Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.830
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 622(7984): 775-783, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821706

RESUMO

Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.


Assuntos
Bancos de Espécimes Biológicos , Genética Médica , Genoma Humano , Genômica , Hispânico ou Latino , Humanos , Glicemia/genética , Glicemia/metabolismo , Estatura/genética , Índice de Massa Corporal , Interação Gene-Ambiente , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/classificação , Hispânico ou Latino/genética , Homozigoto , México , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/genética , Reino Unido , Genoma Humano/genética
2.
Nature ; 608(7921): 199-208, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859180

RESUMO

Circulating tumour DNA (ctDNA) in blood plasma is an emerging tool for clinical cancer genotyping and longitudinal disease monitoring1. However, owing to past emphasis on targeted and low-resolution profiling approaches, our understanding of the distinct populations that comprise bulk ctDNA is incomplete2-12. Here we perform deep whole-genome sequencing of serial plasma and synchronous metastases in patients with aggressive prostate cancer. We comprehensively assess all classes of genomic alterations and show that ctDNA contains multiple dominant populations, the evolutionary histories of which frequently indicate whole-genome doubling and shifts in mutational processes. Although tissue and ctDNA showed concordant clonally expanded cancer driver alterations, most individual metastases contributed only a minor share of total ctDNA. By comparing serial ctDNA before and after clinical progression on potent inhibitors of the androgen receptor (AR) pathway, we reveal population restructuring converging solely on AR augmentation as the dominant genomic driver of acquired treatment resistance. Finally, we leverage nucleosome footprints in ctDNA to infer mRNA expression in synchronously biopsied metastases, including treatment-induced changes in AR transcription factor signalling activity. Our results provide insights into cancer biology and show that liquid biopsy can be used as a tool for comprehensive multi-omic discovery.


Assuntos
DNA Tumoral Circulante , Resistencia a Medicamentos Antineoplásicos , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias da Próstata , Antagonistas de Receptores de Andrógenos/farmacologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Células Clonais/metabolismo , Células Clonais/patologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Marcadores Genéticos/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Biópsia Líquida/métodos , Masculino , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Nucleossomos/genética , Nucleossomos/metabolismo , Neoplasias da Próstata/sangue , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Neoplásico/análise , RNA Neoplásico/genética , Receptores Androgênicos/metabolismo
3.
Nature ; 577(7792): 665-670, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969706

RESUMO

Our knowledge of ancient human population structure in sub-Saharan Africa, particularly prior to the advent of food production, remains limited. Here we report genome-wide DNA data from four children-two of whom were buried approximately 8,000 years ago and two 3,000 years ago-from Shum Laka (Cameroon), one of the earliest known archaeological sites within the probable homeland of the Bantu language group1-11. One individual carried the deeply divergent Y chromosome haplogroup A00, which today is found almost exclusively in the same region12,13. However, the genome-wide ancestry profiles of all four individuals are most similar to those of present-day hunter-gatherers from western Central Africa, which implies that populations in western Cameroon today-as well as speakers of Bantu languages from across the continent-are not descended substantially from the population represented by these four people. We infer an Africa-wide phylogeny that features widespread admixture and three prominent radiations, including one that gave rise to at least four major lineages deep in the history of modern humans.


Assuntos
População Negra/genética , População Negra/história , Comportamento Alimentar/etnologia , Migração Humana/história , Filogenia , Alelos , Animais , Arqueologia , Sepultamento , Camarões , Criança , Pré-Escolar , Cromossomos Humanos Y/genética , DNA Antigo/análise , Feminino , Marcadores Genéticos/genética , Genética Populacional , Genoma Humano/genética , Haplótipos/genética , História Antiga , Humanos , Idioma/história , Masculino , Pan troglodytes/genética , Análise de Componente Principal
4.
Nature ; 575(7784): 652-657, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31748747

RESUMO

Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Y/genética , Predisposição Genética para Doença/genética , Instabilidade Genômica/genética , Leucócitos/patologia , Mosaicismo , Adulto , Idoso , Biologia Computacional , Bases de Dados Genéticas , Feminino , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Reino Unido
5.
Plant J ; 113(6): 1109-1121, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36705476

RESUMO

Maize (Zea mays ssp. mays) populations exhibit vast ranges of genetic and phenotypic diversity. As sequencing costs have declined, an increasing number of projects have sought to measure genetic differences between and within maize populations using whole-genome resequencing strategies, identifying millions of segregating single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). Unlike older genotyping strategies like microarrays and genotyping by sequencing, resequencing should, in principle, frequently identify and score common genetic variants. However, in practice, different projects frequently employ different analytical pipelines, often employ different reference genome assemblies and consistently filter for minor allele frequency within the study population. This constrains the potential to reuse and remix data on genetic diversity generated from different projects to address new biological questions in new ways. Here, we employ resequencing data from 1276 previously published maize samples and 239 newly resequenced maize samples to generate a single unified marker set of approximately 366 million segregating variants and approximately 46 million high-confidence variants scored across crop wild relatives, landraces as well as tropical and temperate lines from different breeding eras. We demonstrate that the new variant set provides increased power to identify known causal flowering-time genes using previously published trait data sets, as well as the potential to track changes in the frequency of functionally distinct alleles across the global distribution of modern maize.


Assuntos
Melhoramento Vegetal , Zea mays , Humanos , Marcadores Genéticos/genética , Zea mays/genética , Frequência do Gene/genética , Polimorfismo de Nucleotídeo Único/genética
6.
Trends Genet ; 37(2): 106-108, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32943209

RESUMO

Along with the potential for breakthroughs in care and prevention, the search for genetic mechanisms underlying the spread and severity of coronavirus disease 2019 (COVID-19) introduces the risk of discrimination against those found to have markers for susceptibility. We propose new legal protections to mitigate gaps in protections under existing laws.


Assuntos
COVID-19/genética , Predisposição Genética para Doença/genética , Privacidade Genética/legislação & jurisprudência , SARS-CoV-2/fisiologia , COVID-19/prevenção & controle , COVID-19/virologia , Marcadores Genéticos/genética , Testes Genéticos/legislação & jurisprudência , Humanos
7.
BMC Biotechnol ; 24(1): 41, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862994

RESUMO

BACKGROUND: Genetic diversity, population structure, agro-morphological traits, and molecular characteristics, are crucial for either preserving genetic resources or developing new cultivars. Due to climate change, water availability for agricultural use is progressively diminishing. This study used 100 molecular markers (25 TRAP, 22 SRAP, 23 ISTR, and 30 SSR). Additionally, 15 morphological characteristics were utilized to evaluate the optimal agronomic traits of 12 different barley genotypes under arid conditions. RESULTS: Substantial variations, ranging from significant to highly significant, were observed in the 15 agromorphological parameters evaluated among the 12 genotypes. The KSU-B101 barley genotype demonstrated superior performance in five specific traits: spike number per plant, 100-grain weight, spike number per square meter, harvest index, and grain yield. These results indicate its potential for achieving high yields in arid regions. The Sahrawy barley genotype exhibited the highest values across five parameters, namely leaf area, spike weight per plant, spike length, spike weight per square meter, and biological yield, making it a promising candidate for animal feed. The KSU-B105 genotype exhibited early maturity and a high grain count per spike, which reflects its early maturity and ability to produce a high number of grains per spike. This suggests its suitability for both animal feed and human food in arid areas. Based on marker data, the molecular study found that the similarity coefficients between the barley genotypes ranged from 0.48 to 0.80, with an average of 0.64. The dendrogram constructed from these data revealed three distinct clusters with a similarity coefficient of 0.80. Notably, the correlation between the dendrogram and its similarity matrix was high (0.903), indicating its accuracy in depicting the genetic relationships. The combined analysis revealed a moderate correlation between the morphological and molecular analysis, suggesting alignment between the two characterization methods. CONCLUSIONS: The morphological and molecular analyses of the 12 barley genotypes in this study effectively revealed the varied genetic characteristics of their agro-performance in arid conditions. KSU-B101, Sahrawy, and KSU-B105 have emerged as promising candidates for different agricultural applications in arid regions. Further research on these genotypes could reveal their full potential for breeding programs.


Assuntos
Genótipo , Hordeum , Hordeum/genética , Variação Genética , Marcadores Genéticos/genética
8.
Electrophoresis ; 45(9-10): 897-905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385810

RESUMO

In the context of forensic casework, it is imperative to both establish a DNA profile from biological specimens and accurately identify the specific bodily fluid source. To achieve this, DNA methylation markers have been developed for the differentiation of blood, semen, vaginal epithelial secretions, and saliva samples. Saliva, alternatively referred to as oral fluid, is recognized for its heterogeneous cellular composition, characterized by a mixture of epithelial, leukocytic, and bacterial cells. Consequently, our research has revealed variations in methylation percentages that correlate with the method employed for collecting saliva samples. To investigate these concepts, we scrutinized four CpG markers situated within or in proximity to the BCAS4, SLC12A8, SOX2OT, and FAM43A genes. Subsequently, we designed primers based on bioinformatically transformed reference sequences for these markers and rigorously assessed their quality by examining dimer and hairpin formation, melting temperature, and specificity. These loci were identified as saliva markers based on either buccal swabs or spit collection. Yet, there has been minimal or no research conducted to explore the variations in methylation between different collection methods. For this study, buccal, lip, tongue, spit, and nasal swabs were collected from 20 individuals (N = 100). Mock forensic samples, which include chewing gum (N = 10) and cigarettes (N = 10), were also tested. DNA was extracted, bisulfite converted, then amplified using in-house designed assays, and pyrosequenced. The methylation levels were compared to other body fluids (semen, blood, vaginal epithelia, and menstrual blood [N = 32]). A total of 608 pyrosequencing results demonstrated that sampling location and collection method can greatly influence the level of methylation, highlighting the importance of examining multiple collection/deposition methods for body fluids when developing epigenetic markers.


Assuntos
Metilação de DNA , Epigênese Genética , Saliva , Manejo de Espécimes , Humanos , Saliva/química , Epigênese Genética/genética , Manejo de Espécimes/métodos , Ilhas de CpG/genética , Feminino , Genética Forense/métodos , Masculino , Marcadores Genéticos/genética
9.
Electrophoresis ; 45(9-10): 906-915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488745

RESUMO

Targeted bisulfite sequencing using single-base extension (SBE) can be used to measure DNA methylation via capillary electrophoresis on genetic analyzers in forensic labs. Several accurate age prediction models have been reported using this method. However, using different genetic analyzers with different software settings can generate different methylation values, leading to significant errors in age prediction. To address this issue, the study proposes and compares four methods as follows: (1) adjusting methylation values using numerous actual body fluid DNA samples, (2) adjusting methylation values using control DNAs with varying methylation ratios, (3) constructing new age prediction models for each genetic analyzer type, and (4) constructing new age prediction models that could be applied to all types of genetic analyzers. To test the methods for adjusting values using actual body fluid DNA samples, previously reported adjusting equations were used for blood/saliva DNA age prediction markers (ELOVL2, FHL2, KLF14, MIR29B2CHG/C1orf132, and TRIM59). New equations were generated for semen DNA age prediction markers (TTC7B, LOC401324/cg12837463, and LOC729960/NOX4) by drawing polynomial regression lines between the results of the three types of genetic analyzers (3130, 3500, and SeqStudio). The same method was applied to obtain adjustment equations using 11 control DNA samples. To develop new age prediction models for each genetic analyzer type, linear regression analysis was conducted using DNA methylation data from 150 blood, 150 saliva, and 62 semen samples. For the genetic analyzer-independent models, control DNAs were used to formulate equations for calibrating the bias of the data from each genetic analyzer, and linear regression analysis was performed using calibrated body fluid DNA data. In the comparison results, the genetic analyzer-specific models showed the highest accuracy. However, genetic analyzer-independent models through bias adjustment also provided accurate age prediction results, suggesting its use as an alternative in situations with multiple constraints.


Assuntos
Metilação de DNA , DNA , Humanos , Masculino , DNA/análise , DNA/genética , Adulto , Eletroforese Capilar/métodos , Genética Forense/métodos , Pessoa de Meia-Idade , Análise de Sequência de DNA/métodos , Envelhecimento/genética , Adulto Jovem , Sêmen/química , Saliva/química , Idoso , Marcadores Genéticos/genética
10.
Electrophoresis ; 45(9-10): 867-876, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38651903

RESUMO

Short tandem repeat analysis is challenging when dealing with unbalanced mixtures in forensic cases due to the presence of stutter peaks and large amplicons. In this research, we propose a novel genetic marker called DIP-TriSNP, which combines deletion/insertion polymorphism (DIP) with tri-allelic single nucleotide polymorphism in less than 230 bp length of human genome. Based on multiplex PCR and SNaPShot, a panel, including 14 autosomal DIP-TriSNPs and one Y chromosomal DIP-SNP, had been developed and applied to genotyping 102 unrelated Han Chinese individuals in Sichuan of China and simulated a mixture study. The panel sensitivity can reach as low as 0.1 ng DNA template, and the minor contributor of DNA can be detected with the highest ratio of 19:1, as indicated by the obtained results. In the Sichuan Han population, the cumulative probability of informative genotypes reached 0.997092, with a combined power of discrimination of 0.999999998801. The panel was estimated to detect more than two alleles in at least one locus in 99.69% of mixtures of the Sichuan Han population. In conclusion, DIP-TriSNPs have shown promising as an innovative DNA marker for identifying the minor contributor in unbalanced DNA mixtures, offering advantages such as short amplifications, increased polymorphism, and heightened sensitivity.


Assuntos
DNA , Genética Forense , Reação em Cadeia da Polimerase Multiplex , Polimorfismo de Nucleotídeo Único , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Genética Forense/métodos , Marcadores Genéticos/genética , DNA/genética , DNA/análise , China , Povo Asiático/genética , Genótipo , Reprodutibilidade dos Testes , Mutação INDEL , Repetições de Microssatélites/genética , Masculino , Técnicas de Genotipagem/métodos
11.
Strahlenther Onkol ; 200(7): 568-582, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38668865

RESUMO

PURPOSE: To identify potential Single Nucleotide Polymorphisms (SNPs) of susceptibility for the development of acute radiation dermatitis in head and neck cancer patients, and also to verify the association between SNPs and the severity of RD. METHODS: This systematic review was reported according to the PRISMA guideline. The proportion meta-analysis was performed to identify the prevalence of genetic markers by geographical region and radiation dermatitis severity. The meta-analysis was performed to verify the association between genetic markers and RD severity. The certainty of the evidence was assessed by GRADE. RESULTS: Thirteen studies were included. The most prevalent SNPs were XRCC3 (rs861639) (36%), TGFß1 (rs1800469) (35%), and RAD51 (rs1801321) (34%). There are prevalence studies in Europe and Asia, with a similar prevalence for all SNPs (29-40%). The prevalence was higher in patients who developed radiation dermatitis ≤2 for any subtype of genes (75-76%). No SNP showed a statistically significant association with very low certainty of evidence. CONCLUSION: The most prevalent SNPs may be predictors of acute RD. The analysis of SNP before starting radiation therapy may be a promising method to predict the risk of developing radiation dermatitis and allow radiosensitive patients to have a customized treatment. This current review provides new research directions.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Radiodermite , Humanos , Marcadores Genéticos/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/genética , Radiodermite/genética , Fatores de Risco
12.
Appl Microbiol Biotechnol ; 108(1): 14, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170308

RESUMO

The oleaginous yeast Yarrowia lipolytica represents a potential microbial cell factory for the recombinant production of various valuable products. Currently, the commonly used selection markers for transformation in Y. lipolytica are limited, and successive genetic manipulations are often restricted by the number of available selection markers. In our study, we developed a dominant marker, dsdA, which encodes a D-serine deaminase for genetic manipulation in Y. lipolytica. In Y. lipolytica, this marker confers the ability to use D-serine as a nitrogen source. In addition, the selection conditions of several infrequently used dominant markers including bleoR (zeocin resistance), kanMX (G418 resistance), and guaB (mycophenolic acid resistance) were also analyzed. Our results demonstrated that these selection markers can be used for the genetic manipulation of Y. lipolytica and their selection conditions were different for various strains. Ultimately, the selection markers tested here will be useful to expand the genetic toolbox of Y. lipolytica. KEY POINTS: • The dsdA from Escherichia coli was developed as a dominant marker. • The applicability of several resistance markers in Y. lipolytica was determined. • We introduced the Cre/mutant lox system for marker recycling.


Assuntos
Yarrowia , Yarrowia/genética , Marcadores Genéticos/genética
13.
Phytopathology ; 114(6): 1356-1365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38114076

RESUMO

Puccinia coronata f. sp. avenae is the causal agent of the disease known as crown rust, which represents a bottleneck in oat production worldwide. Characterization of pathogen populations often involves race (pathotype) assignments using differential sets, which are not uniform across countries. This study compared the virulence profiles of 25 P. coronata f. sp. avenae isolates from Australia using two host differential sets, one from Australia and one from the United States. These differential sets were also genotyped using diversity arrays technology sequencing technology. Phenotypic and genotypic discrepancies were detected on 8 out of 29 common lines between the two sets, indicating that pathogen race assignments based on those lines are not comparable. To further investigate molecular markers that could assist in the stacking of rust resistance genes important for Australia, four published Pc91-linked markers were validated across the differential sets and then screened across a collection of 150 oat cultivars. Drover, Aladdin, and Volta were identified as putative carriers of the Pc91 locus. This is the first report to confirm that the cultivar Volta carries Pc91 and demonstrates the value of implementing molecular markers to characterize materials in breeding pools of oat. Overall, our findings highlight the necessity of examining seed stocks using pedigree and molecular markers to ensure seed uniformity and bring robustness to surveillance methodologies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Avena , Resistência à Doença , Genótipo , Doenças das Plantas , Puccinia , Avena/microbiologia , Avena/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Austrália , Puccinia/genética , Fenótipo , Virulência/genética , Estados Unidos , Marcadores Genéticos/genética , Basidiomycota/genética , Basidiomycota/fisiologia
14.
Phytopathology ; 114(6): 1346-1355, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669464

RESUMO

Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut (Arachis hypogaea) has been a focus of molecular breeding for the U.S. industry-funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping population has been genotyped with the peanut 58K single-nucleotide polymorphism (SNP) array and phenotyped for LLS severity in the field for 3 years. Joint linkage-based quantitative trait locus (QTL) mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained up to 47.7%. A genome-wide association study identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 to 1,520 kb (184 kb) on chromosome B02 and from 1,026.9 to 1,793.2 kb (767 kb) on chromosome B03, designated as peanut LLS resistance loci, PLLSR-1 and PLLSR-2, respectively. PLLSR-1 contains 10 nucleotide-binding site leucine-rich repeat disease resistance genes. A nucleotide-binding site leucine-rich repeat disease resistance gene, Arahy.VKVT6A, was also identified on homoeologous chromosome A02. PLLSR-2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat, acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as nested association mapping for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.


Assuntos
Arachis , Mapeamento Cromossômico , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Arachis/genética , Arachis/microbiologia , Arachis/imunologia , Locos de Características Quantitativas/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Ligação Genética , Genótipo , Ascomicetos/fisiologia , Ascomicetos/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Cromossomos de Plantas/genética , Marcadores Genéticos/genética
15.
Skin Res Technol ; 30(7): e13800, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925555

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small RNA molecules that play a regulatory role in various biological processes by acting as intracellular mediators. They hold great potential as therapeutic agents for targeting human disease pathways; however, there is still much to be uncovered about their mechanism of gene regulation. Alopecia areata (AA) is a commonly occurring inflammatory condition characterized by the infiltration of T cells that specifically target the anagen-stage hair follicle. The limited understanding of its precise cellular mechanism may be the reason behind the scarcity of effective treatments for AA. AIM: The significance and function of hsa-miR-193a-5p as a genetic marker for AA and its potential influence on the advancement of the disease. SUBJECTS AND METHODS: A case-control study comprised 77 individuals diagnosed with AA who were matched with 75 healthy controls. In order to measure the expression of miR-200c-3p in both groups, the real-time PCR technique was utilized. The prediction of suitable genes for hsa-miR-193a-5p, as well as the identification of pathways and gene-gene interactions, were carried out using bioinformatic tools. RESULTS: The levels of hsa-miR-193a-5p expression were notably elevated in AA patients in comparison to healthy controls. Our prediction suggests that the involvement of hsa-miR-193a-5p in the development of AA is significant due to its influence on the inositol phosphorylation pathway and the Phosphatidylinositol signaling system, achieved through its direct impact on the IPPK gene. CONCLUSION: For the first time, our study demonstrates the significant over-expression of a new miRNA, hsa-miR-193a-5p, in the blood of AA patients compared to controls, and highlights its impact on the IPPK gene and the inositol phosphorylation and Phosphatidylinositol signaling pathways, suggesting a potential therapeutic role for hsa-miR-193a-5p in AA.


Assuntos
Alopecia em Áreas , Inositol , MicroRNAs , Humanos , Alopecia em Áreas/genética , Alopecia em Áreas/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Estudos de Casos e Controles , Feminino , Adulto , Inositol/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Marcadores Genéticos/genética , Fosfotransferases (Aceptor do Grupo Álcool)
16.
Nucleic Acids Res ; 50(D1): D1448-D1455, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718712

RESUMO

The advent of single-cell sequencing opened a new era in transcriptomic and genomic research. To understand cell composition using single-cell studies, a variety of cell markers have been widely used to label individual cell types. However, the specific database of cell markers for use by the plant research community remains very limited. To overcome this problem, we developed the Plant Cell Marker DataBase (PCMDB, http://www.tobaccodb.org/pcmdb/), which is based on a uniform annotation pipeline. By manually curating over 130 000 research publications, we collected a total of 81 117 cell marker genes of 263 cell types in 22 tissues across six plant species. Tissue- and cell-specific expression patterns can be visualized using multiple tools: eFP Browser, Bar, and UMAP/TSNE graph. The PCMDB also supports several analysis tools, including SCSA and SingleR, which allows for user annotation of cell types. To provide information about plant species currently unsupported in PCMDB, potential marker genes for other plant species can be searched based on homology with the supported species. PCMDB is a user-friendly hierarchical platform that contains five built-in search engines. We believe PCMDB will constitute a useful resource for researchers working on cell type annotation and the prediction of the biological function of individual cells.


Assuntos
Bases de Dados Genéticas , Marcadores Genéticos/genética , Plantas/genética , Software , Biologia Computacional , Genômica , Células Vegetais/classificação , Plantas/classificação , Transcriptoma/genética , Interface Usuário-Computador
17.
Biotechnol Lett ; 46(3): 399-407, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416308

RESUMO

OBJECTIVE: A convenient strategy was developed to recycle selectable markers using Cre/loxP system for constructing Komagataella phaffii strains co-expressing multiple proteins. RESULTS: A plasmid in this strategy was generated from pPICZαA with integration of lox71-Sh ble-lox66. Firstly, the plasmid was inserted with one target protein gene and then transformed into K. phaffii KM71. Secondly, the auxiliary plasmid pPICZαA/cre/his4 containing CRE recombinase gene was further chromosomally inserted to Sh ble gene therein. Finally, methanol induction was conducted to produce CRE for Cre/loxP-mediated recombination, and consequently, the sequence between lox71 and lox66 was deleted, leading to recycling of ZeoR and His- markers. Then the resulted strain expressing the one target protein was used as the host to which another target protein gene could be inserted by the same procedures. CONCLUSIONS: With easy manipulation, the method was effective in recycling of the selectable markers, and consequently two protein genes were sequential integrated chromosomally and successfully co-expressed in the yeast.


Assuntos
Integrases , Plasmídeos , Saccharomycetales , Integrases/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Plasmídeos/genética , Recombinação Genética/genética , Marcadores Genéticos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593634

RESUMO

Pathogen emergence is a complex phenomenon that, despite its public health relevance, remains poorly understood. Vibrio vulnificus, an emergent human pathogen, can cause a deadly septicaemia with over 50% mortality rate. To date, the ecological drivers that lead to the emergence of clinical strains and the unique genetic traits that allow these clones to colonize the human host remain mostly unknown. We recently surveyed a large estuary in eastern Florida, where outbreaks of the disease frequently occur, and found endemic populations of the bacterium. We established two sampling sites and observed strong correlations between location and pathogenic potential. One site is significantly enriched with strains that belong to one phylogenomic cluster (C1) in which the majority of clinical strains belong. Interestingly, strains isolated from this site exhibit phenotypic traits associated with clinical outcomes, whereas strains from the second site belong to a cluster that rarely causes disease in humans (C2). Analyses of C1 genomes indicate unique genetic markers in the form of clinical-associated alleles with a potential role in virulence. Finally, metagenomic and physicochemical analyses of the sampling sites indicate that this marked cluster distribution and genetic traits are strongly associated with distinct biotic and abiotic factors (e.g., salinity, nutrients, or biodiversity), revealing how ecosystems generate selective pressures that facilitate the emergence of specific strains with pathogenic potential in a population. This knowledge can be applied to assess the risk of pathogen emergence from environmental sources and integrated toward the development of novel strategies for the prevention of future outbreaks.


Assuntos
Vibrioses/microbiologia , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidade , Animais , Biodiversidade , Ecossistema , Doenças Endêmicas , Florida , Marcadores Genéticos/genética , Humanos , Ostreidae/microbiologia , Fenótipo , Filogenia , Virulência/genética
19.
PLoS Genet ; 17(8): e1009762, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437540

RESUMO

The development of genome-informed methods for identifying quantitative trait loci (QTL) and studying the genetic basis of quantitative variation in natural and experimental populations has been driven by advances in high-throughput genotyping. For many complex traits, the underlying genetic variation is caused by the segregation of one or more 'large-effect' loci, in addition to an unknown number of loci with effects below the threshold of statistical detection. The large-effect loci segregating in populations are often necessary but not sufficient for predicting quantitative phenotypes. They are, nevertheless, important enough to warrant deeper study and direct modelling in genomic prediction problems. We explored the accuracy of statistical methods for estimating the fraction of marker-associated genetic variance (p) and heritability ([Formula: see text]) for large-effect loci underlying complex phenotypes. We found that commonly used statistical methods overestimate p and [Formula: see text]. The source of the upward bias was traced to inequalities between the expected values of variance components in the numerators and denominators of these parameters. Algebraic solutions for bias-correcting estimates of p and [Formula: see text] were found that only depend on the degrees of freedom and are constant for a given study design. We discovered that average semivariance methods, which have heretofore not been used in complex trait analyses, yielded unbiased estimates of p and [Formula: see text], in addition to best linear unbiased predictors of the additive and dominance effects of the underlying loci. The cryptic bias problem described here is unrelated to selection bias, although both cause the overestimation of p and [Formula: see text]. The solutions we described are predicted to more accurately describe the contributions of large-effect loci to the genetic variation underlying complex traits of medical, biological, and agricultural importance.


Assuntos
Previsões/métodos , Herança Multifatorial/genética , Locos de Características Quantitativas/genética , Alelos , Animais , Marcadores Genéticos/genética , Variação Genética/genética , Genômica/métodos , Genótipo , Humanos , Modelos Genéticos , Modelos Teóricos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
20.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518223

RESUMO

The narrow genetics of most crops is a fundamental vulnerability to food security. This makes wild crop relatives a strategic resource of genetic diversity that can be used for crop improvement and adaptation to new agricultural challenges. Here, we uncover the contribution of one wild species accession, Arachis cardenasii GKP 10017, to the peanut crop (Arachis hypogaea) that was initiated by complex hybridizations in the 1960s and propagated by international seed exchange. However, until this study, the global scale of the dispersal of genetic contributions from this wild accession had been obscured by the multiple germplasm transfers, breeding cycles, and unrecorded genetic mixing between lineages that had occurred over the years. By genetic analysis and pedigree research, we identified A. cardenasii-enhanced, disease-resistant cultivars in Africa, Asia, Oceania, and the Americas. These cultivars provide widespread improved food security and environmental and economic benefits. This study emphasizes the importance of wild species and collaborative networks of international expertise for crop improvement. However, it also highlights the consequences of the implementation of a patchwork of restrictive national laws and sea changes in attitudes regarding germplasm that followed in the wake of the Convention on Biological Diversity. Today, the botanical collections and multiple seed exchanges which enable benefits such as those revealed by this study are drastically reduced. The research reported here underscores the vital importance of ready access to germplasm in ensuring long-term world food security.


Assuntos
Arachis/genética , Produtos Agrícolas/genética , Sementes/genética , África , Ásia , Mapeamento Cromossômico/métodos , DNA de Plantas/genética , Marcadores Genéticos/genética , Variação Genética/genética , Genoma de Planta/genética , Hibridização Genética/genética , Oceania , Melhoramento Vegetal/métodos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA