Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Nature ; 627(8004): 604-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448582

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Assuntos
Envelhecimento , Astrócitos , Neurônios , Córtex Pré-Frontal , Esquizofrenia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Colesterol/metabolismo , Cognição , Neurônios GABAérgicos/metabolismo , Predisposição Genética para Doença , Glutamina/metabolismo , Saúde , Individualidade , Inibição Neural , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Análise da Expressão Gênica de Célula Única , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
2.
EMBO J ; 39(16): e103631, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32643828

RESUMO

Priming of synaptic vesicles involves Munc13-catalyzed transition of the Munc18-1/syntaxin-1 complex to the SNARE complex in the presence of SNAP-25 and synaptobrevin-2; Munc13 drives opening of syntaxin-1 via the MUN domain while Munc18-1 primes SNARE assembly via domain 3a. However, the underlying mechanism remains unclear. In this study, we have identified a number of residues in domain 3a of Munc18-1 that are crucial for Munc13 and Munc18-1 actions in SNARE complex assembly and synaptic vesicle priming. Our results showed that two residues (Q301/K308) at the side of domain 3a mediate the interaction between the Munc18-1/syntaxin-1 complex and the MUN domain. This interaction enables the MUN domain to drive the opening of syntaxin-1 linker region, thereby leading to the extension of domain 3a and promoting synaptobrevin-2 binding. In addition, we identified two residues (K332/K333) at the bottom of domain 3a that mediate the interaction between Munc18-1 and the SNARE motif of syntaxin-1. This interaction ensures Munc18-1 to persistently associate with syntaxin-1 during the conformational change of syntaxin-1 from closed to open, which reinforces the role of Munc18-1 in templating SNARE assembly. Taken together, our data suggest a mechanism by which Munc13 activates the Munc18-1/syntaxin-1 complex and enables Munc18-1 to prime SNARE assembly.


Assuntos
Proteínas Munc18 , Proteínas do Tecido Nervoso , Proteínas SNARE , Membranas Sinápticas , Sintaxina 1 , Animais , Células HEK293 , Humanos , Camundongos , Proteínas Munc18/química , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Domínios Proteicos , Ratos , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Membranas Sinápticas/química , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo
3.
Arch Biochem Biophys ; 709: 108966, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34139199

RESUMO

Chemical neurotransmission is the major mechanism of neuronal communication. Neurotransmitters are released from secretory organelles, the synaptic vesicles (SVs) via exocytosis into the synaptic cleft. Fusion of SVs with the presynaptic plasma membrane is balanced by endocytosis, thus maintaining the presynaptic membrane at steady-state levels. The protein machineries responsible for exo- and endocytosis have been extensively investigated. In contrast, less is known about the role of lipids in synaptic transmission and how the lipid composition of SVs is affected by dynamic exo-endocytotic cycling. Here we summarize the current knowledge about the composition, organization, and function of SV membrane lipids. We also cover lipid biogenesis and maintenance during the synaptic vesicle cycle.


Assuntos
Membranas Sinápticas/química , Vesículas Sinápticas/química , Animais , Endocitose/fisiologia , Exocitose/fisiologia , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(38): 10536-41, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601655

RESUMO

Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state.


Assuntos
Complexos Multiproteicos/genética , Proteínas SNARE/genética , Transmissão Sináptica/genética , Proteína 2 Associada à Membrana da Vesícula/genética , Animais , Fenômenos Biofísicos , Fusão de Membrana/genética , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ratos , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/metabolismo
5.
Biochem Biophys Res Commun ; 498(2): 334-341, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29097209

RESUMO

Γ-secretase is a membrane-embedded protease that cleaves single transmembrane helical domains of various integral membrane proteins. The amyloid precursor protein (APP) is an important substrate due to its pathological relevance to Alzheimer's disease. The mechanism of the cleavage of APP by γ-secretase that leads to accumulation of Alzheimer's disease causing amyloid-ß (Aß) is still unknown. Coarse-grained molecular dynamics simulations in this study reveal initial lipids raft formation near the catalytic site of γ-secretase as well as changes in dynamic behavior of γ-secretase once interacting with APP. The results suggest a precursor of the APP binding mode and hint at conformational changes of γ-secretase in the nicastrin (NCT) domain upon APP binding.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Simulação de Dinâmica Molecular , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Precursor de Proteína beta-Amiloide/química , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo
6.
J Neurosci ; 36(21): 5680-5, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225759

RESUMO

UNLABELLED: Rapsyn, a 43 kDa scaffold protein, is required for the clustering of acetylcholine receptors (AChRs) at synaptic sites between mammalian motor neurons and muscle cells. However, the mechanism by which rapsyn is inserted and retained at postsynaptic sites at the neuromuscular junction (NMJ) in vivo remains largely unknown. We found that neither the N-terminal myristoylation nor the cysteine-rich RING H2 domain of rapsyn is required for its stable association with the postsynaptic membrane of NMJs. When N-myristoylation-defective rapsyn-EGFP mutant (G2A) and RING-H2 domain truncated rapsyn-EGFP were electroporated into sternomastoid muscles, a strong rapsyn fluorescent signal was observed selectively at synapses, similar to WT rapsyn-EGFP. The targeting of rapsyn-EGFP (WT and mutants) is independent of synaptic activity because they were inserted at denervated NMJs. However, when the coiled-coil domain (the AChR-binding domain of rapsyn) is deleted, rapsyn fails to associate with AChRs at NMJs of living mice. In cultured myoblasts (in which AChRs are absent), myristoylated WT rapsyn mostly localizes to lysosomes and is not associated with the plasma membrane. However, in the presence of AChR subunits, rapsyn molecules were targeted to the cell surface and formed aggregates with AChRs. The targeting of AChRs to the cell membrane, in contrast, does not require rapsyn because expressed AChRs are visible on the cell membranes of rapsyn-deficient myoblasts. These results provide evidence for an active role of AChRs in the targeting of rapsyn to the NMJ in vivo SIGNIFICANCE STATEMENT: Rapsyn is required for the clustering of acetylcholine receptors (AChRs) at postsynaptic sites. However, the mechanism by which rapsyn is targeted to synaptic sites at the vertebrate neuromuscular junction remains unclear. In this study, we showed that the coiled-coil domain of rapsyn is required for its targeting to the cell surface via its interaction with AChRs. In contrast, the targeting of AChRs to the cell membrane does not require rapsyn. These results indicate that AChRs play a critical role in the insertion and/or association of rapsyn with the plasma membrane of synaptic sites.


Assuntos
Membrana Celular/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Membranas Sinápticas/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Feminino , Camundongos , Proteínas Musculares/química , Ligação Proteica , Transporte Proteico/fisiologia , Receptores Colinérgicos/química , Relação Estrutura-Atividade , Membranas Sinápticas/química , Transmissão Sináptica/fisiologia
7.
J Neurochem ; 131(2): 147-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24985044

RESUMO

We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl ß-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl ß-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level.


Assuntos
Detergentes/farmacologia , Microdomínios da Membrana/ultraestrutura , Densidade Pós-Sináptica/ultraestrutura , Prosencéfalo/ultraestrutura , Membranas Sinápticas/ultraestrutura , Animais , Masculino , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Dados de Sequência Molecular , Densidade Pós-Sináptica/química , Densidade Pós-Sináptica/efeitos dos fármacos , Prosencéfalo/química , Prosencéfalo/efeitos dos fármacos , Ratos , Ratos Wistar , Membranas Sinápticas/química , Membranas Sinápticas/efeitos dos fármacos
8.
Biofizika ; 59(2): 304-9, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25702482

RESUMO

In this work membrane fluidity alterations in synaptosomes, isolated from mice brain tissue, at chronic administration of neuroprotectors Dimebon and NT-1505 in vivo were studied. Membrane microviscosity was measured by electron paramagnetic resonance spin labeling of 2,2,6,6-tetramet-hyl-4-capryloyl-oxylpiperidine-l-oxyl (lipid probe) and 5,6-benzo-2,2,6,6-tetramethyl-1,2,3,4-tetrahydro-gamma-carboline-3-oxyl (near protein probe). It was shown that the neuroprotectors Dimebon and NT-1505 affect a membrane structure. Despite the difference in membrane structures, fluidity of the lipid bilayer in time returned to control values.


Assuntos
Encéfalo/efeitos dos fármacos , Indóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Membranas Sinápticas/química , Sinaptossomos/química , Viscosidade , Animais , Encéfalo/citologia , Espectroscopia de Ressonância de Spin Eletrônica , Camundongos , Marcadores de Spin , Membranas Sinápticas/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos
9.
Langmuir ; 29(7): 2258-64, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23294326

RESUMO

The deposition of amyloid ß-protein (Aß) is a pathological hallmark of Alzheimer's disease (AD). We previously found that the ganglioside-enriched microdomains (ganglioside clusters) in presynaptic neuronal membranes play a key role in the initiation of the Aß assembly process. However, not all ganglioside clusters accelerate Aß assembly. In the present study, we directly observed a spherical Aß in an atomic force microscopic study on the morphology of a reconstituted lipid bilayer composed of lipids that were extracted from a detergent-resistant membrane microdomain (DRM) fraction of synaptosomes prepared from aged mouse brain. The Aß assembly was generated on a distinctive GM1 domain, which was characterized as the Aß-sensitive ganglioside nanocluster (ASIGN). By using an artificial GM1 cluster-binding peptide, ASIGN was found to have a high density of GM1; therefore, there would be a critical density of GM1 in nanoclusters to induce Aß binding and assembly. These results suggest that ganglioside-bound Aß (GAß), which acts as an endogenous seed for Aß fibril formation in AD brains, is generated on ASIGN on synaptosomal membranes.


Assuntos
Peptídeos beta-Amiloides/química , Membrana Celular/química , Membranas Sinápticas/química , Sinaptossomos/química , Animais , Gangliosídeo G(M1)/química , Bicamadas Lipídicas/química , Camundongos , Microscopia de Força Atômica/métodos
10.
Nat Genet ; 19(4): 340-7, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9697694

RESUMO

Stargazer mice have spike-wave seizures characteristic of absence epilepsy, with accompanying defects in the cerebellum and inner ear. We describe here a novel gene, Cacng2, whose expression is disrupted in two stargazer alleles. It encodes a 36-kD protein (stargazin) with structural similarity to the gamma subunit of skeletal muscle voltage-gated calcium (Ca2+) channels. Stargazin is brain-specific and, like other neuronal Ca2+-channel subunits, is enriched in synaptic plasma membranes. In vitro, stargazin increases steady-state inactivation of alpha1 class A Ca2+ channels. The anticipated effect in stargazer mutants, inappropriate Ca2+ entry, may contribute to their more pronounced seizure phenotype compared with other mouse absence models with Ca2+-channel defects. The discovery that the stargazer gene encodes a gamma subunit completes the identification of the major subunit types for neuronal Ca2+ channels, namely alpha1, alpha2delta, beta and gamma, providing a new opportunity to understand how these channels function in the mammalian brain and how they may be targeted in the treatment of neuroexcitability disorders.


Assuntos
Canais de Cálcio/genética , Epilepsia Tipo Ausência/genética , Genes/genética , Neurônios/química , Sequência de Aminoácidos , Animais , Química Encefálica , Canais de Cálcio/análise , Canais de Cálcio/fisiologia , Linhagem Celular , Clonagem Molecular , Cricetinae , Regulação da Expressão Gênica , Camundongos , Camundongos Mutantes Neurológicos , Dados de Sequência Molecular , Neurônios/fisiologia , Especificidade de Órgãos , Técnicas de Patch-Clamp , RNA Mensageiro/análise , Mapeamento por Restrição , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Membranas Sinápticas/química
11.
J Neurochem ; 123(5): 689-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22889001

RESUMO

Precise regulation of free intracellular Ca(2+) concentrations [Ca(2+) ](i) is critical for normal neuronal function, and alterations in Ca(2+) homeostasis are associated with brain aging and neurodegenerative diseases. One of the most important proteins controlling [Ca(2+) ](i) is the plasma membrane Ca(2+) -ATPase (PMCA), the high-affinity transporter that fine tunes the cytosolic nanomolar levels of Ca(2+) . We previously found that PMCA protein in synaptic plasma membranes (SPMs) is decreased with advancing age and the decrease in enzyme activity is much greater than that in protein levels. In this study, we isolated raft and non-raft fractions from rat brain SPMs and used quantitative mass spectrometry to show that the specialized lipid microdomains in SPMs, the rafts, contain 60% of total PMCA, comprised all four isoforms. The raft PMCA pool had the highest specific activity and this decreased progressively with age. The reduction in PMCA protein could not account for the dramatic activity loss. Addition of excess calmodulin to the assay did not restore PMCA activity to that in young brains. Analysis of the major raft lipids revealed a slight age-related increase in cholesterol levels and such increases might enhance membrane lipid order and prevent further loss of PMCA activity.


Assuntos
Envelhecimento/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Microdomínios da Membrana/enzimologia , Membranas Sinápticas/enzimologia , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , ATPases Transportadoras de Cálcio/análise , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Masculino , Espectrometria de Massas , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Ratos , Ratos Endogâmicos F344 , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
12.
Indian J Med Res ; 136(4): 633-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23168704

RESUMO

BACKGROUND & OBJECTIVES: The use of epoxy resin membrane as a support for immobilization of enzyme has resulted into improved sensitivity and stability of biosensors for uric acid, ascorbic acid and polyphenols. The present work was aimed to prepare an improved amperometric biosensor for determination of serum cholesterol required in the diagnostics and management of certain pathological conditions. METHODS: Epoxy resin membrane with immobilized cholesterol oxidase was mounted on the cleaned platinum (Pt) electrode with a parafilm to construct a working electrode. This working electrode along with Ag/AgCl as reference and Ag wire as an auxiliary electrode were connected through a three terminal electrometer to construct a cholesterol biosensor. RESULTS: The sensor showed optimum response within 25 sec at pH 7.0 and 45°C. The linear working range of biosensor was 1.0 to 8.0 mM cholesterol. K m and I max for cholesterol were 5.0 mM and 9.09 µA, respectively. The biosensor measured serum cholesterol. The minimum detection limit of the sensor was 1.0 mM. The mean analytical recoveries of added cholesterol in serum (2.84 and 4.13 mM) were 91.4 ± 2.8 and 92.3 ± 3.1 per cent (n=6), respectively. Within and between assay coefficient of variation (CV) were <2 and <4 per cent, respectively. Biosensor had a storage life of 6 months at 4 o C. INTERPRETATION & CONCLUSIONS: The use of epoxy resin membrane as a support for immobilization of cholesterol oxidase has resulted into an improved amperometric cholesterol biosensor. The present biosensor had an advantage over the existing biosensors as it worked at comparatively lower potential.


Assuntos
Técnicas Biossensoriais/instrumentação , Colesterol Oxidase/sangue , Técnicas de Diagnóstico Cardiovascular , Resinas Epóxi , Hipercolesterolemia/diagnóstico , Membranas Sinápticas/metabolismo , Técnicas Biossensoriais/métodos , Colesterol Oxidase/metabolismo , Eletrodos , Enzimas Imobilizadas/metabolismo , Humanos , Platina , Membranas Sinápticas/química
13.
Biomolecules ; 12(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36551244

RESUMO

Alpha-synuclein is a presynaptic protein linked to Parkinson's disease with a poorly characterized physiological role in regulating the synaptic vesicle cycle. Using RBL-2H3 cells as a model system, we earlier reported that wild-type alpha-synuclein can act as both an inhibitor and a potentiator of stimulated exocytosis in a concentration-dependent manner. The inhibitory function is constitutive and depends on membrane binding by the helix-2 region of the lipid-binding domain, while potentiation becomes apparent only at high concentrations. Using structural and functional characterization of conformationally selective mutants via a combination of spectroscopic and cellular assays, we show here that binding affinity for isolated vesicles similar in size to synaptic vesicles is a primary determinant of alpha-synuclein-mediated potentiation of vesicle release. Inhibition of release is sensitive to changes in the region linking the helix-1 and helix-2 regions of the N-terminal lipid-binding domain and may require some degree of coupling between these regions. Potentiation of release likely occurs as a result of alpha-synuclein interactions with undocked vesicles isolated away from the active zone in internal pools. Consistent with this, we observe that alpha-synuclein can disperse vesicles from in vitro clusters organized by condensates of the presynaptic protein synapsin-1.


Assuntos
Doença de Parkinson , Membranas Sinápticas , Vesículas Sinápticas , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Lipídeos/química , Doença de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Domínios Proteicos , Membranas Sinápticas/química
14.
J Neurosci ; 30(37): 12387-99, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844134

RESUMO

Hearing depends on reliable and temporally precise neurotransmission by cochlear hair cells. The wide dynamic range and high sensitivity with which these cells encode acoustic stimuli are associated with a presynaptic specialization termed the presynaptic dense body or synaptic ribbon. Apposed to the presynaptic density, this spherical or flattened structure tethers a layer of synaptic vesicles and is thought to facilitate their exocytotic fusion. Although defining the molecular constituents of the hair cell's synaptic ribbon should contribute to our understanding of neurotransmitter release at this synapse, accomplishing this task has been slowed by the difficulty of obtaining sufficient amounts of starting material for protein analysis from hair cells. We isolated synaptic material from chicken cochleas, purified synaptic ribbons with specific immunological reagents, and identified the associated proteins by tandem mass spectrometry. Purification of the ribbons revealed a predominant composition of C-terminal-binding proteins, especially ribeye, in association with the small GTPase Rab3, which is possibly involved in attaching vesicles to the ribbon. In comparison with the components of conventional synapses and of retinal ribbon synapses, we observed that certain regulatory proteins are excluded from the hair cell's synapse. Using antisera against several of the novel proteins and membrane-trafficking components that we had identified, we documented their localization in isolated hair cells. Our results indicate that the ribbon synapses of hair cells display modifications to the presynaptic machinery that are associated with the high-fidelity transmission of acoustic signals to the brain.


Assuntos
Cóclea/química , Células Ciliadas Auditivas/química , Audição/fisiologia , Sinapses/química , Membranas Sinápticas/química , Oxirredutases do Álcool , Animais , Bovinos , Galinhas , Proteínas Correpressoras , Cóclea/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Células Ciliadas Auditivas/ultraestrutura , Microscopia Imunoeletrônica , Fosfoproteínas/química , Fosfoproteínas/ultraestrutura , Células Fotorreceptoras de Vertebrados/química , Células Fotorreceptoras de Vertebrados/ultraestrutura , Retina/química , Retina/ultraestrutura , Sinapses/ultraestrutura , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologia , Proteínas rab3 de Ligação ao GTP/química , Proteínas rab3 de Ligação ao GTP/ultraestrutura
15.
J Proteome Res ; 10(12): 5472-80, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22003853

RESUMO

Docosahexenoic acid (DHA, 22:6n-3) plays an important role in development of proper brain function in mammals. We have previously reported that DHA promotes synaptogenesis and synaptic function in hippocampal neurons while DHA-depletion in the brain due to n-3 fatty acid deficiency produces opposite effects. To gain insight into underlying molecular mechanisms, we investigated whether the brain DHA status affects the synaptic plasma membrane (SPM) proteome by using nanoLC-ESI-MS/MS and (16)O/(18)O labeling. The DHA level in mouse brains was lowered by dietary depletion of n-3 fatty acids, and SPM was prepared by differential centrifugation followed by osmotic shock. SPM proteins from DHA-adequate and depleted brains were analyzed by nanoLC-ESI-MS/MS after SDS-PAGE, in-gel digestion, and differential O(18)/O(16) labeling. This strategy allowed comparative quantitation of more than 200 distinct membrane or membrane-associated proteins from DHA-adequate or depleted brains. We found that 18 pre- and postsynaptic proteins that are relevant to synaptic physiology were significantly down-regulated in DHA-depleted mouse brains. The protein network analysis suggests involvement of CREB and caspase-3 pathways in the DHA-dependent modulation of synaptic proteome. Reduction of specific synaptic proteins due to brain DHA-depletion may be an important mechanism for the suboptimal brain function associated with n-3 fatty acid deficiency.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Marcação por Isótopo/métodos , Proteoma/análise , Membranas Sinápticas/efeitos dos fármacos , Animais , Western Blotting , Centrifugação/métodos , Córtex Cerebral/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Regulação para Baixo , Eletroforese em Gel de Poliacrilamida , Ácidos Graxos Ômega-3/química , Feminino , Espectrometria de Massas/métodos , Proteínas de Membrana/análise , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Pressão Osmótica , Isótopos de Oxigênio/química , Gravidez , Proteoma/química , Sinapses/química , Membranas Sinápticas/química
16.
J Neural Transm (Vienna) ; 118(7): 1119-28, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21210285

RESUMO

Trace amines are endogenous compounds, typified by 2-phenylethylamine (PE) and p-tyramine (TA), found in the vertebrate central nervous system. Although synthesized in pre-synaptic terminals, trace amines do not appear to act as neurotransmitters, but rather modulate responsivity to co-existing neurotransmitters. Trace amines are neither actively accumulated in synaptic vesicles, nor released in an activity-dependent manner. Further, Trace Amine-Associated Receptor 1 (TAAR1), which is selectively activated by PE and TA, is intracellular. As such, PE and TA need to cross cell membranes in order to exert their effects. This has been assumed to occur by simple diffusion, but has not previously been systematically examined. Experimental data were obtained using Fluorosome(®) technology. A permeability coefficient of 25.3 ± 3.8 Å/s (n = 6) was obtained for TA which was not significantly different from that obtained for the monoamine neurotransmitter noradrenaline (20.3 ± 3.8 Å/s, n = 8). PE was unsuitable for use with this system. We have also used molecular dynamics computer simulation techniques to determine the potential of mean force (PMF) associated with trace amine passage across lipid bilayers. A PMF peak barrier of 25 ± 6 kcal/mol (protonated) and 13 ± 1 kcal/mol (deprotonated) was obtained for PE. Protonated TA peak energy barriers were even greater at 31 ± 1 kcal/mol. Application of a homogeneous solubility-diffusion model combining the measured permeability coefficients and simulated PMF allows fitting of the diffusion coefficient for trace amines in the hydrophobic region of the lipid bilayer. The diffusion coefficients in other regions of the membrane were found to make negligible contributions to the permeability coefficient for the calculated PMF. The fit obtained a value for the diffusion coefficient of (163 ± 25) × 10(-10) m(2)/s for TA(+) in the hydrophobic core region. The diffusion coefficient for TA(+) in the aqueous compartment was also calculated directly by simulation yielding a value of (0.62 ± 0.26) × 10(-10) m(2)/s. The adopted simulation methods failed to yield diffusion coefficients in the core region indicating that further work will be required to accurately predict permeability coefficients for trace amines passing through membranes.


Assuntos
Simulação de Dinâmica Molecular/normas , Fenetilaminas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Membranas Sinápticas/metabolismo , Tiramina/metabolismo , Animais , Aminas Biogênicas/química , Aminas Biogênicas/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Simulação por Computador , Humanos , Modelos Moleculares , Fenetilaminas/química , Terminações Pré-Sinápticas/química , Receptores Acoplados a Proteínas G/metabolismo , Membranas Sinápticas/química , Tiramina/química
17.
Nat Commun ; 12(1): 927, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568632

RESUMO

α-Synuclein (αS) is a presynaptic disordered protein whose aberrant aggregation is associated with Parkinson's disease. The functional role of αS is still debated, although it has been involved in the regulation of neurotransmitter release via the interaction with synaptic vesicles (SVs). We report here a detailed characterisation of the conformational properties of αS bound to the inner and outer leaflets of the presynaptic plasma membrane (PM), using small unilamellar vesicles. Our results suggest that αS preferentially binds the inner PM leaflet. On the basis of these studies we characterise in vitro a mechanism by which αS stabilises, in a concentration-dependent manner, the docking of SVs on the PM by establishing a dynamic link between the two membranes. The study then provides evidence that changes in the lipid composition of the PM, typically associated with neurodegenerative diseases, alter the modes of binding of αS, specifically in a segment of the sequence overlapping with the non-amyloid component region. Taken together, these results reveal how lipid composition modulates the interaction of αS with the PM and underlie its functional and pathological behaviours in vitro.


Assuntos
Lipídeos/química , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Metabolismo dos Lipídeos , Conformação Proteica , Membranas Sinápticas/química , Membranas Sinápticas/genética , Vesículas Sinápticas/química , Vesículas Sinápticas/genética , alfa-Sinucleína/genética
18.
Anal Biochem ; 402(2): 161-9, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20371221

RESUMO

Enzyme-linked immunosorbent assays (ELISAs) are applied for the quantification of a vast diversity of small molecules. However, ELISAs require that the antigen is present in a soluble form in the sample. Accordingly, the few ELISAs described so far targeting insoluble proteins such as integral membrane and scaffold proteins have been restricted by limited extraction efficiencies and the need to establish an individual solubilization protocol for each protein. Here we describe a sandwich ELISA that allows the quantification of a diverse array of synaptic membrane and scaffold proteins such as munc13-1, gephyrin, NMDA R1 (N-methyl-d-aspartate receptor subunit 1), synaptic vesicle membrane proteins, and SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). The assay is based on initial solubilization by the denaturing detergent sodium dodecyl sulfate (SDS), followed by partial SDS removal using the detergent Triton X-100, which restores antigenicity while keeping the proteins in solution. Using recombinant standard proteins, we determined assay sensitivities of 78ng/ml to 77pg/ml (or 74-0.1fmol). Calibration of the assay using both immunoblotting and mass spectroscopy revealed that in some cases correction factors need to be included for absolute quantification. The assay is versatile, allows parallel processing and automation, and should be applicable to a wide range of hitherto inaccessible proteins.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Proteínas de Membrana/análise , Membranas Sinápticas/química , Animais , Calibragem , Detergentes , Imunoprecipitação , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Camundongos , Ratos , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Solubilidade
19.
J Cell Biol ; 168(2): 329-38, 2005 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-15657400

RESUMO

Myosin VI (Myo6) is an actin-based motor protein implicated in clathrin-mediated endocytosis in nonneuronal cells, though little is known about its function in the nervous system. Here, we find that Myo6 is highly expressed throughout the brain, localized to synapses, and enriched at the postsynaptic density. Myo6-deficient (Snell's waltzer; sv/sv) hippocampus exhibits a decrease in synapse number, abnormally short dendritic spines, and profound astrogliosis. Similarly, cultured sv/sv hippocampal neurons display decreased numbers of synapses and dendritic spines, and dominant-negative disruption of Myo6 in wild-type hippocampal neurons induces synapse loss. Importantly, we find that sv/sv hippocampal neurons display a significant deficit in the stimulation-induced internalization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptors (AMPARs), and that Myo6 exists in a complex with the AMPAR, AP-2, and SAP97 in brain. These results suggest that Myo6 plays a role in the clathrin-mediated endocytosis of AMPARs, and that its loss leads to alterations in synaptic structure and astrogliosis.


Assuntos
Endocitose/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Trifosfato de Adenosina/farmacologia , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Química Encefálica , Dendritos/metabolismo , Dendritos/ultraestrutura , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Proteína 1 Homóloga a Discs-Large , Dineínas/genética , Dineínas/metabolismo , Endocitose/efeitos dos fármacos , Feminino , Proteína Glial Fibrilar Ácida/análise , Guanilato Quinases , Insulina/farmacologia , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina VIIa , Miosinas/genética , Miosinas/metabolismo , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Receptores de AMPA/análise , Receptores de Glutamato/metabolismo , Sacarose/farmacologia , Sinapses/ultraestrutura , Membranas Sinápticas/química , Membranas Sinápticas/efeitos dos fármacos , Sinaptossomos/química , Sinaptossomos/efeitos dos fármacos , Transferrina/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
20.
J Proteome Res ; 8(11): 4966-82, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19737024

RESUMO

Post-translational modifications (PTMs) of proteins in the adult brain are known to mark activity-dependent processes for complex brain functions such as learning and memory. Multiple PTMs occur in nerve cells, and are able to modulate proteins in different subcellular compartments. In synaptic terminals, protein phosphorylation is the primary PTM that contributes to the control of the activity and localization of synaptic proteins. In the nucleus, it can modulate histones and proteins involved with the transcriptional machinery and, in combination with other PTMs such as acetylation, methylation and ubiquitination, acts to regulate chromatin remodelling and gene expression. The combination of histone PTMs is highly complex and is known to be unique to each gene. The ensemble of PTMs in the adult brain, however, remains unknown. Here, we describe a novel proteomic approach that allows the isolation and identification of PTMs on synaptic and nuclear proteins, in particular on histones. Using subcellular fractionation, we identified 2082 unique phosphopeptides from 1062 phosphoproteins, and 196 unique PTM sites on histones H1, H2A, H2B, H3 and H4. A comparison of phosphorylation sites in synaptic and nuclear compartments, and on histones, suggests that different kinases and kinase motifs are involved. Overall, our data demonstrates the complexity of PTMs in the brain and the prevalence of histone PTMs, and reveals potentially important regulatory sites on proteins involved in synaptic plasticity and brain functions.


Assuntos
Química Encefálica , Histonas/química , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Membranas Sinápticas/química , Sequência de Aminoácidos , Animais , Bases de Dados Factuais , Histonas/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Quinases/metabolismo , Frações Subcelulares/química , Especificidade por Substrato , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA