Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732195

RESUMO

Sport injuries, including the anterior crucial ligament rupture (ACLR) seem to be related to complex genetic backgrounds, including the genes responsible for inflammatory response. This review and meta-analysis investigated the contribution of the polymorphisms of genes encoding inflammatory cytokines and their receptors to the risk of ACLR. The scientific databases Science Direct, EBSCO host, Scopus, PubMed, and Google Scholar were screened (completed on 14 June 2023) according to the established inclusion/exclusion criteria (only fully accessible, original, human case-control studies written in English concerning the effect of interleukin genes' polymorphisms on the occurrence of ACL injury were included) and statistical meta-analysis using R version 4.0.3 was performed. The PRISMA methodology was used to review articles. The review protocol was registered under the number CRD42024514316 in the Prospero database. Eighty-nine studies were identified and narrowed down to three original case-control studies used for the meta-analysis. The studies analyzed Polish, South African, and Swedish cohorts, altogether 1282 participants. The candidate polymorphisms indicated in the studies involved IL6 rs1800795, IL6R rs2228145 and IL1B rs16944. The systematic review showed the relationships between IL6 rs1800795 polymorphism and ACLR in the Polish subpopulation, and IL6R rs2228145 and IL1B rs16944 in the South African subpopulations. The meta-analysis revealed that the IL6 rs1800795 CG genotype was over-represented (OR = 1.30, 95% CI 1.02-1.66), while the CC genotype was under-represented (OR = 0.75, 95% CI 0.54-1.03) in ACLR subjects, but no significant impact of IL6R rs2228145 was shown. Additionally, a tendency of the IL1B rs16944 CT genotype to be protective (OR 0.89, 95% CI 0.70-1.14), while the TT to be a risk genotype (OR 1.19, 95% CI 0.84-1.68) was observed. Thus, the relationship between the interleukin receptor IL6R rs2228145 and ACLR risk was not confirmed. However, the impact of genes coding pleiotropic IL6 rs1800795 on the incidences of ACLR was clear and the effect of pro-inflammatory IL1B rs16944 was possible.


Assuntos
Lesões do Ligamento Cruzado Anterior , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Humanos , Lesões do Ligamento Cruzado Anterior/genética , Interleucina-6/genética , Interleucina-1beta/genética , Receptores de Interleucina-6/genética , Interleucinas/genética , Fatores de Risco , Estudos de Casos e Controles
2.
BMC Musculoskelet Disord ; 23(1): 154, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172811

RESUMO

BACKGROUND: Anterior cruciate ligament (ACL) rupture is a common and severe knee injury in sports and occurs mostly due to noncontact injuries. There is an increasing amount of evidence associating ACL rupture to single nucleotide polymorphisms (SNPs), and SNPs in the collagen type I genes can change its expression and tissue mechanical features. This study aimed to investigate the association between SNPs in COL1A1 and COL1A2 with sports-related ACL tears. METHODS: A total of 338 athletes from multiple sports modalities were analyzed: 146 were diagnosed with ACL rupture or underwent an ACL reconstruction surgery and 192 have no musculoskeletal injuries. SNPs were genotyped using validated TaqMan assays. The association of the polymorphisms with ACL rupture was evaluated by a multivariable logistic regression model, using odds ratios (OR) and 95% confidence intervals (CI). RESULTS: The age, sport modality, and training location were associated with an increased risk of a non-contact ACL tear. COL1A2 SNPs (rs42524 CC and rs2621215 GG) were associated with an increased risk of non-contact ACL injury (6 and 4-fold, respectively). However, no significant differences were detected in the distribution of COL1A1 rs1107946 and COL1A2 rs412777 SNPs between cases and controls. There was a protective association with ACL rupture (OR = 0.25; 95% CI = 0.07-0.96) between COL1A1 rs1107946 (GT or TT) and the wildtype genotypes of the three COL1A2 (rs412777, rs42524, rs2621215). COL1A2 rs42524 and rs2621215 SNPs were associated with non-contact ACL risk. CONCLUSION: The combined analysis of COL1A1-COL1A2 genotypes suggests a gene-gene interaction in ACL rupture susceptibility.


Assuntos
Lesões do Ligamento Cruzado Anterior , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo I , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/epidemiologia , Lesões do Ligamento Cruzado Anterior/genética , Atletas , Estudos de Casos e Controles , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/genética , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Ruptura/genética
3.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430947

RESUMO

The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.


Assuntos
Lesões do Ligamento Cruzado Anterior , Humanos , Lesões do Ligamento Cruzado Anterior/genética , Lesões do Ligamento Cruzado Anterior/terapia , Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho
4.
Anim Genet ; 51(5): 824-828, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32696518

RESUMO

Cranial cruciate ligament rupture (CCLR) is one of the leading causes of pelvic limb lameness in dogs. About 6% of Labrador Retrievers suffer from this orthopedic problem. The aim of this study was to determine the heritability of CCLR in this breed using SNP array genotyping data. DNA samples were collected from CCLR-affected dogs (n = 190) and unaffected dogs over the age of 8 years (n = 143). All 333 dogs were genotyped directly or imputed up to approximately 710k SNPs on the Affymetrix Axiom CanineHD SNP array. Heritability of CCLR was calculated using multiple methodologies, including linear mixed models, Bayesian models and a model that incorporates LD. The covariates of sex and sterilization status were added to each analysis to assess their impact. Across the algorithms of these models, heritability ranged from 0.550 to 0.886, depending on covariate inclusion. The relatively high heritability for this disease indicates that a substantial genetic component contributes to CCLR in the Labrador Retriever.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Cães/genética , Animais , Lesões do Ligamento Cruzado Anterior/patologia , Cães/lesões , Feminino , Hereditariedade , Masculino
5.
Knee Surg Sports Traumatol Arthrosc ; 28(2): 622-628, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31724093

RESUMO

PURPOSE: Recent studies have shown that several genetic factors can cause susceptibility to anterior cruciate ligament (ACL) rupture. The aim of the present study was to evaluate certain underlying factors that increase the risk of ACL rupture. METHODS: Eight hundred thirty-six patients with ACL rupture who underwent ACL reconstructive surgery from 2010 to 2013 at an academic center completed a minimum of 5 years post-operation follow-up. The collected variables included sex, age, height, weight, exercise level, time interval between ACL rupture in the first knee and contralateral ACL rupture, dominant leg, side of the involved knee and sibling history of ACL rupture. RESULTS: The median follow-up duration was 6.5 (range: 5-8) years. Eighty-three patients (9.9%) had a contralateral ACL rupture, and 155 patients (18.5%) had siblings with a history of ACL rupture. The rate of contralateral ACL rupture was three times higher in women than in men and in patients with siblings with a history of ACL rupture than in those without such history. In addition, the risk of contralateral ACL rupture was higher in those younger than 30 years of age, those with a BMI of 20-25 kg/m2 and those who participated in regular sports activity. However, whether the involved knee was on the dominant or nondominant side had no effect on the incidence of contralateral ACL rupture. The results of the study showed that 69 (83.1%) of the contralateral ACL ruptures occurred within the first 2 years after the primary operation. CONCLUSION: In a 5- to 8-year follow-up, one out of every ten patients had a contralateral ACL rupture, and two out of every ten patients had siblings with a history of ACL rupture. The findings suggest that having a sibling with a history of ACL rupture and being female are important risk factors for ACL rupture of the contralateral knee. LEVEL OF EVIDENCE: III.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Predisposição Genética para Doença , Irmãos , Adulto , Fatores Etários , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior , Traumatismos em Atletas/genética , Traumatismos em Atletas/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Fatores de Risco , Ruptura/cirurgia
6.
Osteoarthritis Cartilage ; 27(12): 1778-1789, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31430535

RESUMO

OBJECTIVE: Emerging evidence suggests that injury to the anterior cruciate ligament (ACL) typically initiates biological changes that contribute to the development of osteoarthritis (OA). The molecular biomarkers or mediators of these biological events remain unknown. The goal of this exploratory study was to identify novel synovial fluid biomarkers associated with early biological changes following ACL injury distinct from findings in end-stage OA. METHODS: Synovial fluid was aspirated from patients with acute (≤30 days) and subacute (31-90 days) ACL tears and from patients with advanced OA and probed via tandem mass spectrometry for biomarkers to distinguish OA from ACL injury. Periostin (POSTN) was identified as a potential candidate. Further analyses of POSTN were performed in synovial fluid, OA cartilage, torn ACL remnants, and cultured cells and media by Western blot, PCR, immunostaining and ELISA. RESULTS: Synovial fluid analysis revealed that POSTN exhibited higher expression in subacute ACL injury than OA. POSTN expression was relatively low in cartilage/chondrocytes suggesting it is also produced by other intra-articular tissues. Conversely, high and time-dependent expression of POSTN in ACL tear remnants and isolated cells was consistent with the synovial fluid results. CONCLUSIONS: Elevated POSTN may provide a synovial fluid biomarker of subacute ACL injury setting separate from OA. Increased expression of POSTN in ACL suggests that the injured ACL may play a pivotal role in POSTN production, which is sensitive to time from injury. Previous studies have shown potential catabolic effects of POSTN, raising the possibility that POSTN contributes to the initiation of joint degeneration and may offer a window of opportunity to intervene in the early stages of post-traumatic OA.


Assuntos
Lesões do Ligamento Cruzado Anterior/metabolismo , Moléculas de Adesão Celular/metabolismo , Líquido Sinovial/metabolismo , Adolescente , Adulto , Ligamento Cruzado Anterior/metabolismo , Lesões do Ligamento Cruzado Anterior/genética , Western Blotting , Cartilagem Articular/metabolismo , Estudos de Casos e Controles , Moléculas de Adesão Celular/genética , Condrócitos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Reação em Cadeia da Polimerase , Proteômica , Espectrometria de Massas em Tandem , Adulto Jovem
7.
J Sports Sci Med ; 18(1): 137-145, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787661

RESUMO

Cytokines, such as interleukins, are crucial in regulating critical cell signaling pathways as well as being major contributors to inflammatory response and are upregulated during ligament and tendon injuries. The genes encoding key interleukins, such as IL1B and IL6 as well as interleukin receptor IL6R, were chosen as candidate genes for association with soft tissue injuries. The aim of the case-control study was to verify the hypothesis that sequence variants rs1143627, rs16944, rs1800795, rs2228145 in the IL1B, IL6 and IL6R genes are associated with ACL rupture susceptibility in a Polish population. Among four analyzed SNPs, the rs1800795 IL6 gene polymorphism was found to be the only one significantly associated with ACL rupture (p = 0.010, p = 0.022, p = 0.004 for codominant, recessive and overdominant models, respectively; odds ratio = 1.74, 95% CI 1.08-2.81, sex adjusted p = 0.032 for recessive model). With reference to the other analyzed polymorphisms, we failed to show significant differences in the genotype and allele frequencies for IL6R rs2228145as well as IL1B rs16944 and rs1143627 (analyzed alone or in haplotype combination) between the ACL rupture group and the healthy control group among Polish participants. Due to the nature of case-control studies, the results of this study need to be confirmed in independent studies with larger sample sizes.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Interleucina-1beta/genética , Interleucina-6/genética , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-6/genética , Adulto , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Polônia , Adulto Jovem
8.
BMC Genet ; 19(1): 39, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29940858

RESUMO

BACKGROUND: Anterior cruciate ligament rupture (ACLR) is a debilitating and potentially life-changing condition in humans, as there is a high prevalence of early-onset osteoarthritis after injury. Identification of high-risk individuals before they become patients is important, as post-treatment lifetime burden of ACLR in the USA ranges from $7.6 to $17.7 billion annually. ACLR is a complex disease with multiple risk factors including genetic predisposition. Naturally occurring ACLR in the dog is an excellent model for human ACLR, as risk factors and disease characteristics in humans and dogs are similar. In a univariate genome-wide association study (GWAS) of 237 Labrador Retrievers, we identified 99 ACLR candidate loci. It is likely that additional variants remain to be identified. Joint analysis of multiple correlated phenotypes is an underutilized technique that increases statistical power, even when only one phenotype is associated with the trait. Proximal tibial morphology has been shown to affect ACLR risk in both humans and dogs. In the present study, tibial plateau angle (TPA) and relative tibial tuberosity width (rTTW) were measured on bilateral radiographs from purebred Labrador Retrievers that were recruited to our initial GWAS. We performed a multivariate genome wide association analysis of ACLR status, TPA, and rTTW. RESULTS: Our analysis identified 3 loci with moderate evidence of association that were not previously associated with ACLR. A locus on Chr1 associated with both ACLR and rTTW is located within ROR2, a gene important for cartilage and bone development. A locus on Chr4 associated with both ACLR and TPA resides within DOCK2, a gene that has been shown to promote immune cell migration and invasion in synovitis, an important predictor of ACLR. A third locus on Chr23 associated with only ACLR is located near a long non-coding RNA (lncRNA). LncRNA's are important for regulation of gene transcription and translation. CONCLUSIONS: These results did not overlap with our previous GWAS, which is reflective of the different methods used, and supports the need for further work. The results of the present study are highly relevant to ACLR pathogenesis, and identify potential drug targets for medical treatment.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Animais , Cães , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Modelos Animais
9.
J Sports Sci ; 36(5): 551-557, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28502223

RESUMO

The angiogenesis-signalling pathway is a physiological response after mechanical loading to promote matrix remodelling and thereby maintain tissue homeostasis. Studies have shown increased expression of angiogenic molecules in response to loading and in ruptured ligaments. Recently, polymorphisms within the vascular endothelial growth factor A (VEGFA) and kinase insert-domain receptor (KDR) genes were associated with risk of anterior cruciate ligament (ACL) ruptures and Achilles tendinopathy in Caucasian study groups. A case-control genetic association study was conducted on 100 controls and 98 participants with surgically-diagnosed ACL ruptures; of which 51 participants reported non-contact mechanism of injury (NON). All participants were genotyped for five functional polymorphisms: VEGFA (rs699947, rs1570360, rs2010963) and KDR (rs2071559, rs1870377). Haplotypes were inferred. In the male participants, the KDR rs2071559 AG genotype was significantly over-represented (P = 0.048, OR: 1.90, 95% CI: 1.00-3.59) in the controls. Furthermore, the GG genotype was significantly under-represented in the male controls compared to the male ACL group (P = 0.018, OR: 2.77, 95% CI: 1.17-6.55) and the male NON subgroup (P = 0.013, OR: 3.26, 95% CI: 1.24-8.58). Haplotype analysis implicated the KDR gene in all participants and in male participants separately. Collectively, these results implicate the angiogenesis-signalling pathway as a potentially key biological pathway contributing to ACL injury susceptibility.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , População Negra/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Adulto , Traumatismos em Atletas/genética , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Fatores Sexuais , África do Sul , Adulto Jovem
10.
Knee Surg Sports Traumatol Arthrosc ; 26(12): 3532-3536, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29728743

RESUMO

PURPOSE: Previous research has provided evidence of a hereditary predisposition for anterior cruciate ligament (ACL) injury. The purpose of this study was to evaluate the association between ancestral population genetics and risk of non-contact ACL injuries. METHODS: Blood samples were collected from 177 individuals with a history of non-contact ACL injury and 556 non-injured control individuals for analysis of the genetic material through the use of a panel of 48 INDELs ancestry genetic markers from three ancestral origins. RESULTS: Among patients with non-contact ACL injury, 82% were male and 18% were female. In the control group, 78% were male, and 22% were female. The mean age of the non-contact ACL injury group was 31.7 years (± 10.2), and the control group was 33.8 years (± 13.2). The individual genetic contribution from INDELs of each ancestral origin varied considerably: ranging between 1.5-94.8% contribution for INDELs of African origin (mean of 21.4% of INDELs); between 2 and 96.1% contribution for INDELs of European origin (mean of 66.7% of INDELs); and between 1.3-96.4% contribution for INDELs of Amerindian origin (mean of 11.7% of INDELs). When comparing paired subjects from the non-contact ACL and control groups, the genetic analysis showed that the European ancestry score was higher in the non-contact ACL group than control group (0.70 ± 0.21 vs 0.63 ± 0.22 respectively, p < 0.001), whereas African ancestry scores (ACL group 0.18 ± 0.18 vs control group 0.24 ± 0.21, p < 0.001) and Amerindian ancestry scores (ACL group 0.11 ± 0.09 vs control group 0.12 ± 0.10, n.s.) were lower among the non-contact ACL group than in controls. CONCLUSION: European INDELs markers were found to represent a potential genetic predisposition for non-contact ACL injuries when compared to African and Amerindian INDELs. This study has the potential to correlate a measurable and distinct genetic marker with risk of a non-contact ACL injury. Thus, it increases knowledge base and volume of molecular and genetical factors associated with this pathology. Furthermore, this study provides guidance and evidence for the development of genetic risk-screening panels for non-contact ACL injury. LEVEL OF EVIDENCE: Level III Diagnostic Study.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Predisposição Genética para Doença , Adulto , Estudos de Casos e Controles , Feminino , Frequência do Gene , Genótipo , Humanos , Mutação INDEL , Masculino , Reação em Cadeia da Polimerase , Grupos Raciais/genética
11.
J Sports Sci ; 35(7): 655-662, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27211292

RESUMO

Matrix metalloproteinase-3 (MMP3) is a mediator of matrix remodelling and a proposed susceptibility locus in the genetic profile of musculoskeletal soft tissue injuries. Therefore, this study aimed to validate the MMP3 gene as a risk marker for these injuries by conducting a case control genetic association study in two independent samples groups. Three previously investigated MMP3 variants (rs679620, rs591058 and rs650108) in addition to the functional promoter variant (rs3025058) were genotyped in 195 Australian control participants and 79 Australian individuals with chronic Achilles tendinopathy. Similarly, 234 South African individuals with acute anterior cruciate ligament ruptures and 232 matched control participants were also analysed. Based on high linkage with the previously associated MMP3 variant rs679620, rs3025058 was inferred and found to be associated with increased risk for Achilles tendinopathy within the South African group (P = 0.012; OR: 2.88; 95% CI: 1.4 to 6.1). Lastly, the 6A-G-C-G haplotype, constructed from the investigated variants, was significantly associated with reduced risk for Achilles tendinopathy (29% CON vs. 20% TEN, P = 0.037) in the Australian group. In conclusion, a signal surrounding MMP3 is apparent with respect to Achilles tendinopathy. However, whether the investigated variants are contributing to injury susceptibility or whether they are merely linked to the risk conferring variants mapping elsewhere within the MMP gene cluster on chromosome 11, still requires refining.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Variação Genética , Genótipo , Metaloproteinase 3 da Matriz/genética , Lesões dos Tecidos Moles/genética , Tendinopatia/genética , Tendão do Calcâneo , Adulto , Ligamento Cruzado Anterior , Austrália , Cromossomos Humanos Par 11 , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , África do Sul
12.
J Sport Rehabil ; 26(3): 234-238, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27632864

RESUMO

CONTEXT: The most commonly injured body part for skiing has been found to be the knee. The rupture of the anterior cruciate ligament (ACL) was the most frequent diagnosis. ACL ruptures are determined by several extrinsic and intrinsic risk factors including those that are hormonal, neuromuscular, anatomical, or genetic. OBJECTIVES: To examine the association of both COL1A1 rs1800012 (+1245G/T) and COL1A1 rs1107946 (-1997G/T) polymorphisms, individually and as haplotypes, with ACL ruptures in recreational Polish skiers. DESIGN: Genomic DNA was extracted from buccal cells donated by the subjects, and genotyping was carried out using real-time polymerase chain reaction. SETTINGS: University laboratory. PARTICIPANTS: 138 male recreational skiers with surgically diagnosed primary ruptures and 183 apparently healthy male recreational skiers not differing markedly in age or level of exposure to ACL injury. MAIN OUTCOME MEASURES: COL1A1 rs1800012 and COL1A1 rs1107946 polymorphisms. RESULTS: There were significant differences in genotype distribution of the COL1A1 rs1800012 polymorphism between the ACL rupture group and the control group. The GG homozygotes were underrepresented in the ACL rupture group compared with the control group. There were no significant differences in genotype distribution or allele frequency of COL1A1 rs1107946 polymorphisms between the ACL rupture group and the control group. The G-G (COL1A1 rs1800012G and COL1A1 rs1107946G) haplotype was the most common. There were no significant differences in haplotype distribution between the ACL-rupture and control groups. CONCLUSION: The study showed that GG homozygotes were underrepresented in the ACL-rupture group compared with the control group, which suggests an association with reduced risk of ACL injury.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Traumatismos em Atletas/genética , Colágeno Tipo I/genética , Polimorfismo de Nucleotídeo Único , Adulto , Atletas , Cadeia alfa 1 do Colágeno Tipo I , Frequência do Gene , Genótipo , Humanos , Masculino , Fatores de Risco , Esqui/lesões
13.
J Orthop Surg Res ; 19(1): 122, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317252

RESUMO

BACKGROUND: Relevant evidence suggests that angiogenic factors contribute significantly to fibril matrix reconstruction following physical injuries to tendon ligaments. Vascular endothelial growth factor A (VEGFA), with its potent angiogenic effect, has been studied extensively, and its functional polymorphisms, including rs699947, rs1570360, and rs2010963, have been the focus of numerous investigations. Some scholars have explored the association between gene polymorphisms in the VEGFA and the risk of tendon ligament injury, but the findings are not entirely consistent. OBJECTIVES: The purpose of this study was to investigate the association between rs699947, rs1570360, and rs2010963 gene polymorphisms in VEGFA and the risk of tendon and ligament injuries. METHODS: After including articles about the association of VEGFA rs699947, rs1570360, and rs2010963 polymorphisms with tendon and ligament injuries according to the search strategy, we assessed their quality and conducted meta-analyses to examine the link between these polymorphisms and the risk of tendon and ligament injuries using odds ratios and 95% confidence intervals. RESULTS: Of 86 related articles, six were included in the meta-analysis. Some of these suggest an association between VEGFA rs2010963 and the risk of tendon and ligament injury in the population, with the specific C allele being one of the adverse factors for knee injury. Some studies suggest that VEGFA rs699947 and VEGFA rs1570360 single-nucleotide polymorphisms are associated with anterior cruciate ligament rupture. The risk of non-contact anterior cruciate ligament rupture is nearly doubled in individuals with the rs699947 CC genotype compared to the control group. Our analysis did not find any significant relationship between VEGFA gene polymorphisms (rs699947, rs1570360, and rs2010963) and the chance of tendon and ligament injury without consideration of race. However, the European population reveals that the CC genotype of VEGFA rs699947 can result in a greater risk of tendon and ligament injury, whereas the AG genotype for rs1570360 provides some protection. Additionally, rs2010963 was significantly associated with tendon and ligament injury; individuals with the C allele and the CC genotype had higher risk. False-positive report probability confirmed the high credibility of our results. CONCLUSION: Overall, this study found no significant association between VEGFA rs699947, rs1570360, and rs2010963 polymorphisms and the risk of tendon ligament injury. However, in subgroup analysis, some genotypes of VEGFA rs699947, rs1570360, and rs2010963 were found to increase the risk of tendon ligament injury in European populations.


Assuntos
Lesões do Ligamento Cruzado Anterior , Traumatismos dos Tendões , Humanos , Lesões do Ligamento Cruzado Anterior/genética , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Ligamentos , Polimorfismo de Nucleotídeo Único/genética , Tendões , Fator A de Crescimento do Endotélio Vascular/genética
14.
Sci Rep ; 14(1): 22847, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354002

RESUMO

Anterior cruciate ligament (ACL) injury is a common orthopedic disease with a high incidence, long recovery time, and often requiring surgical treatment. However, the susceptibility factors for ACL injury are currently unclear, and there is a lack of analysis on the differences in the ligament itself. Previous studies have focused on germline mutations, with less research on somatic mutations. To determine the role of somatic mutations in ACL injuries, we recruited seven patients between the ages of 20 and 39 years diagnosed with ACL injuries, collected their peripheral blood, injured ligament ends, and healthy ligament ends tissues, and performed exome sequencing with gene function enrichment analysis. We detected multiple gene mutations and gene deletions, which were only present in some of the samples. Unfortunately, it was not possible to determine whether these somatic mutations are related to ligament structure or function, or are involved in ACL injury. However, this study provides valuable clues for future in-depth research.


Assuntos
Lesões do Ligamento Cruzado Anterior , Mutação , Humanos , Lesões do Ligamento Cruzado Anterior/genética , Adulto , Masculino , Feminino , Adulto Jovem , Sequenciamento do Exoma , Ligamento Cruzado Anterior/cirurgia , Ligamento Cruzado Anterior/patologia , Predisposição Genética para Doença
15.
Free Radic Biol Med ; 212: 191-198, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38154571

RESUMO

Oxidative stress has been implicated in the etiology of skeletal muscle weakness following joint injury. We investigated longitudinal patient muscle samples following knee injury (anterior cruciate ligament tear). Following injury, transcriptomic analysis revealed downregulation of mitochondrial metabolism-related gene networks, which were supported by reduced mitochondrial respiratory flux rates. Additionally, enrichment of reactive oxygen species (ROS)-related pathways were upregulated in muscle following knee injury, and further investigation unveiled marked oxidative damage in a progressive manner following injury and surgical reconstruction. We then investigated whether antioxidant protection is effective in preventing muscle atrophy and weakness after knee injury in mice that overexpress Mn-superoxide dismutase (MnSOD+/-). MnSOD+/- mice showed attenuated oxidative damage, atrophy, and muscle weakness compared to wild type littermate controls following ACL transection surgery. Taken together, our results indicate that ROS-related damage is a causative mechanism of muscle dysfunction after knee injury, and that mitochondrial antioxidant protection may hold promise as a therapeutic target to prevent weakness and development of disability.


Assuntos
Lesões do Ligamento Cruzado Anterior , Traumatismos do Joelho , Humanos , Camundongos , Animais , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/genética , Lesões do Ligamento Cruzado Anterior/cirurgia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/prevenção & controle , Debilidade Muscular/genética , Debilidade Muscular/complicações , Traumatismos do Joelho/complicações , Traumatismos do Joelho/cirurgia , Estresse Oxidativo/fisiologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
16.
BMC Genom Data ; 24(1): 60, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884875

RESUMO

Canine anterior cruciate ligament (ACL) rupture is a common complex disease. Prevalence of ACL rupture is breed dependent. In an epidemiological study, yellow coat color was associated with increased risk of ACL rupture in the Labrador Retriever. ACL rupture risk variants may be linked to coat color through genetic selection or through linkage with coat color genes. To investigate these associations, Labrador Retrievers were phenotyped as ACL rupture case or controls and for coat color and were single nucleotide polymorphism (SNP) genotyped. After filtering, ~ 697 K SNPs were analyzed using GEMMA and mvBIMBAM for multivariate association. Functional annotation clustering analysis with DAVID was performed on candidate genes. A large 8 Mb region on chromosome 5 that included ACSF3, as well as 32 additional SNPs, met genome-wide significance at P < 6.07E-7 or Log10(BF) = 3.0 for GEMMA and mvBIMBAM, respectively. On chromosome 23, SNPs were located within or near PCCB and MSL2. On chromosome 30, a SNP was located within IGDCC3. SNPs associated with coat color were also located within ADAM9, FAM109B, SULT1C4, RTDR1, BCR, and RGS7. DZIP1L was associated with ACL rupture. Several significant SNPs on chromosomes 2, 3, 7, 24, and 26 were located within uncharacterized regions or long non-coding RNA sequences. This study validates associations with the previous ACL rupture candidate genes ACSF3 and DZIP1L and identifies novel candidate genes. These variants could act as targets for treatment or as factors in disease prediction modeling. The study highlighted the importance of regulatory SNPs in the disease, as several significant SNPs were located within non-coding regions.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Cães , Animais , Lesões do Ligamento Cruzado Anterior/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Fenótipo
17.
Genes (Basel) ; 14(7)2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-37510322

RESUMO

Several studies have investigated the role of genetics in anterior cruciate ligament (ACL) rupture, often returning conflicting results. The present pilot study aimed to analyze the association between six Single Nucleotide Polymorphisms (SNPs) (rs1800012; rs12722; rs13946; rs240736; rs970547; and rs4870723, located on the COL1A1, COL5A1, COL12A1, and COL14A1 genes), and ACL rupture, among Italian athletes. A hypothesis-driven association study was conducted. In total, 181 male and female athletes (n = 86 injured; n = 96 non-injured) were genotyped for the prioritized variants. All polymorphisms were genotyped using PCR RFLP, with the only exception being the rs1800012 on the COL1A1 gene, which was detected using MTPA PCR. The allele frequency distribution fell within the worldwide range. Despite the evident population variability, no selective pressure signals were recorded using PBS analysis. No significant difference was detected between the cases and controls for any of the SNPs (rs1800012; rs13946; rs240736; rs970547, and rs4870723) included in the analyses (p > 0.008, Bonferroni-adjusted for multiple comparisons). Moreover, no significant differences were found when males and females were assessed separately. Further investigations based on a larger sample size are needed, in order to draw solid conclusions for the influence between collagen genes and ACL rupture.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Masculino , Feminino , Projetos Piloto , Lesões do Ligamento Cruzado Anterior/genética , Colágeno/genética , Atletas
18.
J Orthop Surg Res ; 18(1): 824, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919719

RESUMO

OBJECTIVE: Perostin (POSTN) and IL-6 consistently elevated after ACL injury, and ACL has been proposed as the major source of POSTN. However, there is a lack of evidence whether IL-6 induces ACL remnants to produce POSTN. This study aimed to investigate the effect of IL-6 on POSTN production in ACL fibroblasts, which may help us understand more about the mechanism of PTOA after ACL injury and ACL reconstruction. METHODS: ACL remnants were harvested from 27 patients undergoing ACL reconstruction. Quantitative real-time polymerase chain reaction (PCR) was performed to examine the POSTN gene expression of ACL fibroblasts after treatment of different concentrations of IL-6. The POSTN protein production of ACL fibroblasts was determined using western blot analysis. The blockers of possible signaling pathways, including PI3K/Akt, Ras/MAPK, and JAK/STAT pathways, were added to test whether the effect of IL-6 on ACL fibroblast could be attenuated. ACL fibroblast and chondrocyte co-culture was carried out to determine the influence of ACL and IL-6 on chondrocytes. RESULTS: Quantitative real-time PCR showed that IL-6 time-dependently and dose-dependently increased POSTN gene expression of ACL fibroblast. Western blot analysis also revealed that IL-6 dose-dependently induced POSTN protein production. Regarding the chronicity of ACL injury, the POSTN protein production was comparable between ACL remnants which were derived within 3 months of injury and at least 6 months after injury. PI3K/Akt blockers could attenuate the effect of IL-6 on ACL remnants, whereas Ras/MAPK and JAK/STAT did not decrease POSTN production. The coexistence of ACL and IL-6 induced more MMP-13 and ADAMTS-4 by chondrocytes. CONCLUSIONS: IL-6 induced ACL remnants to produce POSTN. This effect could be attenuated by the PI3K/Akt blocker. Coexistence of IL-6 and ACL remnants may accelerate post-traumatic arthritis.


Assuntos
Lesões do Ligamento Cruzado Anterior , Osteoartrite , Humanos , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/genética , Interleucina-6 , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Osteoartrite/metabolismo
19.
Eur J Sport Sci ; 23(10): 2098-2108, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36680346

RESUMO

We developed a Biomedical Knowledge Graph model that is phenotype and biological function-aware through integrating knowledge from multiple domains in a Neo4j, graph database. All known human genes were assessed through the model to identify potential new risk genes for anterior cruciate ligament (ACL) ruptures and Achilles tendinopathy (AT). Genes were prioritised and explored in a case-control study comparing participants with ACL ruptures (ACL-R), including a sub-group with non-contact mechanism injuries (ACL-NON), to uninjured control individuals (CON). After gene filtering, 3376 genes, including 411 genes identified through previous whole exome sequencing, were found to be potentially linked to AT and ACL ruptures. Four variants were prioritised: HSPG2:rs2291826A/G, HSPG2:rs2291827G/A, ITGB2:rs2230528C/T and FGF9:rs2274296C/T. The rs2230528 CC genotype was over-represented in the CON group compared to ACL-R (p < 0.001) and ACL-NON (p < 0.001) and the TT genotype and T allele were over-represented in the ACL-R group and ACL-NON compared to CON (p < 0.001) group. Several significant differences in distributions were noted for the gene-gene interactions: (HSPG2:rs2291826, rs2291827 and ITGB2:rs2230528) and (ITGB2:rs2230528 and FGF9:rs2297429). This study substantiates the efficiency of using a prior knowledge-driven in silico approach to identify candidate genes linked to tendon and ACL injuries. Our biomedical knowledge graph identified and, with further testing, highlighted novel associations of the ITGB2 gene which has not been explored in a genetic case control association study, with ACL rupture risk. We thus recommend a multistep approach including bioinformatics in conjunction with next generation sequencing technology to improve the discovery potential of genomics technologies in musculoskeletal soft tissue injuries.HighlightsA biomedical knowledge graph was modelled for musculoskeletal soft tissue injuries to efficiently identify candidate genes for genetic susceptibility analyses.The biomedical knowledge graph and sequencing data identified potential biologically relevant variants to explore susceptibility to common tendon and ligament injuries. Specifically genetic variants within the ITGB2 and FGF9 genes were associated with ACL risk.Novel allele combinations (HSPG2-ITGB2 and ITGB2-FGF9) showcase the potential effect of ITGB2 in influencing risk of ACL rupture.


Assuntos
Tendão do Calcâneo , Lesões do Ligamento Cruzado Anterior , Tendinopatia , Humanos , Lesões do Ligamento Cruzado Anterior/genética , Ligamento Cruzado Anterior , Predisposição Genética para Doença , Estudos de Casos e Controles , Tendinopatia/genética , Loci Gênicos , Ruptura/genética , Fator 9 de Crescimento de Fibroblastos/genética
20.
Eur J Sport Sci ; 22(4): 650-657, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33522443

RESUMO

The aim of this study was to explore the interactions between the interleukins and the angiogenesis signalling pathway, following a pathway-based approach. Statistical modelling tools were used to develop a preliminary polygenic risk assessment model for anterior cruciate ligament (ACL) ruptures, incorporating the angiogenesis signalling genes (VEGFA and KDR) and interleukins (IL1B, IL6, IL6R) which also function to regulate angiogenesis. Multivariate logistic regression analysis was used to identify the most informative contributors to ACL rupture risk from a range of eleven potential intrinsic risk factors: age, sex, BMI and eight genetic polymorphisms within five genes, namely, IL1B rs16944 C/T, IL6 rs1800795 G/C, IL6R rs2228145 C/A, VEGFA rs699947 C/A, VEGFA rs1570360 G/A, VEGFA rs2010963 C/G, KDR rs2071559 A/G and KDR rs1870377 T/A. A total of 232 asymptomatic controls (CON) and 234 participants with surgically diagnosed ACL ruptures, of which 135 participants reported a non-contact mechanism of injury (NON subgroup), were previously genotyped for the selected polymorphisms. The polygenic risk model identified the VEGFA rs699947 CC genotype (p = 0.024, odds ratio (OR): 3.35, 95% confidence interval (CI): 1.17-9.62), VEGFA rs2010963 GC genotype (p = 0.049, OR: 2.43, 95% CI: 1.00-5.87), age (p = 0.011, OR: 0.97, 95% CI: 0.95-0.99) and BMI (p = 0.009, OR:1.09, 95% CI: 0.57-2.11) as the most significant predictors of ACL rupture risk from the data included. The results of this study highlight VEGFA, age and BMI as biologically significant components of this network requiring further investigation in the context of musculoskeletal soft tissue injury risk.HighlightsThe findings of this study highlight the VEGFA gene, age and BMI as biologically significant contributors to ACL rupture susceptibility.Upon further validation of these risk factors, they may be included in genetic risk assessment tools to design pre-habilitation strategies, prescribe appropriate treatment strategies after injury or to assess how an individual is likely to respond to load.Polygenic risk models aid in highlighting the components of the complex ECM remodelling pathway requiring further investigation, using a multidisciplinary approach.VEGFA is a key angiogenic protein contributing to ECM homeostasis and may therefore have potential therapeutic implications that need to be explored.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/genética , Estudos de Casos e Controles , Frequência do Gene , Genótipo , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA