Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.949
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(14): 3619-3637.e27, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38851188

RESUMO

Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.


Assuntos
DNA Mitocondrial , Mitocôndrias , Dinâmica Mitocondrial , Membranas Mitocondriais , Proteínas Mitocondriais , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Animais , Células HeLa , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Autofagia
2.
Cell ; 187(2): 257-270, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242082

RESUMO

The view of organelles and how they operate together has changed dramatically over the last two decades. The textbook view of organelles was that they operated largely independently and were connected by vesicular trafficking and the diffusion of signals through the cytoplasm. We now know that all organelles make functional close contacts with one another, often called membrane contact sites. The study of these sites has moved to center stage in cell biology as it has become clear that they play critical roles in healthy and developing cells and during cell stress and disease states. Contact sites have important roles in intracellular signaling, lipid metabolism, motor-protein-mediated membrane dynamics, organelle division, and organelle biogenesis. Here, we summarize the major conceptual changes that have occurred in cell biology as we have come to appreciate how contact sites integrate the activities of organelles.


Assuntos
Organelas , Biologia , Membrana Celular/metabolismo , Membranas Mitocondriais , Organelas/química , Organelas/metabolismo , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo
3.
Cell ; 184(11): 2896-2910.e13, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34048705

RESUMO

Damaged mitochondria need to be cleared to maintain the quality of the mitochondrial pool. Here, we report mitocytosis, a migrasome-mediated mitochondrial quality-control process. We found that, upon exposure to mild mitochondrial stresses, damaged mitochondria are transported into migrasomes and subsequently disposed of from migrating cells. Mechanistically, mitocytosis requires positioning of damaged mitochondria at the cell periphery, which occurs because damaged mitochondria avoid binding to inward motor proteins. Functionally, mitocytosis plays an important role in maintaining mitochondrial quality. Enhanced mitocytosis protects cells from mitochondrial stressor-induced loss of mitochondrial membrane potential (MMP) and mitochondrial respiration; conversely, blocking mitocytosis causes loss of MMP and mitochondrial respiration under normal conditions. Physiologically, we demonstrate that mitocytosis is required for maintaining MMP and viability in neutrophils in vivo. We propose that mitocytosis is an important mitochondrial quality-control process in migrating cells, which couples mitochondrial homeostasis with cell migration.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Movimento Celular/fisiologia , Citoplasma/metabolismo , Exocitose/fisiologia , Feminino , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/fisiologia , Membranas Mitocondriais/metabolismo , Organelas/metabolismo
4.
Nat Rev Mol Cell Biol ; 24(10): 732-748, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37438560

RESUMO

The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Caspases/metabolismo
5.
Nat Rev Mol Cell Biol ; 23(12): 817-835, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35804199

RESUMO

Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.


Assuntos
Adaptação Fisiológica , Mitocôndrias , Mitocôndrias/metabolismo , Adaptação Fisiológica/fisiologia , Membranas Mitocondriais/metabolismo , Fatores de Transcrição/metabolismo , Transdução de Sinais , Proteínas Mitocondriais/genética
6.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929899

RESUMO

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Assuntos
Envelhecimento/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/fisiologia , Animais , Autofagia/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Restrição Calórica , Células HEK293 , Humanos , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Permeabilidade , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
7.
Cell ; 175(2): 514-529.e20, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220461

RESUMO

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


Assuntos
HDL-Colesterol/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana/ultraestrutura , Células 3T3 , Animais , Transporte Biológico/fisiologia , Antígenos CD36/metabolismo , Células CHO , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Colesterol/metabolismo , Cricetulus , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/metabolismo , Alinhamento de Sequência , Esteróis/metabolismo
8.
Cell ; 174(1): 187-201.e12, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29779946

RESUMO

Widespread mRNA decay, an unappreciated feature of apoptosis, enhances cell death and depends on mitochondrial outer membrane permeabilization (MOMP), TUTases, and DIS3L2. Which RNAs are decayed and the decay-initiating event are unknown. Here, we show extensive decay of mRNAs and poly(A) noncoding (nc)RNAs at the 3' end, triggered by the mitochondrial intermembrane space 3'-to-5' exoribonuclease PNPT1, released during MOMP. PNPT1 knockdown inhibits apoptotic RNA decay and reduces apoptosis, while ectopic expression of PNPT1, but not an RNase-deficient mutant, increases RNA decay and cell death. The 3' end of PNPT1 substrates thread through a narrow channel. Many non-poly(A) ncRNAs contain 3'-secondary structures or bind proteins that may block PNPT1 activity. Indeed, mutations that disrupt the 3'-stem-loop of a decay-resistant ncRNA render the transcript susceptible, while adding a 3'-stem-loop to an mRNA prevents its decay. Thus, PNPT1 release from mitochondria during MOMP initiates apoptotic decay of RNAs lacking 3'-structures.


Assuntos
Apoptose , Exorribonucleases/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Citocromos c/metabolismo , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/genética , Células HCT116 , Humanos , Membranas Mitocondriais/metabolismo , Conformação de Ácido Nucleico , Permeabilidade , Proteína I de Ligação a Poli(A)/química , Proteína I de Ligação a Poli(A)/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/química , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
9.
Annu Rev Biochem ; 86: 685-714, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28301740

RESUMO

Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Biogênese de Organelas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Precursores de Proteínas/química , Precursores de Proteínas/genética , Transporte Proteico
10.
Nat Immunol ; 21(10): 1219-1231, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778760

RESUMO

Chronic inflammation is a common feature of obesity, with elevated cytokines such as interleukin-1 (IL-1) in the circulation and tissues. Here, we report an unconventional IL-1R-MyD88-IRAK2-PHB/OPA1 signaling axis that reprograms mitochondrial metabolism in adipocytes to exacerbate obesity. IL-1 induced recruitment of IRAK2 Myddosome to mitochondria outer membranes via recognition by TOM20, followed by TIMM50-guided translocation of IRAK2 into mitochondria inner membranes, to suppress oxidative phosphorylation and fatty acid oxidation, thereby attenuating energy expenditure. Adipocyte-specific MyD88 or IRAK2 deficiency reduced high-fat-diet-induced weight gain, increased energy expenditure and ameliorated insulin resistance, associated with a smaller adipocyte size and increased cristae formation. IRAK2 kinase inactivation also reduced high-fat diet-induced metabolic diseases. Mechanistically, IRAK2 suppressed respiratory super-complex formation via interaction with PHB1 and OPA1 upon stimulation of IL-1. Taken together, our results suggest that the IRAK2 Myddosome functions as a critical link between inflammation and metabolism, representing a novel therapeutic target for patients with obesity.


Assuntos
Adipócitos/imunologia , Inflamação/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-1/metabolismo , Membranas Mitocondriais/metabolismo , Obesidade/imunologia , Adipócitos/patologia , Animais , Células Cultivadas , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosforilação Oxidativa , Proibitinas , Transporte Proteico , Receptores de Interleucina-1/metabolismo , Transdução de Sinais
11.
Nat Rev Mol Cell Biol ; 21(2): 85-100, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31636403

RESUMO

Through their many and varied metabolic functions, mitochondria power life. Paradoxically, mitochondria also have a central role in apoptotic cell death. Upon induction of mitochondrial apoptosis, mitochondrial outer membrane permeabilization (MOMP) usually commits a cell to die. Apoptotic signalling downstream of MOMP involves cytochrome c release from mitochondria and subsequent caspase activation. As such, targeting MOMP in order to manipulate cell death holds tremendous therapeutic potential across different diseases, including neurodegenerative diseases, autoimmune disorders and cancer. In this Review, we discuss new insights into how mitochondria regulate apoptotic cell death. Surprisingly, recent data demonstrate that besides eliciting caspase activation, MOMP engages various pro-inflammatory signalling functions. As we highlight, together with new findings demonstrating cell survival following MOMP, this pro-inflammatory role suggests that mitochondria-derived signalling downstream of pro-apoptotic cues may also have non-lethal functions. Finally, we discuss the importance and roles of mitochondria in other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis. Collectively, these new findings offer exciting, unexplored opportunities to target mitochondrial regulation of cell death for clinical benefit.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Animais , Caspases/metabolismo , Citocromos c/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , Transdução de Sinais
12.
Nat Rev Mol Cell Biol ; 21(4): 204-224, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32071438

RESUMO

Owing to their ability to efficiently generate ATP required to sustain normal cell function, mitochondria are often considered the 'powerhouses of the cell'. However, our understanding of the role of mitochondria in cell biology recently expanded when we recognized that they are key platforms for a plethora of cell signalling cascades. This functional versatility is tightly coupled to constant reshaping of the cellular mitochondrial network in a series of processes, collectively referred to as mitochondrial membrane dynamics and involving organelle fusion and fission (division) as well as ultrastructural remodelling of the membrane. Accordingly, mitochondrial dynamics influence and often orchestrate not only metabolism but also complex cell signalling events, such as those involved in regulating cell pluripotency, division, differentiation, senescence and death. Reciprocally, mitochondrial membrane dynamics are extensively regulated by post-translational modifications of its machinery and by the formation of membrane contact sites between mitochondria and other organelles, both of which have the capacity to integrate inputs from various pathways. Here, we discuss mitochondrial membrane dynamics and their regulation and describe how bioenergetics and cellular signalling are linked to these dynamic changes of mitochondrial morphology.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Animais , Humanos , Fusão de Membrana/fisiologia , Membranas Mitocondriais/fisiologia , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais
13.
Nat Rev Mol Cell Biol ; 21(1): 7-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732717

RESUMO

Organelles compartmentalize eukaryotic cells, enhancing their ability to respond to environmental and developmental changes. One way in which organelles communicate and integrate their activities is by forming close contacts, often called 'membrane contact sites' (MCSs). Interest in MCSs has grown dramatically in the past decade as it is has become clear that they are ubiquitous and have a much broader range of critical roles in cells than was initially thought. Indeed, functions for MCSs in intracellular signalling (particularly calcium signalling, reactive oxygen species signalling and lipid signalling), autophagy, lipid metabolism, membrane dynamics, cellular stress responses and organelle trafficking and biogenesis have now been reported.


Assuntos
Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Estresse Fisiológico/fisiologia , Animais , Autofagossomos/metabolismo , Autofagia , Transporte Biológico , Sinalização do Cálcio , Membrana Celular/química , Retículo Endoplasmático/metabolismo , Enzimas/metabolismo , Células Eucarióticas/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Cell ; 168(1-2): 224-238.e10, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28017329

RESUMO

The removal of unwanted or damaged mitochondria by autophagy, a process called mitophagy, is essential for key events in development, cellular homeostasis, tumor suppression, and prevention of neurodegeneration and aging. However, the precise mechanisms of mitophagy remain uncertain. Here, we identify the inner mitochondrial membrane protein, prohibitin 2 (PHB2), as a crucial mitophagy receptor involved in targeting mitochondria for autophagic degradation. PHB2 binds the autophagosomal membrane-associated protein LC3 through an LC3-interaction region (LIR) domain upon mitochondrial depolarization and proteasome-dependent outer membrane rupture. PHB2 is required for Parkin-induced mitophagy in mammalian cells and for the clearance of paternal mitochondria after embryonic fertilization in C. elegans. Our findings pinpoint a conserved mechanism of eukaryotic mitophagy and demonstrate a function of prohibitin 2 that may underlie its roles in physiology, aging, and disease.


Assuntos
Caenorhabditis elegans/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Repressoras/metabolismo , Envelhecimento/metabolismo , Animais , Autofagossomos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Membrana/metabolismo , Proibitinas
15.
Cell ; 170(4): 693-700.e7, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802041

RESUMO

The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the ß-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery.


Assuntos
Proteínas de Transporte/química , Proteínas Fúngicas/química , Neurospora crassa/enzimologia , Sistemas de Translocação de Proteínas/química , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Espectrometria de Massas , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/enzimologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Conformação Proteica em Folha beta , Sistemas de Translocação de Proteínas/genética , Sistemas de Translocação de Proteínas/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
16.
Mol Cell ; 84(2): 345-358.e5, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199007

RESUMO

Cellular proteostasis requires transport of polypeptides across membranes. Although defective transport processes trigger cytosolic rescue and quality control mechanisms that clear translocases and membranes from unproductive cargo, proteins that are synthesized within mitochondria are not accessible to these mechanisms. Mitochondrial-encoded proteins are inserted cotranslationally into the inner membrane by the conserved insertase OXA1L. Here, we identify TMEM126A as a OXA1L-interacting protein. TMEM126A associates with mitochondrial ribosomes and translation products. Loss of TMEM126A leads to the destabilization of mitochondrial translation products, triggering an inner membrane quality control process, in which newly synthesized proteins are degraded by the mitochondrial iAAA protease. Our data reveal that TMEM126A cooperates with OXA1L in protein insertion into the membrane. Upon loss of TMEM126A, the cargo-blocked OXA1L insertase complexes undergo proteolytic clearance by the iAAA protease machinery together with its cargo.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Peptídeo Hidrolases/metabolismo
17.
Mol Cell ; 84(2): 327-344.e9, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38151018

RESUMO

Mitophagy mediated by BNIP3 and NIX critically regulates mitochondrial mass. Cellular BNIP3 and NIX levels are tightly controlled by SCFFBXL4-mediated ubiquitination to prevent excessive mitochondrial loss and lethal disease. Here, we report that knockout of PPTC7, a mitochondrial matrix protein, hyperactivates BNIP3-/NIX-mediated mitophagy and causes perinatal lethality that is rescued by NIX knockout in mice. Biochemically, the PPTC7 precursor is trapped by BNIP3 and NIX to the mitochondrial outer membrane, where PPTC7 scaffolds assembly of a substrate-PPTC7-SCFFBXL4 holocomplex to degrade BNIP3 and NIX, forming a homeostatic regulatory loop. PPTC7 possesses an unusually weak mitochondrial targeting sequence to facilitate its outer membrane retention and mitophagy control. Starvation upregulates PPPTC7 expression in mouse liver to repress mitophagy, which critically maintains hepatic mitochondrial mass, bioenergetics, and gluconeogenesis. Collectively, PPTC7 functions as a mitophagy sensor that integrates homeostatic and physiological signals to dynamically control BNIP3 and NIX degradation, thereby maintaining mitochondrial mass and cellular homeostasis.


Assuntos
Proteínas de Membrana , Membranas Mitocondriais , Proteínas Mitocondriais , Mitofagia , Proteína Fosfatase 2C , Proteólise , Animais , Camundongos , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Proteína Fosfatase 2C/metabolismo
18.
Mol Cell ; 84(6): 1101-1119.e9, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38428433

RESUMO

Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.


Assuntos
Membranas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Animais , Membranas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
19.
Annu Rev Biochem ; 85: 161-92, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27145841

RESUMO

In the last 5 years, most of the molecules that control mitochondrial Ca(2+) homeostasis have been finally identified. Mitochondrial Ca(2+) uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca(2+) accumulation inside mitochondrial matrix upon increases in cytosolic Ca(2+). Conversely, Ca(2+) release is under the control of the Na(+)/Ca(2+) exchanger, encoded by the NCLX gene, and of a H(+)/Ca(2+) antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca(2+) across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca(2+) homeostasis and the methods used to investigate the dynamics of Ca(2+) concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca(2+) handling and their pathophysiological role.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio , Regulação da Expressão Gênica , Homeostase , Humanos , Transporte de Íons , Cinética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais , Modelos Moleculares , Trocador de Sódio e Cálcio/genética , Termodinâmica
20.
Annu Rev Biochem ; 85: 77-101, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26789594

RESUMO

Mitochondria are essential organelles of endosymbiotic origin that are responsible for oxidative phosphorylation within eukaryotic cells. Independent evolution between species has generated mitochondrial genomes that are extremely diverse, with the composition of the vestigial genome determining their translational requirements. Typically, translation within mitochondria is restricted to a few key subunits of the oxidative phosphorylation complexes that are synthesized by dedicated ribosomes (mitoribosomes). The dramatically rearranged mitochondrial genomes, the limited set of transcripts, and the need for the synthesized proteins to coassemble with nuclear-encoded subunits have had substantial consequences for the translation machinery. Recent high-resolution cryo-electron microscopy has revealed the effect of coevolution on the mitoribosome with the mitochondrial genome. In this review, we place the new structural information in the context of the molecular mechanisms of mitochondrial translation and focus on the novel ways protein synthesis is organized and regulated in mitochondria.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , Animais , Evolução Biológica , DNA Mitocondrial/metabolismo , Regulação da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Modelos Moleculares , Biogênese de Organelas , Fosforilação Oxidativa , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA