primary producers of IFN-λ. Using mouse models, we show that IFN-λ limits lung HMPV replication and restricts virus spread from upper to lower airways but does not contribute to clinical disease. Moreover, we show that IFN-λ signaling is predominantly mediated by CD45- non-immune cells. Mice lacking IFN-λ signaling showed diminished loss of ciliated epithelial cells and decreased recruitment of lung macrophages in early HMPV infection along with higher inflammatory cytokine and interferon-stimulated gene expression, suggesting that IFN-λ may maintain immunomodulatory responses. Administration of IFN-λ for prophylaxis or post-infection treatment in mice reduced viral load without inflammation-driven weight loss or clinical disease. These data offer clinical promise for IFN-λ in HMPV treatment. IMPORTANCE: Human metapneumovirus (HMPV) is a common respiratory pathogen and often contributes to severe disease, particularly in children, immunocompromised people, and the elderly. There are currently no licensed HMPV antiviral treatments or vaccines. Here, we report novel roles of host factor IFN-λ in HMPV disease that highlight therapeutic potential. We show that IFN-λ promotes lung antiviral responses by restricting lung HMPV replication and spread from upper to lower airways but does so without inducing lung immunopathology. Our data uncover recruitment of lung macrophages, regulation of ciliated epithelial cells, and modulation of inflammatory cytokines and interferon-stimulated genes as likely contributors. Moreover, we found these roles to be distinct and non-redundant, as they are not observed with knockout of, or treatment with, type I IFN. These data elucidate unique antiviral functions of IFN-λ and suggest IFN-λ augmentation as a promising therapeutic for treating HMPV disease and promoting effective vaccine responses.


Assuntos
Interferon lambda , Pulmão , Metapneumovirus , Infecções por Paramyxoviridae , Replicação Viral , Animais , Humanos , Camundongos , Antivirais/farmacologia , Modelos Animais de Doenças , Células Epiteliais/virologia , Células Epiteliais/imunologia , Interferon lambda/imunologia , Interferon lambda/farmacologia , Interferons/imunologia , Interferons/farmacologia , Pulmão/imunologia , Pulmão/virologia , Metapneumovirus/imunologia , Metapneumovirus/genética , Camundongos Endogâmicos C57BL , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA