Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.097
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(1): 251-267.e24, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539496

RESUMO

In situ transgenesis methods such as viruses and electroporation can rapidly create somatic transgenic mice but lack control over copy number, zygosity, and locus specificity. Here we establish mosaic analysis by dual recombinase-mediated cassette exchange (MADR), which permits stable labeling of mutant cells expressing transgenic elements from precisely defined chromosomal loci. We provide a toolkit of MADR elements for combination labeling, inducible and reversible transgene manipulation, VCre recombinase expression, and transgenesis of human cells. Further, we demonstrate the versatility of MADR by creating glioma models with mixed reporter-identified zygosity or with "personalized" driver mutations from pediatric glioma. MADR is extensible to thousands of existing mouse lines, providing a flexible platform to democratize the generation of somatic mosaic mice. VIDEO ABSTRACT.


Assuntos
Neoplasias Encefálicas/genética , Modelos Animais de Doenças , Marcação de Genes/métodos , Loci Gênicos/genética , Glioma/genética , Mutagênese Insercional/métodos , Transgenes/genética , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Recombinases/metabolismo , Transfecção
2.
Cell ; 179(1): 165-179.e18, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539494

RESUMO

The three-dimensional organization of chromosomes can have a profound impact on their replication and expression. The chromosomes of higher eukaryotes possess discrete compartments that are characterized by differing transcriptional activities. Contrastingly, most bacterial chromosomes have simpler organization with local domains, the boundaries of which are influenced by gene expression. Numerous studies have revealed that the higher-order architectures of bacterial and eukaryotic chromosomes are dependent on the actions of structural maintenance of chromosomes (SMC) superfamily protein complexes, in particular, the near-universal condensin complex. Intriguingly, however, many archaea, including members of the genus Sulfolobus do not encode canonical condensin. We describe chromosome conformation capture experiments on Sulfolobus species. These reveal the presence of distinct domains along Sulfolobus chromosomes that undergo discrete and specific higher-order interactions, thus defining two compartment types. We observe causal linkages between compartment identity, gene expression, and binding of a hitherto uncharacterized SMC superfamily protein that we term "coalescin."


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Archaea/metabolismo , Sulfolobus/citologia , Sulfolobus/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos de Archaea/genética , Replicação do DNA/genética , DNA Arqueal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Loci Gênicos/genética , Modelos Genéticos , Complexos Multiproteicos/metabolismo , Plasmídeos/genética , Ligação Proteica/genética , Transcrição Gênica
3.
Nat Immunol ; 21(7): 802-815, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541832

RESUMO

Microglia and central nervous system (CNS)-associated macrophages (CAMs), such as perivascular and meningeal macrophages, are implicated in virtually all diseases of the CNS. However, little is known about their cell-type-specific roles in the absence of suitable tools that would allow for functional discrimination between the ontogenetically closely related microglia and CAMs. To develop a new microglia gene targeting model, we first applied massively parallel single-cell analyses to compare microglia and CAM signatures during homeostasis and disease and identified hexosaminidase subunit beta (Hexb) as a stably expressed microglia core gene, whereas other microglia core genes were substantially downregulated during pathologies. Next, we generated HexbtdTomato mice to stably monitor microglia behavior in vivo. Finally, the Hexb locus was employed for tamoxifen-inducible Cre-mediated gene manipulation in microglia and for fate mapping of microglia but not CAMs. In sum, we provide valuable new genetic tools to specifically study microglia functions in the CNS.


Assuntos
Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Traumatismos do Nervo Facial/patologia , Microglia/metabolismo , Cadeia beta da beta-Hexosaminidase/metabolismo , Animais , Encéfalo/citologia , Encéfalo/imunologia , Sistemas CRISPR-Cas/genética , Encefalomielite Autoimune Experimental/imunologia , Traumatismos do Nervo Facial/imunologia , Técnicas de Introdução de Genes , Genes Reporter/genética , Loci Gênicos/genética , Humanos , Microscopia Intravital , Substâncias Luminescentes/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microglia/imunologia , Células NIH 3T3 , RNA-Seq , Análise de Célula Única , Transfecção , Cadeia beta da beta-Hexosaminidase/genética , Proteína Vermelha Fluorescente
4.
Nature ; 630(8016): 484-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811729

RESUMO

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Assuntos
Bactérias , Bacteriófagos , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Bactérias/virologia , Bactérias/genética , Bactérias/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Chryseobacterium/genética , Chryseobacterium/imunologia , Chryseobacterium/virologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Clivagem do DNA , Loci Gênicos/genética , Modelos Moleculares , Domínios Proteicos
5.
Nature ; 625(7994): 312-320, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200293

RESUMO

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Assuntos
Asiático , População Europeia , Genoma Humano , Seleção Genética , Humanos , Afeto , Agricultura/história , Alelos , Doença de Alzheimer/genética , Ásia/etnologia , Asiático/genética , Diabetes Mellitus/genética , Europa (Continente)/etnologia , População Europeia/genética , Fazendeiros/história , Loci Gênicos/genética , Predisposição Genética para Doença , Genoma Humano/genética , História Antiga , Migração Humana , Caça/história , Família Multigênica/genética , Fenótipo , Biobanco do Reino Unido , Herança Multifatorial/genética
6.
Immunity ; 52(2): 257-274.e11, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32049053

RESUMO

Genetics is a major determinant of susceptibility to autoimmune disorders. Here, we examined whether genome organization provides resilience or susceptibility to sequence variations, and how this would contribute to the molecular etiology of an autoimmune disease. We generated high-resolution maps of linear and 3D genome organization in thymocytes of NOD mice, a model of type 1 diabetes (T1D), and the diabetes-resistant C57BL/6 mice. Multi-enhancer interactions formed at genomic regions harboring genes with prominent roles in T cell development in both strains. However, diabetes risk-conferring loci coalesced enhancers and promoters in NOD, but not C57BL/6 thymocytes. 3D genome mapping of NODxC57BL/6 F1 thymocytes revealed that genomic misfolding in NOD mice is mediated in cis. Moreover, immune cells infiltrating the pancreas of humans with T1D exhibited increased expression of genes located on misfolded loci in mice. Thus, genetic variation leads to altered 3D chromatin architecture and associated changes in gene expression that may underlie autoimmune pathology.


Assuntos
Cromatina/metabolismo , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença/genética , Timócitos/patologia , Animais , Fator de Ligação a CCCTC/metabolismo , Mapeamento Cromossômico , Diabetes Mellitus Tipo 1/patologia , Epigênese Genética , Expressão Gênica , Loci Gênicos/genética , Variação Genética , Genoma/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pâncreas/patologia , Sequências Reguladoras de Ácido Nucleico
7.
Nature ; 614(7948): 492-499, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755099

RESUMO

Both common and rare genetic variants influence complex traits and common diseases. Genome-wide association studies have identified thousands of common-variant associations, and more recently, large-scale exome sequencing studies have identified rare-variant associations in hundreds of genes1-3. However, rare-variant genetic architecture is not well characterized, and the relationship between common-variant and rare-variant architecture is unclear4. Here we quantify the heritability explained by the gene-wise burden of rare coding variants across 22 common traits and diseases in 394,783 UK Biobank exomes5. Rare coding variants (allele frequency < 1 × 10-3) explain 1.3% (s.e. = 0.03%) of phenotypic variance on average-much less than common variants-and most burden heritability is explained by ultrarare loss-of-function variants (allele frequency < 1 × 10-5). Common and rare variants implicate the same cell types, with similar enrichments, and they have pleiotropic effects on the same pairs of traits, with similar genetic correlations. They partially colocalize at individual genes and loci, but not to the same extent: burden heritability is strongly concentrated in significant genes, while common-variant heritability is more polygenic, and burden heritability is also more strongly concentrated in constrained genes. Finally, we find that burden heritability for schizophrenia and bipolar disorder6,7 is approximately 2%. Our results indicate that rare coding variants will implicate a tractable number of large-effect genes, that common and rare associations are mechanistically convergent, and that rare coding variants will contribute only modestly to missing heritability and population risk stratification.


Assuntos
Exoma , Frequência do Gene , Variação Genética , Herança Multifatorial , Humanos , Exoma/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Fatores de Risco , Reino Unido , Loci Gênicos/genética , Esquizofrenia/genética , Transtorno Bipolar/genética
8.
Nature ; 624(7992): 602-610, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093003

RESUMO

Indigenous Australians harbour rich and unique genomic diversity. However, Aboriginal and Torres Strait Islander ancestries are historically under-represented in genomics research and almost completely missing from reference datasets1-3. Addressing this representation gap is critical, both to advance our understanding of global human genomic diversity and as a prerequisite for ensuring equitable outcomes in genomic medicine. Here we apply population-scale whole-genome long-read sequencing4 to profile genomic structural variation across four remote Indigenous communities. We uncover an abundance of large insertion-deletion variants (20-49 bp; n = 136,797), structural variants (50 b-50 kb; n = 159,912) and regions of variable copy number (>50 kb; n = 156). The majority of variants are composed of tandem repeat or interspersed mobile element sequences (up to 90%) and have not been previously annotated (up to 62%). A large fraction of structural variants appear to be exclusive to Indigenous Australians (12% lower-bound estimate) and most of these are found in only a single community, underscoring the need for broad and deep sampling to achieve a comprehensive catalogue of genomic structural variation across the Australian continent. Finally, we explore short tandem repeats throughout the genome to characterize allelic diversity at 50 known disease loci5, uncover hundreds of novel repeat expansion sites within protein-coding genes, and identify unique patterns of diversity and constraint among short tandem repeat sequences. Our study sheds new light on the dimensions and dynamics of genomic structural variation within and beyond Australia.


Assuntos
Povos Aborígenes Australianos e Ilhéus do Estreito de Torres , Genoma Humano , Variação Estrutural do Genoma , Humanos , Alelos , Austrália/etnologia , Povos Aborígenes Australianos e Ilhéus do Estreito de Torres/genética , Conjuntos de Dados como Assunto , Variações do Número de Cópias de DNA/genética , Loci Gênicos/genética , Genética Médica , Variação Estrutural do Genoma/genética , Genômica , Mutação INDEL/genética , Sequências Repetitivas Dispersas/genética , Repetições de Microssatélites/genética , Genoma Humano/genética
9.
Nature ; 612(7941): 720-724, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477530

RESUMO

Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.


Assuntos
Consumo de Bebidas Alcoólicas , Predisposição Genética para Doença , Variação Genética , Internacionalidade , Herança Multifatorial , Uso de Tabaco , Humanos , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Fatores de Risco , Uso de Tabaco/genética , Consumo de Bebidas Alcoólicas/genética , Transcriptoma , Tamanho da Amostra , Loci Gênicos/genética , Europa (Continente)/etnologia
11.
Nature ; 590(7845): 300-307, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536621

RESUMO

Annotating the molecular basis of human disease remains an unsolved challenge, as 93% of disease loci are non-coding and gene-regulatory annotations are highly incomplete1-3. Here we present EpiMap, a compendium comprising 10,000 epigenomic maps across 800 samples, which we used to define chromatin states, high-resolution enhancers, enhancer modules, upstream regulators and downstream target genes. We used this resource to annotate 30,000 genetic loci that were associated with 540 traits4, predicting trait-relevant tissues, putative causal nucleotide variants in enriched tissue enhancers and candidate tissue-specific target genes for each. We partitioned multifactorial traits into tissue-specific contributing factors with distinct functional enrichments and disease comorbidity patterns, and revealed both single-factor monotropic and multifactor pleiotropic loci. Top-scoring loci frequently had multiple predicted driver variants, converging through multiple enhancers with a common target gene, multiple genes in common tissues, or multiple genes and multiple tissues, indicating extensive pleiotropy. Our results demonstrate the importance of dense, rich, high-resolution epigenomic annotations for the investigation of complex traits.


Assuntos
Doença/genética , Epigênese Genética/genética , Epigenômica , Redes Reguladoras de Genes/genética , Loci Gênicos/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Herança Multifatorial/genética , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes
12.
Nature ; 600(7889): 472-477, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34237774

RESUMO

The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3-7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.


Assuntos
COVID-19/genética , Loci Gênicos/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Autoimunidade/genética , Índice de Massa Corporal , COVID-19/virologia , Estado Terminal , Feminino , Mapeamento Geográfico , Hospitalização , Humanos , Inflamação/complicações , Disseminação de Informação , Masculino , Herança Multifatorial , Grupos Raciais/genética , SARS-CoV-2/patogenicidade , Fumar
13.
Nature ; 588(7837): 284-289, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239781

RESUMO

Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Internacionalidade , Mutação , Melhoramento Vegetal , Inversão Cromossômica/genética , Mapeamento Cromossômico , Loci Gênicos/genética , Genótipo , Hordeum/classificação , Polimorfismo Genético/genética , Padrões de Referência , Banco de Sementes , Inversão de Sequência , Sequenciamento Completo do Genoma
14.
Nature ; 584(7822): 589-594, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32814899

RESUMO

The inner surfaces of the human heart are covered by a complex network of muscular strands that is thought to be a remnant of embryonic development1,2. The function of these trabeculae in adults and their genetic architecture are unknown. Here we performed a genome-wide association study to investigate image-derived phenotypes of trabeculae using the fractal analysis of trabecular morphology in 18,096 participants of the UK Biobank. We identified 16 significant loci that contain genes associated with haemodynamic phenotypes and regulation of cytoskeletal arborization3,4. Using biomechanical simulations and observational data from human participants, we demonstrate that trabecular morphology is an important determinant of cardiac performance. Through genetic association studies with cardiac disease phenotypes and Mendelian randomization, we find a causal relationship between trabecular morphology and risk of cardiovascular disease. These findings suggest a previously unknown role for myocardial trabeculae in the function of the adult heart, identify conserved pathways that regulate structural complexity and reveal the influence of the myocardial trabeculae on susceptibility to cardiovascular disease.


Assuntos
Doenças Cardiovasculares/genética , Fractais , Predisposição Genética para Doença , Coração/anatomia & histologia , Coração/fisiologia , Miocárdio/metabolismo , Adulto , Idoso , Animais , Doenças Cardiovasculares/fisiopatologia , Citoesqueleto/genética , Citoesqueleto/fisiologia , Técnicas de Inativação de Genes , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Coração/embriologia , Hemodinâmica , Humanos , Pessoa de Meia-Idade , Miocárdio/citologia , Oryzias/embriologia , Oryzias/genética , Fenótipo
15.
Nature ; 584(7819): 130-135, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32581364

RESUMO

The extent to which the biology of oncogenesis and ageing are shaped by factors that distinguish human populations is unknown. Haematopoietic clones with acquired mutations become common with advancing age and can lead to blood cancers1-10. Here we describe shared and population-specific patterns of genomic mutations and clonal selection in haematopoietic cells on the basis of 33,250 autosomal mosaic chromosomal alterations that we detected in 179,417 Japanese participants in the BioBank Japan cohort and compared with analogous data from the UK Biobank. In this long-lived Japanese population, mosaic chromosomal alterations were detected in more than 35.0% (s.e.m., 1.4%) of individuals older than 90 years, which suggests that such clones trend towards inevitability with advancing age. Japanese and European individuals exhibited key differences in the genomic locations of mutations in their respective haematopoietic clones; these differences predicted the relative rates of chronic lymphocytic leukaemia (which is more common among European individuals) and T cell leukaemia (which is more common among Japanese individuals) in these populations. Three different mutational precursors of chronic lymphocytic leukaemia (including trisomy 12, loss of chromosomes 13q and 13q, and copy-neutral loss of heterozygosity) were between two and six times less common among Japanese individuals, which suggests that the Japanese and European populations differ in selective pressures on clones long before the development of clinically apparent chronic lymphocytic leukaemia. Japanese and British populations also exhibited very different rates of clones that arose from B and T cell lineages, which predicted the relative rates of B and T cell cancers in these populations. We identified six previously undescribed loci at which inherited variants predispose to mosaic chromosomal alterations that duplicate or remove the inherited risk alleles, including large-effect rare variants at NBN, MRE11 and CTU2 (odds ratio, 28-91). We suggest that selective pressures on clones are modulated by factors that are specific to human populations. Further genomic characterization of clonal selection and cancer in populations from around the world is therefore warranted.


Assuntos
Envelhecimento/genética , Aberrações Cromossômicas , Cromossomos Humanos/genética , Células Clonais/metabolismo , Genoma Humano/genética , Células-Tronco Hematopoéticas/metabolismo , Mutação , Idoso de 80 Anos ou mais , Alelos , Linhagem da Célula , Células Clonais/citologia , Células Clonais/patologia , Estudos de Coortes , Feminino , Loci Gênicos/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Japão , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia de Células T/genética , Leucemia de Células T/patologia , Masculino , Mosaicismo , Reino Unido
16.
Immunity ; 45(2): 255-66, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27496731

RESUMO

Detection of intracellular DNA triggers activation of the STING-dependent interferon-stimulatory DNA (ISD) pathway, which is essential for antiviral responses. Multiple DNA sensors have been proposed to activate this pathway, including AIM2-like receptors (ALRs). Whether the ALRs are essential for activation of this pathway remains unknown. To rigorously explore the function of ALRs, we generated mice lacking all 13 ALR genes. We found that ALRs are dispensable for the type I interferon (IFN) response to transfected DNA ligands, DNA virus infection, and lentivirus infection. We also found that ALRs do not contribute to autoimmune disease in the Trex1(-/-) mouse model of Aicardi-Goutières Syndrome. Finally, CRISPR-mediated disruption of the human AIM2-like receptor IFI16 in primary fibroblasts revealed that IFI16 is not essential for the IFN response to human cytomegalovirus infection. Our findings indicate that ALRs are dispensable for the ISD response and suggest that alternative functions for these receptors should be explored.


Assuntos
Doenças Autoimunes do Sistema Nervoso/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Proteínas de Ligação a DNA/metabolismo , Infecções por Lentivirus/imunologia , Lentivirus/imunologia , Malformações do Sistema Nervoso/imunologia , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/imunologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Exodesoxirribonucleases/genética , Loci Gênicos/genética , Humanos , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Fosfoproteínas/genética
17.
Nature ; 571(7763): 107-111, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31217582

RESUMO

Large-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants1,2. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1-knockout mice displayed phenotypes similar to those observed upon ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes.


Assuntos
Diarreia/congênito , Diarreia/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes , Intestinos/fisiologia , Deleção de Sequência/genética , Animais , Cromossomos Humanos Par 16/genética , Modelos Animais de Doenças , Feminino , Genes Reporter , Loci Gênicos/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Linhagem , Fenótipo , Ativação Transcricional , Transcriptoma/genética , Transgenes/genética
18.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074870

RESUMO

Myasthenia gravis is a chronic autoimmune disease characterized by autoantibody-mediated interference of signal transmission across the neuromuscular junction. We performed a genome-wide association study (GWAS) involving 1,873 patients diagnosed with acetylcholine receptor antibody-positive myasthenia gravis and 36,370 healthy individuals to identify disease-associated genetic risk loci. Replication of the discovered loci was attempted in an independent cohort from the UK Biobank. We also performed a transcriptome-wide association study (TWAS) using expression data from skeletal muscle, whole blood, and tibial nerve to test the effects of disease-associated polymorphisms on gene expression. We discovered two signals in the genes encoding acetylcholine receptor subunits that are the most common antigenic target of the autoantibodies: a GWAS signal within the cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) gene and a TWAS association with the cholinergic receptor nicotinic beta 1 subunit (CHRNB1) gene in normal skeletal muscle. Two other loci were discovered on 10p14 and 11q21, and the previous association signals at PTPN22, HLA-DQA1/HLA-B, and TNFRSF11A were confirmed. Subgroup analyses demonstrate that early- and late-onset cases have different genetic risk factors. Genetic correlation analysis confirmed a genetic link between myasthenia gravis and other autoimmune diseases, such as hypothyroidism, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes. Finally, we applied Priority Index analysis to identify potentially druggable genes/proteins and pathways. This study provides insight into the genetic architecture underlying myasthenia gravis and demonstrates that genetic factors within the loci encoding acetylcholine receptor subunits contribute to its pathogenesis.


Assuntos
Predisposição Genética para Doença/genética , Miastenia Gravis/genética , Polimorfismo Genético/genética , Transdução de Sinais/genética , Adulto , Feminino , Expressão Gênica/genética , Frequência do Gene/genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Músculo Esquelético/patologia , Receptores Colinérgicos/genética , Receptores Nicotínicos/genética
19.
J Immunol ; 208(1): 181-189, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34880108

RESUMO

The 0.8-Mb Ig new Ag receptor (IgNAR) region of the whitespotted bamboo shark (Chiloscyllium plagiosum) is incompletely assembled in Chr_44 of the reference genome. Here we used Cas9-assisted targeting of chromosome segments (CATCH) to enrich the 2 Mb region of the Chr_44 IgNAR loci and sequenced it by PacBio and next-generation sequencing. A fragment >3.13 Mb was isolated intact from the RBCs of sharks. The target was enriched 245.531-fold, and sequences had up to 94% coverage with a 255× mean depth. Compared with the previously published sequences, 20 holes were filled, with a total length of 3508 bp. In addition, we report five potential germline V alleles of IgNAR1 from six sharks that may belong to two clusters of the IgNAR. Our results provide a new method to research the germline of large Ig gene segments, as well as provide the enhanced bamboo shark IgNAR gene loci with fewer gaps.


Assuntos
Proteínas de Peixes/genética , Loci Gênicos/genética , Imunoglobulinas/genética , Receptores de Antígenos/genética , Tubarões/imunologia , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
20.
Brain ; 146(8): 3392-3403, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757824

RESUMO

Psychiatric disorders and common epilepsies are heritable disorders with a high comorbidity and overlapping symptoms. However, the causative mechanisms underlying this relationship are poorly understood. Here we aimed to identify overlapping genetic loci between epilepsy and psychiatric disorders to gain a better understanding of their comorbidity and shared clinical features. We analysed genome-wide association study data for all epilepsies (n = 44 889), genetic generalized epilepsy (n = 33 446), focal epilepsy (n = 39 348), schizophrenia (n = 77 096), bipolar disorder (n = 406 405), depression (n = 500 199), attention deficit hyperactivity disorder (n = 53 293) and autism spectrum disorder (n = 46 350). First, we applied the MiXeR tool to estimate the total number of causal variants influencing the disorders. Next, we used the conjunctional false discovery rate statistical framework to improve power to discover shared genomic loci. Additionally, we assessed the validity of the findings in independent cohorts, and functionally characterized the identified loci. The epilepsy phenotypes were considerably less polygenic (1.0 K to 3.4 K causal variants) than the psychiatric disorders (5.6 K to 13.9 K causal variants), with focal epilepsy being the least polygenic (1.0 K variants), and depression having the highest polygenicity (13.9 K variants). We observed cross-trait genetic enrichment between genetic generalized epilepsy and all psychiatric disorders and between all epilepsies and schizophrenia and depression. Using conjunctional false discovery rate analysis, we identified 40 distinct loci jointly associated with epilepsies and psychiatric disorders at conjunctional false discovery rate <0.05, four of which were associated with all epilepsies and 39 with genetic generalized epilepsy. Most epilepsy risk loci were shared with schizophrenia (n = 31). Among the identified loci, 32 were novel for genetic generalized epilepsy, and two were novel for all epilepsies. There was a mixture of concordant and discordant allelic effects in the shared loci. The sign concordance of the identified variants was highly consistent between the discovery and independent datasets for all disorders, supporting the validity of the findings. Gene-set analysis for the shared loci between schizophrenia and genetic generalized epilepsy implicated biological processes related to cell cycle regulation, protein phosphatase activity, and membrane and vesicle function; the gene-set analyses for the other loci were underpowered. The extensive genetic overlap with mixed effect directions between psychiatric disorders and common epilepsies demonstrates a complex genetic relationship between these disorders, in line with their bi-directional relationship, and indicates that overlapping genetic risk may contribute to shared pathophysiological and clinical features between epilepsy and psychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Epilepsias Parciais , Epilepsia Generalizada , Humanos , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Epilepsias Parciais/genética , Genômica , Epilepsia Generalizada/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA