Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 65(6): 1631-1643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511905

RESUMO

OBJECTIVE: We aim to improve focal cortical dysplasia (FCD) detection by combining high-resolution, three-dimensional (3D) magnetic resonance fingerprinting (MRF) with voxel-based morphometric magnetic resonance imaging (MRI) analysis. METHODS: We included 37 patients with pharmacoresistant focal epilepsy and FCD (10 IIa, 15 IIb, 10 mild Malformation of Cortical Development [mMCD], and 2 mMCD with oligodendroglial hyperplasia and epilepsy [MOGHE]). Fifty-nine healthy controls (HCs) were also included. 3D lesion labels were manually created. Whole-brain MRF scans were obtained with 1 mm3 isotropic resolution, from which quantitative T1 and T2 maps were reconstructed. Voxel-based MRI postprocessing, implemented with the morphometric analysis program (MAP18), was performed for FCD detection using clinical T1w images, outputting clusters with voxel-wise lesion probabilities. Average MRF T1 and T2 were calculated in each cluster from MAP18 output for gray matter (GM) and white matter (WM) separately. Normalized MRF T1 and T2 were calculated by z-scores using HCs. Clusters that overlapped with the lesion labels were considered true positives (TPs); clusters with no overlap were considered false positives (FPs). Two-sample t-tests were performed to compare MRF measures between TP/FP clusters. A neural network model was trained using MRF values and cluster volume to distinguish TP/FP clusters. Ten-fold cross-validation was used to evaluate model performance at the cluster level. Leave-one-patient-out cross-validation was used to evaluate performance at the patient level. RESULTS: MRF metrics were significantly higher in TP than FP clusters, including GM T1, normalized WM T1, and normalized WM T2. The neural network model with normalized MRF measures and cluster volume as input achieved mean area under the curve (AUC) of .83, sensitivity of 82.1%, and specificity of 71.7%. This model showed superior performance over direct thresholding of MAP18 FCD probability map at both the cluster and patient levels, eliminating ≥75% FP clusters in 30% of patients and ≥50% of FP clusters in 91% of patients. SIGNIFICANCE: This pilot study suggests the efficacy of MRF for reducing FPs in FCD detection, due to its quantitative values reflecting in vivo pathological changes. © 2024 International League Against Epilepsy.


Assuntos
Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical , Humanos , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Adulto , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , Adolescente , Adulto Jovem , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/patologia , Pessoa de Meia-Idade , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/patologia , Imageamento Tridimensional/métodos , Criança , Reações Falso-Positivas , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Processamento de Imagem Assistida por Computador/métodos , Displasia Cortical Focal
2.
Epilepsia ; 65(6): 1644-1657, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488289

RESUMO

OBJECTIVE: Patients with focal, lesional epilepsy present with seizures at variable ages. Larger lesion size and overlap with sensorimotor or default mode network (DMN) have been associated with younger age at seizure onset in cohorts with mixed types of focal cortical dysplasia (FCD). Here, we studied determinants of age at seizure onset in patients with bottom-of-sulcus dysplasia (BOSD), a discrete type of FCD with highly localized epileptogenicity. METHODS: Eighty-four patients (77% operated) with BOSD were studied. Demographic, histopathologic, and genetic findings were recorded. BOSD volume and anatomical, primary versus association, rostral versus caudal, and functional network locations were determined. Normative functional connectivity analyses were performed using each BOSD as a region of interest in resting-state functional magnetic resonance imaging data of healthy children. Variables were correlated with age at seizure onset. RESULTS: Median age at seizure onset was 5.4 (interquartile range = 2-7.9) years. Of 50 tested patients, 22 had somatic and nine had germline pathogenic mammalian target of rapamycin (mTOR) pathway variants. Younger age at seizure onset was associated with greater BOSD volume (p = .002), presence of a germline pathogenic variant (p = .04), DMN overlap (p = .04), and increased functional connectivity with the DMN (p < .05, false discovery rate corrected). Location within sensorimotor cortex and networks was not associated with younger age at seizure onset in our relatively small but homogenous cohort. SIGNIFICANCE: Greater lesion size, pathogenic mTOR pathway germline variants, and DMN connectivity are associated with younger age at seizure onset in small FCD. Our findings strengthen the suggested role of DMN connectivity in the onset of FCD-related focal epilepsy and reveal novel contributions of genetic etiology.


Assuntos
Idade de Início , Epilepsias Parciais , Imageamento por Ressonância Magnética , Convulsões , Humanos , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/diagnóstico por imagem , Masculino , Feminino , Criança , Pré-Escolar , Convulsões/genética , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/fisiopatologia , Serina-Treonina Quinases TOR/genética , Adolescente , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia
3.
Brain ; 146(8): 3404-3415, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852571

RESUMO

Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD. We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then determined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organization. FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal component related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a postnatal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with structural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques. Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development to FCD epileptogenicity.


Assuntos
Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Humanos , Reprodutibilidade dos Testes , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
4.
Epilepsy Behav ; 150: 109565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070410

RESUMO

Focal cortical dysplasia (FCD) is a cortical malformation in brain development and is considered as one of the major causes of drug-resistant epilepsiesin children and adults. The pathogenesis of FCD is yet to be fully understood. Imaging markers such as MRI are currently the surgeons major obstacle due to the difficulty in delimiting the precise dysplasic area and a mosaic brain where there is epileptogenic tissue invisible to MRI. Also increased gene expression and activity may be responsible for the alterations in cell proliferation, migration, growth, and survival. Altered expressions were found, particularly in the PI3K/AKT/mTOR pathway. Surgery is still considered the most effective treatment option, due to drug-resistance, and up to 60 % of patients experience complete seizure control, varying according to the type and location of FCD. Both genetic and epigenetic factors may be involved in the pathogenesis of FCD, and there is no conclusive evidence whether these alterations are inherited or have an environmental origin.


Assuntos
Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Adulto , Criança , Humanos , Fosfatidilinositol 3-Quinases , Encéfalo/patologia , Convulsões/patologia , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Estudos Retrospectivos
5.
Dev Med Child Neurol ; 66(8): 974-989, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38394064

RESUMO

Malformations of cortical development (MCDs) represent a heterogeneous spectrum of disorders characterized by atypical development of the cerebral cortex. MCDs are most often diagnosed on the basis of imaging, although subtle lesions, such as focal cortical dysplasia, may only be revealed on neuropathology. Different subtypes have been defined, including lissencephaly, heterotopia, cobblestone malformation, polymicrogyria, and dysgyria. Many MCDs are of genetic origin, although acquired factors, such as congenital cytomegalovirus infections and twinning sequence, can lead to similar phenotypes. In this narrative review, we provide an overview of the diagnostic approach to MCDs, which is illustrated with clinical vignettes, on diagnostic pitfalls such as somatic mosaicism and consanguinity, and recognizable phenotypes on imaging, such as tubulinopathies, the lissencephaly spectrum, tuberous sclerosis complex, and FLNA-related periventricular nodular heterotopia.


Assuntos
Malformações do Desenvolvimento Cortical , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/anormalidades , Lisencefalia/genética , Lisencefalia/diagnóstico
6.
Prenat Diagn ; 44(8): 996-998, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38666792

RESUMO

We present a case of fetal akinesia deformation sequence due to nemaline myopathy (NM). In addition to the muscle manifestations, prenatal observations included an enlarged subarachnoid space and delayed cortical development. Trio whole-exome sequencing revealed a de novo novel pathogenic variant in the ACTA1 gene, which encodes skeletal muscle alpha-actin. Our findings suggest that brain abnormalities can occur prenatally in NM and support the potential role of skeletal muscle alpha-actin in the central nervous system.


Assuntos
Actinas , Miopatias da Nemalina , Humanos , Feminino , Actinas/genética , Gravidez , Adulto , Miopatias da Nemalina/genética , Sequenciamento do Exoma , Ultrassonografia Pré-Natal , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Artrogripose
7.
J Ultrasound Med ; 43(7): 1265-1277, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558301

RESUMO

OBJECTIVE: To evaluate corpus callosum (CC) size in fetuses with malformations of cortical development (MCD) and to explore the diagnostic value of three CC length (CCL) ratios in identifying cortical abnormalities. METHODS: This is a single-center retrospective study in singleton fetuses at 20-37 weeks of gestation between April 2017 and August 2022. The midsagittal plane of the fetal brain was obtained and evaluated for the following variables: length, height, area of the corpus callosum, and relevant markers, including the ratios of corpus callosum length to internal cranial occipitofrontal dimension (CCL/ICOFD), corpus callosum length to femur length (CCL/FL), and corpus callosum length to cerebellar vermian diameter (CCL/VD). Intra-class correlation coefficient (ICC) was used to evaluate measurement consistency. The accuracy of biometric measurements in prediction of MCD was assessed using the area under the receiver-operating-characteristics curves (AUC). RESULTS: Fetuses with MCD had a significantly decreased CCL, height (genu and splenium), and area as compared with those of normal fetuses (P < .05), but there was no significant difference in body height (P = .326). The CCL/ICOFD, CCL/FL, and CCL/VD ratios were significantly decreased in fetuses with MCD when compared with controls (P < .05). The CCL/ICOFD ratio offered the highest predictive accuracy for MCD, yielding an AUC of 0.856 (95% CI: 0.774-0.938, P < .001), followed by CCL/FL ratio (AUC, 0.780 (95% CI: 0.657-0.904), P < .001), CCL/VD ratio (AUC, 0.677 (95% CI: 0.559-0.795), P < .01). CONCLUSION: The corpus callosum biometric parameters in fetuses with MCD are reduced. The CCL/ICOFD ratio derived from sonographic measurements is considered a promising tool for the prenatal detection of cortical malformations. External validation of these findings and prospective studies are warranted.


Assuntos
Corpo Caloso , Ultrassonografia Pré-Natal , Humanos , Feminino , Gravidez , Ultrassonografia Pré-Natal/métodos , Estudos Retrospectivos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/embriologia , Adulto , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/embriologia , Reprodutibilidade dos Testes
8.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 419-424, 2024 May 08.
Artigo em Zh | MEDLINE | ID: mdl-38678320

RESUMO

With rapid development of genetic testing techniques, neuroimaging and neuroelectrophysiological technologies, our understanding of malformations of cortical development continues to be deepened and updated. In particular, mutations in genes related to the mammalian target of rapamycin (mTOR) signaling pathway have been successively discovered in focal cortical dysplasia (FCD). At the same time, the classification consensus on FCD issued by the International League Against Epilepsy (ILAE) in 2011 has encountered problems and challenges in diagnostic practice. Therefore, in 2022, ILAE proposed an updated version of the FCD classification based on the progress in molecular genetics over the past decade. The main addition to the classification system is "white matter lesions, " and it is also suggested to integrate histopathological, neuroimaging, and molecular testing results for multi-level integrated diagnosis to achieve reliable, clinically relevant, and therapeutic targeted final diagnosis.


Assuntos
Malformações do Desenvolvimento Cortical , Serina-Treonina Quinases TOR , Humanos , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/genética , Mutação , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Neuroimagem/métodos
9.
Artigo em Russo | MEDLINE | ID: mdl-38881015

RESUMO

OBJECTIVE: Assessing the diagnostic significance of MR morphometry in determining the localization of focal cortical dysplasias (FCD). MATERIAL AND METHODS: The study included 13 children after surgery for drug-resistant epilepsy caused by FCD type II and stable postoperative remission of seizures (Engel class IA, median follow-up 56 months). We analyzed the results of independent expert assessment of native MR data by three radiologists (HARNESS protocol) and MR morphometry data regarding accuracy of FCD localization. We considered 2 indicators, i.e. local cortical thickening and gray-white matter blurring. RESULTS: FCD detection rate was higher after MR morphometry compared to visual analysis of native MR data using the HARNESS protocol. MR morphometry also makes it possible to more often identify gray-white matter blurring as a sign often missed by radiologists (p<0.05). CONCLUSION: MR morphometry is an additional non-invasive method for assessing the localization of FCD.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Criança , Adolescente , Pré-Escolar , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/cirurgia , Malformações do Desenvolvimento Cortical/patologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/patologia , Malformações do Desenvolvimento Cortical do Grupo I/diagnóstico por imagem , Malformações do Desenvolvimento Cortical do Grupo I/cirurgia , Displasia Cortical Focal
10.
Ann Neurol ; 92(3): 503-511, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726354

RESUMO

OBJECTIVE: The purpose of this study was to evaluate if focal cortical dysplasia (FCD) co-localization to cortical functional networks is associated with the temporal distribution of epilepsy onset in FCD. METHODS: International (20 center), retrospective cohort from the Multi-Centre Epilepsy Lesion Detection (MELD) project. Patients included if >3 years old, had 3D pre-operative T1 magnetic resonance imaging (MRI; 1.5 or 3 T) with radiologic or histopathologic FCD after surgery. Images processed using the MELD protocol, masked with 3D regions-of-interest (ROI), and co-registered to fsaverage_sym (symmetric template). FCDs were then co-localized to 1 of 7 distributed functional cortical networks. Negative binomial regression evaluated effect of FCD size, network, histology, and sulcal depth on age of epilepsy onset. From this model, predictive age of epilepsy onset was calculated for each network. RESULTS: Three hundred eighty-eight patients had median age seizure onset 5 years (interquartile range [IQR] = 3-11 years), median age at pre-operative scan 18 years (IQR = 11-28 years). FCDs co-localized to the following networks: limbic (90), default mode (87), somatomotor (65), front parietal control (52), ventral attention (32), dorsal attention (31), and visual (31). Larger lesions were associated with younger age of onset (p = 0.01); age of epilepsy onset was associated with dominant network (p = 0.04) but not sulcal depth or histology. Sensorimotor networks had youngest onset; the limbic network had oldest age of onset (p values <0.05). INTERPRETATION: FCD co-localization to distributed functional cortical networks is associated with age of epilepsy onset: sensory neural networks (somatomotor and visual) with earlier onset, and limbic latest onset. These variations may reflect developmental differences in synaptic/white matter maturation or network activation and may provide a biological basis for age-dependent epilepsy onset expression. ANN NEUROL 2022;92:503-511.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Criança , Pré-Escolar , Epilepsia/complicações , Epilepsia/etiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Estudos Retrospectivos , Resultado do Tratamento
11.
Epilepsia ; 64(12): 3130-3142, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37731142

RESUMO

Focal cortical dysplasia (FCD) is the most frequent etiology of operable pharmacoresistant epilepsy in children. There is burgeoning evidence that FCD-related epilepsy is a disorder that involves distributed brain networks. Functional magnetic resonance imaging (fMRI) is a tool that allows one to infer neuronal activity and to noninvasively map whole-brain functional networks. Despite its relatively widespread availability at most epilepsy centers, the clinical application of fMRI remains mostly task-based in epilepsy. Another approach is to map and characterize cortical functional networks of individuals using resting state fMRI (rsfMRI). The focus of this scoping review is to summarize the evidence to date of investigations of the network basis of FCD-related epilepsy, and to highlight numerous potential future applications of rsfMRI in the exploration of diagnostic and therapeutic strategies for FCD-related epilepsy. There are numerous studies demonstrating a global disruption of cortical functional networks in FCD-related epilepsy. The underlying pathological subtypes of FCD influence overall functional network patterns. There is evidence that cortical functional network mapping may help to predict postsurgical seizure outcomes, highlighting the translational potential of these findings. Additionally, several studies emphasize the important effect of FCD interaction with cortical networks and the expression of epilepsy and its comorbidities.


Assuntos
Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Criança , Humanos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/cirurgia , Epilepsia/diagnóstico por imagem , Epilepsia/etiologia , Epilepsia/patologia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
12.
Epilepsia ; 64(9): 2434-2442, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37349955

RESUMO

OBJECTIVE: Focal cortical dysplasia (FCD) is the most common etiology of surgically-remediable epilepsy in children. Eighty-seven percent of patients with FCD develop epilepsy (75% is pharmacoresistant epilepsy [PRE]). Focal to bilateral tonic-clonic (FTBTC) seizures are associated with worse surgical outcomes. We hypothesized that children with FCD-related epilepsy with FTBTC seizures are more likely to develop PRE due to lesion interaction with restricted cortical neural networks. METHODS: Patients were selected retrospectively from radiology and surgical databases from Children's National Hospital. INCLUSION CRITERIA: 3T magnetic resonance imaging (MRI)-confirmed FCD from January 2011 to January 2020; ages 0 days to 22 years at MRI; and 18 months of documented follow-up. FCD dominant network (Yeo 7-network parcellation) was determined. Association of FTBTC seizures with epilepsy severity, surgical outcome, and dominant network was tested. Binomial regression was used to evaluate predictors (FTBTC seizures, age at seizure onset, pathology, hemisphere, lobe) of pharmacoresistance and Engel outcome. Regression was used to evaluate predictors (age at seizure onset, pathology, lobe, percentage default mode network [DMN] overlap) of FTBTC seizures. RESULTS: One hundred seventeen patients had a median age at seizure onset of 3.00 years (interquartile range [IQR] .42-5.59 years). Eighty-three patients had PRE (71%); 34 had pharmacosensitive epilepsy (PSE) (29%). Twenty patients (17%) had FTBTC seizures. Seventy-three patients underwent epilepsy surgery. Multivariate regression showed that FTBTC seizures are associated with an increased risk of PRE (odds ratio [OR] 6.41, 95% confidence interval [CI] 1.21-33.98, p = .02). FCD hemisphere/lobe was not associated with PRE. Percentage DMN overlap predicts FTBTC seizures. Seventy-two percent (n = 52) overall and 53% (n = 9) of patients with FTBTC seizures achieved Engel class I outcome. SIGNIFICANCE: In a heterogeneous population of surgical and non-operated patients with FCD-related epilepsy, the presence of FTBTC seizures is associated with a tremendous risk of PRE. This finding is a recognizable marker to help neurologists identify those children with FCD-related epilepsy at high risk of PRE and can flag patients for earlier consideration of potentially curative surgery. The FCD-dominant network also contributes to FTBTC seizure clinical expression.


Assuntos
Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Criança , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Convulsões/diagnóstico por imagem , Convulsões/etiologia , Convulsões/cirurgia , Epilepsia/diagnóstico por imagem , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/cirurgia
13.
Brain ; 145(11): 3859-3871, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35953082

RESUMO

One outstanding challenge for machine learning in diagnostic biomedical imaging is algorithm interpretability. A key application is the identification of subtle epileptogenic focal cortical dysplasias (FCDs) from structural MRI. FCDs are difficult to visualize on structural MRI but are often amenable to surgical resection. We aimed to develop an open-source, interpretable, surface-based machine-learning algorithm to automatically identify FCDs on heterogeneous structural MRI data from epilepsy surgery centres worldwide. The Multi-centre Epilepsy Lesion Detection (MELD) Project collated and harmonized a retrospective MRI cohort of 1015 participants, 618 patients with focal FCD-related epilepsy and 397 controls, from 22 epilepsy centres worldwide. We created a neural network for FCD detection based on 33 surface-based features. The network was trained and cross-validated on 50% of the total cohort and tested on the remaining 50% as well as on 2 independent test sites. Multidimensional feature analysis and integrated gradient saliencies were used to interrogate network performance. Our pipeline outputs individual patient reports, which identify the location of predicted lesions, alongside their imaging features and relative saliency to the classifier. On a restricted 'gold-standard' subcohort of seizure-free patients with FCD type IIB who had T1 and fluid-attenuated inversion recovery MRI data, the MELD FCD surface-based algorithm had a sensitivity of 85%. Across the entire withheld test cohort the sensitivity was 59% and specificity was 54%. After including a border zone around lesions, to account for uncertainty around the borders of manually delineated lesion masks, the sensitivity was 67%. This multicentre, multinational study with open access protocols and code has developed a robust and interpretable machine-learning algorithm for automated detection of focal cortical dysplasias, giving physicians greater confidence in the identification of subtle MRI lesions in individuals with epilepsy.


Assuntos
Epilepsias Parciais , Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Estudos Retrospectivos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina , Epilepsias Parciais/diagnóstico por imagem
14.
Brain ; 145(3): 925-938, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35355055

RESUMO

Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Hemimegalencefalia , Malformações do Desenvolvimento Cortical , Encéfalo/patologia , Criança , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia/genética , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patologia , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
15.
Dev Med Child Neurol ; 65(3): 431-436, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35871498

RESUMO

AIM: We investigated characteristic seizure patterns in epilepsy caused by focal cortical dysplasia (FCD), which differ from epilepsy by other aetiologies in surgical cases with lesions on magnetic resonance imaging (MRI), then examined if these features were applicable to patients with epilepsy without any lesions on MRI. METHOD: We retrospectively studied clinicopathological features in 291 (143 females) children with epilepsy who had undergone resective surgery after comprehensive evaluation, including 277 cases with lesions on MRI (136 females, age at resection 0-17 years [mean 6 years 10 months, SD 5 years 7 months]) and 14 cases without any lesions on MRI (seven females, age 0-16 years [mean 7 years 8 months, SD 4 years 8 months]). RESULTS: Among 277 patients with lesions on MRI, 87 cases exhibited recurrent periodic cycles of seizure clustering (≥5 seizures/day for ≥1 week) and suppression (no seizures for ≥1 week); of these, 80 cases (92%) were pathologically diagnosed with FCD. Other pathologies included glial scar, hippocampal sclerosis, hemimegalencephaly, and cortical tuber in three, two, one, and one case respectively. All 14 patients without any lesions on MRI had significant recurrent periodic seizure cycles and FCD histopathologically. INTERPRETATION: Periodic seizure cycles characterized by clustering and suppression in patients with epilepsy strongly suggest the presence of FCD regardless of MRI findings, and comprehensive evaluations for epilepsy surgery should be proceeded.


Assuntos
Epilepsia Generalizada , Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Feminino , Humanos , Criança , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Estudos Retrospectivos , Epilepsia/diagnóstico por imagem , Epilepsia/etiologia , Epilepsia/cirurgia , Imageamento por Ressonância Magnética/métodos , Procedimentos Neurocirúrgicos/métodos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/cirurgia , Resultado do Tratamento , Eletroencefalografia
16.
Pract Neurol ; 23(4): 293-302, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36823117

RESUMO

Focal cortical dysplasia (FCD) is a malformation of cortical development characterised by disruption of cortical cytoarchitecture. Classification of FCDs subtypes has initially been based on correlation of the histopathology with relevant clinical, electroencephalographic and neuroimaging features. A recently proposed classification update recommends a multilayered, genotype-phenotype approach, integrating findings from histopathology, genetic analysis of resected tissue and presurgical MRI. FCDs are caused either by single somatic activating mutations in MTOR pathway genes or by double-hit inactivating mutations with a constitutional and a somatic loss-of-function mutation in repressors of the signalling pathway. Mild malformation with oligodendroglial hyperplasia in epilepsy is caused by somatic pathogenic SLC35A2 mutations. FCDs most often present with drug-resistant focal epilepsy or epileptic encephalopathy. Most patients respond to surgical treatment. The use of mechanistic target of rapamycin inhibitors may complement the surgical approach. Treatment approaches and outcomes have improved with advances in neuroimaging, neurophysiology and genetics, although predictors of treatment response have only been determined in part.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/terapia , Neurologistas , Epilepsia/patologia , Mutação
17.
Ann Neurol ; 90(2): 285-299, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34180075

RESUMO

OBJECTIVE: Low-level somatic mosaicism in the brain has been shown to be a major genetic cause of intractable focal epilepsy. However, how a relatively few mutation-carrying neurons are able to induce epileptogenesis at the local network level remains poorly understood. METHODS: To probe the origin of epileptogenesis, we measured the excitability of neurons with MTOR mutation and nearby nonmutated neurons recorded by whole-cell patch-clamp and array-based electrodes comparing the topographic distribution of mutation. Computational simulation is used to understand neural network-level changes based on electrophysiological properties. To examine the underlying mechanism, we measured inhibitory and excitatory synaptic inputs in mutated neurons and nearby neurons by electrophysiological and histological methods using the mouse model and postoperative human brain tissue for cortical dysplasia. To explain non-cell-autonomous hyperexcitability, an inhibitor of adenosine kinase was injected into mice to enhance adenosine signaling and to mitigate hyperactivity of nearby nonmutated neurons. RESULTS: We generated mice with a low-level somatic mutation in MTOR presenting spontaneous seizures. The seizure-triggering hyperexcitability originated from nonmutated neurons near mutation-carrying neurons, which proved to be less excitable than nonmutated neurons. Interestingly, the net balance between excitatory and inhibitory synaptic inputs onto mutated neurons remained unchanged. Additionally, we found that inhibition of adenosine kinase, which affects adenosine metabolism and neuronal excitability, reduced the hyperexcitability of nonmutated neurons. INTERPRETATION: This study shows that neurons carrying somatic mutations in MTOR lead to focal epileptogenesis via non-cell-autonomous hyperexcitability of nearby nonmutated neurons. ANN NEUROL 2021;90:285-299.


Assuntos
Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/fisiopatologia , Serina-Treonina Quinases TOR/genética , Adolescente , Animais , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico por imagem , Feminino , Humanos , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Gravidez
18.
Epilepsia ; 63(1): 75-85, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800337

RESUMO

OBJECTIVE: The detection of focal cortical dysplasia (FCD) in magnetic resonance imaging is challenging. Voxel-based morphometric analysis and automated FCD detection using an artificial neural network (ANN) integrated into the Morphometric Analysis Program (MAP18) have been shown to facilitate FCD detection. This study aimed to evaluate whether the detection of FCD can be further improved by feeding this approach with magnetization prepared two rapid acquisition gradient echoes (MP2RAGE) instead of magnetization-prepared rapid acquisition gradient echo (MPRAGE) datasets. METHODS: MPRAGE and MP2RAGE datasets were acquired in a consecutive sample of 32 patients with FCD and postprocessed using MAP18. Visual analysis and, if available, histopathology served as the gold standard for assessing the sensitivity and specificity of FCD detection. Out-of-sample specificity was evaluated in a cohort of 32 healthy controls. RESULTS: The sensitivity and specificity of FCD detection were 82.4% and 62.5% for the MPRAGE and 97.1% and 34.4% for the MP2RAGE sequences, respectively. Median volumes of true-positive voxel clusters were .16 ml for the MPRAGE and .52 ml for the MP2RAGE sequences compared to .08- and .04-ml volumes of false-positive clusters. With regard to cluster volumes, FCD detection was substantially improved for the MP2RAGE data when the estimated optimal threshold of .23 ml was applied (sensitivity = 72.9%, specificity = 83.0%). In contrast, the estimated optimal threshold of .37 ml for the MPRAGE data did not improve FCD lesion detection (sensitivity = 42.9%, specificity = 79.5%). SIGNIFICANCE: In this study, the sensitivity of FCD detection by morphometric analysis and an ANN integrated into MAP18 was higher for MP2RAGE than for MPRAGE sequences. Additional usage of cluster volume information helped to discriminate between true- and false-positive MP2RAGE results.


Assuntos
Encéfalo , Malformações do Desenvolvimento Cortical , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , Redes Neurais de Computação , Sensibilidade e Especificidade
19.
Epilepsia ; 63(2): 364-374, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34904712

RESUMO

OBJECTIVE: Increasing evidence supports the contribution of inflammatory mechanisms to the neurological manifestations of epileptogenic developmental pathologies linked to mammalian target of rapamycin (mTOR) pathway dysregulation (mTORopathies), such as tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD). In this study, we aimed to investigate the expression pattern and cellular distribution of the complement factors C1q and C3 in resected cortical tissue of clinically well-characterized patients with TSC and FCD2B. METHODS: We applied immunohistochemistry in TSC (n = 29) and FCD2B (n = 32) samples and compared them to autopsy and biopsy controls (n = 27). Furthermore, protein expression was observed via Western blot, and for descriptive colocalization studies immunofluorescence double labeling was performed. RESULTS: Protein expression for C3 was significantly upregulated in TSC and FCD2B white and gray matter lesions compared to controls. Staining of the synaptic vesicle protein synaptophysin showed a remarkable increase in the white matter of both TSC and FCD2B. Furthermore, confocal imaging revealed colocalization of complement factors with astroglial, microglial, neuronal, and abnormal cells in various patterns. SIGNIFICANCE: Our results demonstrate that the prominent activation of the complement pathway represents a common pathological hallmark of TSC and FCD2B, suggesting that complement overactivation may play a role in these mTORopathies.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Esclerose Tuberosa , Encéfalo/patologia , Epilepsia/patologia , Humanos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/metabolismo , Neurônios/patologia , Esclerose Tuberosa/complicações , Esclerose Tuberosa/patologia
20.
Epilepsia ; 63(8): 1899-1919, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35706131

RESUMO

Ongoing challenges in diagnosing focal cortical dysplasia (FCD) mandate continuous research and consensus agreement to improve disease definition and classification. An International League Against Epilepsy (ILAE) Task Force (TF) reviewed the FCD classification of 2011 to identify existing gaps and provide a timely update. The following methodology was applied to achieve this goal: a survey of published literature indexed with ((Focal Cortical Dysplasia) AND (epilepsy)) between 01/01/2012 and 06/30/2021 (n = 1349) in PubMed identified the knowledge gained since 2012 and new developments in the field. An online survey consulted the ILAE community about the current use of the FCD classification scheme with 367 people answering. The TF performed an iterative clinico-pathological and genetic agreement study to objectively measure the diagnostic gap in blood/brain samples from 22 patients suspicious for FCD and submitted to epilepsy surgery. The literature confirmed new molecular-genetic characterizations involving the mechanistic Target Of Rapamycin (mTOR) pathway in FCD type II (FCDII), and SLC35A2 in mild malformations of cortical development (mMCDs) with oligodendroglial hyperplasia (MOGHE). The electro-clinical-imaging phenotypes and surgical outcomes were better defined and validated for FCDII. Little new information was acquired on clinical, histopathological, or genetic characteristics of FCD type I (FCDI) and FCD type III (FCDIII). The survey identified mMCDs, FCDI, and genetic characterization as fields for improvement in an updated classification. Our iterative clinico-pathological and genetic agreement study confirmed the importance of immunohistochemical staining, neuroimaging, and genetic tests to improve the diagnostic yield. The TF proposes to include mMCDs, MOGHE, and "no definite FCD on histopathology" as new categories in the updated FCD classification. The histopathological classification can be further augmented by advanced neuroimaging and genetic studies to comprehensively diagnose FCD subtypes; these different levels should then be integrated into a multi-layered diagnostic scheme. This update may help to foster multidisciplinary efforts toward a better understanding of FCD and the development of novel targeted treatment options.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical do Grupo I , Malformações do Desenvolvimento Cortical , Consenso , Epilepsia/diagnóstico , Epilepsia/patologia , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical do Grupo I/diagnóstico , Neuroimagem , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA