Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.267
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Drug Resist Updat ; 55: 100754, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33691261

RESUMO

One of the primary causes of attenuated or loss of efficacy of cancer chemotherapy is the emergence of multidrug resistance (MDR). Numerous studies have been published regarding potential approaches to reverse resistance to taxanes, including paclitaxel (PTX) and docetaxel, which represent one of the most important classes of anticancer drugs. Since 1984, following the FDA approval of paclitaxel for the treatment of advanced ovarian carcinoma, taxanes have been extensively used as drugs that target tumor microtubules. Taxanes, have been shown to affect an array of oncogenic signaling pathways and have potent cytotoxic efficacy. However, the clinical success of these drugs has been restricted by the emergence of cancer cell resistance, primarily caused by the overexpression of MDR efflux transporters or by microtubule alterations. In vitro and in vivo studies indicate that the mechanisms underlying the resistance to PTX and docetaxel are primarily due to alterations in α-tubulin and ß-tubulin. Moreover, resistance to PTX and docetaxel results from: 1) alterations in microtubule-protein interactions, including microtubule-associated protein 4, stathmin, centriole, cilia, spindle-associated protein, and kinesins; 2) alterations in the expression and activity of multidrug efflux transporters of the ABC superfamily including P-glycoprotein (P-gp/ABCB1); 3) overexpression of anti-apoptotic proteins or inhibition of apoptotic proteins and tumor-suppressor proteins, as well as 4) modulation of signal transduction pathways associated with the activity of several cytokines, chemokines and transcription factors. In this review, we discuss the abovementioned molecular mechanisms and their role in mediating cancer chemoresistance to PTX and docetaxel. We provide a detailed analysis of both in vitro and in vivo experimental data and describe the application of these findings to therapeutic practice. The current review also discusses the efficacy of different pharmacological modulations to achieve reversal of PTX resistance. The therapeutic roles of several novel compounds, as well as herbal formulations, are also discussed. Among them, many structural derivatives had efficacy against the MDR phenotype by either suppressing MDR or increasing the cytotoxic efficacy compared to the parental drugs, or both. Natural products functioning as MDR chemosensitizers offer novel treatment strategies in patients with chemoresistant cancers by attenuating MDR and increasing chemotherapy efficacy. We broadly discuss the roles of inhibitors of P-gp and other efflux pumps, in the reversal of PTX and docetaxel resistance in cancer cells and the significance of using a nanomedicine delivery system in this context. Thus, a better understanding of the molecular mechanisms mediating the reversal of drug resistance, combined with drug efficacy and the application of target-based inhibition or specific drug delivery, could signal a new era in modern medicine that would limit the pathological consequences of MDR in cancer patients.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Taxoides/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Hidrocarbonetos Aromáticos com Pontes , Linhagem Celular Tumoral , Portadores de Fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genes Supressores de Tumor/efeitos dos fármacos , Genes Supressores de Tumor/fisiologia , Humanos , Microtúbulos/fisiologia , Nanopartículas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tubulina (Proteína)/efeitos dos fármacos
2.
Mol Pharm ; 18(12): 4371-4384, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34730366

RESUMO

Niraparib (Zejula), a selective oral PARP1/2 inhibitor registered for ovarian, fallopian tube, and primary peritoneal cancer treatment, is under investigation for other malignancies, including brain tumors. We explored the impact of the ABCB1 and ABCG2 multidrug efflux transporters, the OATP1A/1B uptake transporters, and the CYP3A drug-metabolizing complex on oral niraparib pharmacokinetics, using wild-type and genetically modified mouse and cell line models. In vitro, human ABCB1 and mouse Abcg2 transported niraparib moderately. Compared to wild-type mice, niraparib brain-to-plasma ratios were 6- to 7-fold increased in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- but not in single Abcg2-/- mice, while niraparib plasma exposure at later time points was ∼2-fold increased. Niraparib recovery in the small intestinal content was markedly reduced in the Abcb1a/1b-deficient strains. Pretreatment of wild-type mice with oral elacridar, an ABCB1/ABCG2 inhibitor, increased niraparib brain concentration and reduced small intestinal content recovery to levels observed in Abcb1a/1b;Abcg2-/- mice. Oatp1a/1b deletion did not significantly affect niraparib oral bioavailability or liver distribution but decreased metabolite M1 liver uptake. No significant effects of mouse Cyp3a ablation were observed, but overexpression of transgenic human CYP3A4 unexpectedly increased niraparib plasma exposure. Thus, Abcb1 deficiency markedly increased niraparib brain distribution and reduced its small intestinal content recovery, presumably through reduced biliary excretion and/or decreased direct intestinal excretion. Elacridar pretreatment inhibited both processes completely. Clinically, the negligible role of OATP1 and CYP3A could be advantageous for niraparib, diminishing drug-drug interaction or interindividual variation risks involving these proteins. These findings may support the further clinical development and application of niraparib.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Encéfalo/metabolismo , Indazóis/farmacocinética , Intestinos/metabolismo , Piperidinas/farmacocinética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Acridinas/farmacologia , Animais , Transporte Biológico , Citocromo P-450 CYP3A/fisiologia , Cães , Células Madin Darby de Rim Canino , Camundongos , Tetra-Hidroisoquinolinas/farmacologia , Distribuição Tecidual
3.
Drug Metab Dispos ; 47(11): 1291-1306, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506301

RESUMO

Rivaroxaban is indicated for stroke prevention in nonvalvular atrial fibrillation (AF). Its elimination is mediated by both hepatic metabolism and renal excretion. Consequently, its clearance is susceptible to both intrinsic (pathophysiological) and extrinsic (concomitant drugs) variabilities that in turn implicate bleeding risks. Upon systematic model verification, physiologically based pharmacokinetic (PBPK) models are qualified for the quantitative rationalization of complex drug-drug-disease interactions (DDDIs). Hence, this study aimed to develop and verify a PBPK model of rivaroxaban systematically. Key parameters required to define rivaroxaban's disposition were either obtained from in vivo data or generated via in vitro metabolism and transport kinetic assays. Our developed PBPK model successfully predicted rivaroxaban's clinical pharmacokinetic parameters within predefined success metrics. Consideration of basolateral organic anion transporter 3 (OAT3)-mediated proximal tubular uptake in tandem with apical P-glycoprotein (P-gp)-mediated efflux facilitated mechanistic characterization of the renal elimination of rivaroxaban in both healthy and renal impaired patients. Retrospective drug-drug interaction (DDI) simulations, incorporating in vitro metabolic inhibitory parameters, accurately recapitulated clinically observed attenuation of rivaroxaban's hepatic clearance due to enzyme-mediated DDIs with CYP3A4/2J2 inhibitors (verapamil and ketoconazole). Notably, transporter-mediated DDI simulations between rivaroxaban and the P-gp inhibitor ketoconazole yielded minimal increases in rivaroxaban's systemic exposure when P-gp-mediated efflux was solely inhibited, but were successfully characterized when concomitant basolateral uptake inhibition was incorporated in the simulation. In conclusion, our developed PBPK model of rivaroxaban is systematically verified for prospective interrogation and management of untested yet clinically relevant DDDIs pertinent to AF management using rivaroxaban. SIGNIFICANCE STATEMENT: Rivaroxaban is susceptible to DDDIs comprising renal impairment and P-gp and CYP3A4/2J2 inhibition. Here, systematic construction and verification of a PBPK model of rivaroxaban, with the inclusion of a mechanistic kidney component, provided insight into the previously arcane role of OAT3-mediated basolateral uptake in influencing both clinically observed renal elimination of rivaroxaban and differential extents of transporter-mediated DDIs. The verified model holds potential for investigating clinically relevant DDDIs involving rivaroxaban and designing dosing adjustments to optimize its pharmacotherapy in atrial fibrillation.


Assuntos
Rivaroxabana/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Fibrilação Atrial/tratamento farmacológico , Simulação por Computador , Interações Medicamentosas , Humanos , Cetoconazol/farmacocinética , Rim/metabolismo , Modelos Biológicos , Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Rivaroxabana/uso terapêutico , Verapamil/análogos & derivados , Verapamil/farmacocinética
4.
Toxicol Appl Pharmacol ; 362: 136-149, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391378

RESUMO

Multidrug resistance (MDR) in cancer cells is often associated with overexpression of ATP-binding cassette (ABC) transporters, including P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1) and breast cancer resistance protein (BCRP/ABCG2). Modulators of these transporters might be helpful in overcoming MDR. Moreover, exploiting collateral sensitivity (CS) could be another approach for efficient treatment of cancer. Twelve novel 5-oxo-hexahydroquinoline derivatives bearing different aromatic substitutions at C4, while having 2-pyridyl alkyl carboxylate substituents at the C3 were synthesized and evaluated for MDR reversal activity by flow cytometric determination of rhodamine 123, calcein and mitoxantrone accumulations in P-gp, MRP1 and BCRP-overexpressing cell lines, respectively. Furthermore, to confirm the P-gp inhibitory activity, the effect of compounds on the reduction of doxorubicin's IC50 of drug-resistant human uterine sarcoma cell line, MES-SA/DX5, was evaluated. Compounds D6, D5 and D3 (bearing 3-chlorophenyl, 2,3-dichlorophenyl and 4-chlorophenyl substituents at C4 position of 5-oxo-hexahydroquinoline core) were the most potent P-gp, MRP1 and BCRP inhibitors, respectively, causing significant MDR reversal at concentrations of 1-10 µM. Additionally, D4 (containing 3-flourophenyl) was the most effective MRP1-dependent CS inducing agent. Overall, chlorine containing compounds D6, C4 and D3 were capable of significant inhibition of all 3 important efflux pumps in cancer cells. Moreover, D6 also induced CS triggered by reducing glutathione efflux. In conclusion, some of the 5-oxo-hexahydroquinoline derivatives are effective efflux pump inhibitors capable of simultaneously blocking 3 important ABC transporters involved in MDR, and represent promising agents to overcome MDR in cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Proteínas de Neoplasias/fisiologia , Quinolinas/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular , Cricetinae , Doxorrubicina/farmacologia , Glutationa/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
5.
Brain Behav Immun ; 73: 21-33, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30041013

RESUMO

The accumulation of neurotoxic amyloid-beta (Aß) in the brain is a characteristic hallmark of Alzheimer's disease (AD). The blood-brain barrier (BBB) provides a large surface area and has been shown to be an important mediator for removal of brain Aß. Both, the ABC transporter P-glycoprotein (ABCB1/P-gp) and the receptor low-density lipoprotein receptor-related protein 1 (LRP1) have been implicated to play crucial roles in Aß efflux from brain. Here, with immunoprecipitation experiments, co-immunostainings and dual inhibition of ABCB1/P-gp and LRP1, we show that both proteins are functionally linked, mediating a concerted transcytosis of Aß through endothelial cells. Late-onset AD risk factor Phosphatidylinositol binding clathrin assembly protein (PICALM) is associated with both ABCB1/P-gp and LRP1 representing a functional link and guiding both proteins through the brain endothelium. Together, our results give more mechanistic insight on Aß transport across the BBB and show that the functional interplay of different clearance proteins is needed for the rapid removal of Aß from the brain.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/fisiologia , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Fragmentos de Peptídeos/metabolismo , Cultura Primária de Células , Receptores de LDL/fisiologia , Suínos , Transcitose/fisiologia , Proteínas Supressoras de Tumor/fisiologia
6.
Arch Toxicol ; 91(7): 2515-2538, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28175954

RESUMO

The detoxification of toxic substances is of general relevance in all biological systems. The plethora of exogenous xenobiotic compounds and endogenous toxic metabolic products explains the evolutionary pressure of all organisms to develop molecular mechanisms to detoxify and excrete harmful substances from the body. P-glycoprotein and other members of the ATP-binding cassette (ABC) transporter family extrude innumerous chemical compounds out of cells. Their specific expression in diverse biological contexts cause different phenotypes: (1) multidrug resistance (MDR) and thus failure of cancer chemotherapy, (2) avoidance of accumulation of carcinogens and prevention of carcinogenesis in healthy tissues, (3) absorption, distribution, metabolization and excretion (ADME) of pharmacological drugs in human patients, (4) protection from environmental toxins in aquatic organisms (multi-xenobiotic resistance, MXR). Hence ABC-transporters may have opposing effects for organismic health reaching from harmful in MDR of tumors to beneficial for maintenance of health in MXR. While their inhibition by specific inhibitors may improve treatment success in oncology and avoid carcinogenesis, blocking of ABC-transporter-driven efflux by environmental pollutants leads to ecotoxicological consequences in marine biotopes. Poisoned seafood may enter the food-chain and cause intoxications in human beings. As exemplified with ABC-transporters, joining forces in interdisciplinary research may, therefore, be a wise strategy to fight problems in human medicine and environmental sciences.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Carcinógenos/toxicidade , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Xenobióticos/toxicidade , Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinógenos/farmacocinética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ecotoxicologia/métodos , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Humanos , Inativação Metabólica , Xenobióticos/farmacocinética
7.
Tumour Biol ; 37(3): 2849-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26797784

RESUMO

Drug resistance currently represents a daunting challenge in the treatment of breast cancer patients. With an increased understanding of the underlying mechanisms of drug resistance, the role of extracellular vesicles (EVs) in the development of chemo-insensitivity attracts extensive attention. EVs are membrane-limited, cell type-dependent vesicles that are secreted by normal or malignant cells. EVs comprise various types of contents, including genetic cargoes, proteins, and specific lipids. The characteristics of the contents determine their specific functions in not only physiological but also pathological conditions. It has been demonstrated that miRNAs and proteins in EVs are strongly correlated with breast cancer drug resistance. Additionally, they may exert an influence on de novo and acquired resistance bioprocesses. With the advances in extraction and detection technologies, EVs have also been employed to precisely diagnose and predict the outcome of therapy in breast cancer. On the other hand, they can also be exploited as efficient delivery system in future anticancer applications. In this paper, we summarized relative mechanisms concerning the relationship between EVs and breast cancer drug resistance, and then, we provide up-to-date research advances in the clinical application of EVs.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Vesículas Extracelulares/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Neoplasias da Mama/diagnóstico , Resistencia a Medicamentos Antineoplásicos , Exossomos/fisiologia , Feminino , Humanos , MicroRNAs/fisiologia , Proteínas de Neoplasias/fisiologia
8.
Bioorg Med Chem ; 24(14): 3184-91, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27262425

RESUMO

We previously demonstrated that dibenzoylhydrazines (DBHs) are not only P-glycoprotein (P-gp) substrates, but also inhibitors. In the present study, we evaluated the inhibition of P-gp-mediated quinidine transport by two series of DBHs and performed a classical QSAR analysis and docking simulation in order to investigate the mechanisms underlying P-gp substrate/inhibitor recognition. The results of the QSAR analysis identified the hydrophobic factor as the most important for inhibitory activities, while electronic and steric effects also influenced the activities. The different substituent effects observed in each series suggested the different binding modes of each series of DBHs, which was supported by the results of the docking simulation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Quinidina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células LLC-PK1 , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Suínos
9.
Bull Math Biol ; 78(6): 1218-37, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27337966

RESUMO

Resistance to chemotherapy is a major cause of cancer treatment failure. The processes of resistance induction and selection of resistant cells (due to the over-expression of the membrane transporter P-glycoprotein, P-gp) are well documented in the literature, and a number of mathematical models have been developed. However, another process of transfer of resistant characteristics is less well known and has received little attention in the mathematical literature. In this paper, we discuss the potential of simple mathematical models to describe the process of resistance transfer, specifically P-gp transfer, in mixtures of resistant and sensitive tumor cell populations. Two different biological hypotheses for P-gp transfer are explored: (1) exchange through physical cell-cell connections and (2) through microvessicles released to the culture medium. Two models are developed which fit very well the observed population growth dynamics. The potential and limitations of these simple "global" models to describe the aforementioned biological processes involved are discussed on the basis of the results obtained.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Modelos Biológicos , Neoplasias/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Transporte Biológico Ativo , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Micropartículas Derivadas de Células/fisiologia , Humanos , Modelos Logísticos , Conceitos Matemáticos , Neoplasias/patologia , Neoplasias/fisiopatologia
10.
Genet Mol Res ; 15(2)2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27323187

RESUMO

This study aims to investigate the role of P-glycoprotein (P-gp) expression level in drug resistance to disease-modifying anti-rheumatic drugs in refractory rheumatoid arthritis (RRA). We evaluated and compared the expression levels of P-gp in fibroblast-like synoviocyte (FLS) cells in patients with rheumatoid arthritis (RA) and osteoarthritis (OA), and investigated the potential mechanism of P-gp-induced multidrug resistance in RRA. Ten patients were enrolled and divided into two groups: six in the RA group and four in the OA group. The expression level of P-gp in FLS cells was detected by western blotting following cell culture. A linear correlation algorithm was used to assess the association between the level of P-gp and disease activity  (using DAS28 scoring), as well as the duration of methotrexate (MTX) treatment in the RRA patients. The level of P-gp in the RRA patients was markedly higher than that in the OA patients (P < 0.05, t = -4.179). There was a positive linear correlation between the P-gp level in FLS cells and the duration of MTX treatment in the RRA group (Г = 0.733, P < 0.05), whereas there was no significant correlation between the P-gp level and DAS28 scoring (Г = 0.206, P > 0.05). P-gp might be upregulated during the progression of RRA, which possibly correlates with the development of resistance to MTX.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Artrite Reumatoide/metabolismo , Resistência a Múltiplos Medicamentos , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Idoso , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/microbiologia , Células Cultivadas , Feminino , Fibroblastos , Humanos , Masculino , Metotrexato/uso terapêutico , Pessoa de Meia-Idade , Osteoartrite/tratamento farmacológico , Membrana Sinovial/citologia
11.
Biochim Biophys Acta ; 1846(2): 312-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25080053

RESUMO

Cancer complexity constantly challenges the way that clinicians manage breast cancer therapy. Tumor heterogeneity and intratumoral stroma characteristics allow cells with different phenotypes and deregulated apoptotic, proliferative and migration abilities to co-exist contributing to a disappointing therapeutic response. While new approaches are being associated with conventional chemotherapy, such as hormonal therapy or target monoclonal antibodies, recurrence and metastasization are still observed. Membrane transporters are the cell's first line of contact with anticancer drugs having a major role in multidrug resistance events. This structural-based activity enables the cell to be drug-resistant by decreasing drug intracellular concentration through an efflux-transport mechanism, mainly associated with overexpression of ATP-binding cassette (ABC) proteins. This review focuses on some of the important structural and biological properties of the malignant cell and tumor microenvironment, addressing the role of the membrane ABC transporters in therapeutic outcomes, and highlighting related molecular pathways that may represent meaningful target therapies.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Resistência a Múltiplos Medicamentos , Transição Epitelial-Mesenquimal , Exossomos , Feminino , Humanos , Transdução de Sinais , Microambiente Tumoral
12.
Cancer Sci ; 106(6): 747-756, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25867020

RESUMO

L-type amino acid transporter 1 (LAT1), overexpressed on the membrane of various tumor cells, is a potential target for tumor-targeting therapy. This study aimed to develop a LAT1-mediated chemotherapeutic agent. We screened doxorubicin modified by seven different large neutral amino acids. The aspartate-modified doxorubicin (Asp-DOX) showed the highest affinity (Km = 41.423 µmol/L) to LAT1. Aspartate was attached to the N-terminal of DOX by the amide bond with a free carboxyl and a free amino group on the α-carbon atom of the Asp residue. The product Asp-DOX was characterized by HPLC/MS. In vitro, Asp-DOX exerted stronger inhibition on the cancer cells overexpressing LAT1 and the uptake of Asp-DOX was approximately 3.5-fold higher than that of DOX in HepG2 cells. Pharmacokinetic data also showed that Asp-DOX was expressed over a longer circulation time (t1/2 = 49.14 min) in the blood compared to DOX alone (t1/2 = 15.12 min). In HepG2 and HCT116 tumor-bearing mice, Asp-DOX achieved 3.1-fold and 6.4-fold accumulation of drugs in tumor tissue, respectively, than those of the unmodified DOX. More importantly, treatment of tumor-bearing mice with Asp-DOX showed a significantly stronger inhibition of tumor growth than mice treated with free DOX in HepG2 tumor models. Furthermore, after Asp modification, Asp-DOX avoided MDR mediated by P-glycoprotein. These results suggested that the Asp-DOX modified drug may provide a new treatment strategy for tumors that overexpress LAT1 and MDR1.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Ácido Aspártico/química , Doxorrubicina/farmacocinética , Transportador 1 de Aminoácidos Neutros Grandes/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Animais , Transporte Biológico , Doxorrubicina/farmacologia , Células HCT116 , Células Hep G2 , Humanos , Camundongos , Relação Estrutura-Atividade , Distribuição Tecidual
13.
Drug Metab Dispos ; 43(11): 1795-804, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26354948

RESUMO

Permeability-glycoprotein (P-glycoprotein, P-gp), an efflux transporter at the human blood-brain barrier (BBB), is a significant obstacle to central nervous system (CNS) delivery of P-gp substrate drugs. Using positron emission tomography imaging, we investigated P-gp modulation at the human BBB by an approved P-gp inhibitor, quinidine, or the P-gp inducer, rifampin. Cerebral blood flow (CBF) and BBB P-gp activity were respectively measured by administration of (15)O-water followed by (11)C-verapamil. In a crossover design, healthy volunteers received quinidine and 11-29 days of rifampin treatment during different study periods. CBF and P-gp activity was measured in the absence (control; prior to quinidine treatment) and presence of P-gp modulation. At clinically relevant quinidine plasma concentrations, P-gp inhibition resulted in a 60% increase in (11)C-radioactivity distribution across the human BBB as measured by the brain extraction ratio (ER) of (11)C-radioactivity. Furthermore, the magnitude of BBB P-gp inhibition by quinidine was successfully predicted by a combination of in vitro and macaque data, but not by rat data. Although our findings demonstrated that quinidine did not completely inhibit P-gp at the human BBB, it has the potential to produce clinically significant CNS drug interactions with P-gp substrate drugs that exhibit a narrow therapeutic window and are significantly excluded from the brain by P-gp. Rifampin treatment induced systemic CYP3A metabolism of (11)C-verapamil; however, it reduced the ER by 6%. Therefore, we conclude that rifampin, at its usual clinical dose, cannot be used to induce P-gp at the human BBB to a clinically meaningful extent and is unlikely to cause inadvertent BBB-inductive drug interactions.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Tomografia por Emissão de Pósitrons , Quinidina/sangue , Rifampina/sangue , Adulto , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Estudos Cross-Over , Feminino , Humanos , Macaca , Masculino , Tomografia por Emissão de Pósitrons/métodos , Quinidina/farmacologia , Ratos , Rifampina/farmacologia , Adulto Jovem
14.
J Biol Regul Homeost Agents ; 29(2): 357-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26122223

RESUMO

Multidrug resistance (MDR) mediated by P-glycoprotein (Pgp) remains one of the major obstacles to effective cancer chemotherapy. Several chemosensitizers have been used in vivo and in vitro to reverse MDR but have exhibited several unwanted side effects. Antipsychotics are often administered to treat psychiatric disorders such as delirium, anxiety and sleep disorders in cancer patients during chemotherapy. The present in vitro study, examined the effects of two common antipsychotic compounds, haloperidol and risperidone, and a natural compound such as theobromine on reversing MDR Pgp-mediated, to evaluate their potential use as chemosensitizing agents. The human doxorubicin (doxo) resistant uterine sarcoma cells (MES-SA/Dx5) that overexpress Pgp (100-fold), were treated with the antipsychotic alone (1, 10 and 20 µM) or in combination with different concentrations of doxo (2, 4 and 8 µM). The accumulation and cytotoxicity of doxo (MTT assay) and cellular GSH content (GSH assay) in comparison with verapamil, a well-known Pgp inhibitor, used as reference molecule were examined. It was found that the three compounds significantly enhanced the intracellular accumulation of doxo in resistant cancer cells, when compared with cells receiving doxo alone (p<0.05). Furthermore, compounds showed strong potency to increase doxo cytotoxicity toward resistant MES-SA/Dx5 cells, when compared with untreated control cells. The antipsychotic compounds also significantly increased GSH content at all concentrations (> 30%) in resistant cells, when compared to untreated control cells (p<0.05). These findings suggest that the antipsychotics or their derivatives might represent a novel class of reversal agents for overcoming MDR in cancer therapy, in particular theobromine showed to be an effective Pgp inhibitor with the lowest toxicity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antimetabólitos Antineoplásicos/uso terapêutico , Antipsicóticos/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Haloperidol/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Risperidona/farmacologia , Sarcoma/patologia , Teobromina/farmacologia , Neoplasias Uterinas/patologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glutationa/análise , Humanos , Proteínas de Neoplasias/fisiologia , Verapamil/farmacologia
15.
Drug Dev Ind Pharm ; 41(3): 375-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24303901

RESUMO

The administration of grapefruit juice (GFJ) has been postulated to inhibit the activity of P-glycoprotein (P-gp) transport system and thus can enhance the uptake of substrate drugs. However, for various reasons, the results obtained have been always swaying between confirmation and refutation. This study aims at re-evaluating the effect of lyophilized freshly-prepared grapefruit juice (LGFJ) prepared from the whole peeled fruit on P-gp activity using the model drug doxorubicin (DOX) in-vitro and timolol maleate (TM) in-vivo. Human uterine sarcoma MES-SA/DX5v cells, grown under nanomolar concentration of DOX and highly expressing P-gp, were used as model cells for in-vitro studies whereas white New Zealand male rabbits were used for in-vivo studies. Results showed that the accumulation of DOX in MES-SA/DX5v cells was increased by 18.3 ± 2.0% in presence of LGFJ compared to control experiments. Results from in-vivo absorption studies showed that the relative oral bioavailability of TM ingested with LGFJ was significantly higher by 70% and 43% compared to the oral bioavailability of TM ingested with saline and a commercial GFJ, respectively. This study as such confirms the inhibitory effects of LGFJ on P-gp efflux proteins and highlights the superiority of using lyophilized freshly prepared juices over the commercially available juices in research studies. Also, the results call for further studies to assess the possibility of co-administrating LGFJ with anti-cancer agents to modulate multidrug resistance in their cellular environment or incorporating LGFJ in solid dosage forms to improve oral bioavailability of drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Citrus paradisi , Interações Alimento-Droga/fisiologia , Preparações Farmacêuticas/metabolismo , Extratos Vegetais/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Liofilização/métodos , Humanos , Masculino , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Coelhos
16.
Eur J Drug Metab Pharmacokinet ; 40(2): 171-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696325

RESUMO

(R)-2-Amino-1,3',3'-trimethyl-7'-(pyrimidin-5-yl)-3',4'-dihydro-2'H-spiro[imidazole-4,1'-naphthalen]-5(1H)-one (GNE-892) is an orally administered inhibitor of ß-secretase 1 (ß-site amyloid precursor protein cleaving enzyme 1, BACE1) that was developed as an intervention therapy against Alzheimer's disease. A clinical microdosing strategy was being considered for de-risking the potential pharmacokinetic liabilities of GNE-892. We tested whether dose-proportionality was observed in cynomolgus monkey as proof-of-concept for a human microdosing study. With cryopreserved monkey hepatocytes, concentration-dependency for substrate turnover and the relative contribution of P450- versus AO-mediated metabolism were observed. Characterization of the kinetics of these metabolic pathways demonstrated differences in the affinities of P450 and AO for GNE-892, which supported the metabolic profiles that had been obtained. To test if this metabolic shift occurred in vivo, mass balance studies in monkeys were conducted at doses of 0.085 and 15 mg/kg. Plasma exposure of GNE-892 following oral administration was more than 20-fold greater than dose proportional at the high-dose. P-gp-mediated efflux was unable to explain the discrepancy. The profiles of metabolites in circulation and excreta were indicative that oxidative metabolism limited the exposure to unchanged GNE-892 at the low dose. Further, the in vivo data supported the concentration-dependent metabolic shift between P450 and AO. In conclusion, microdosing of GNE-892 was not predictive of pharmacokinetics at a more pharmacologically relevant dose due to saturable absorption and metabolism. Therefore, it is important to consider ADME liabilities and their potential concentration-dependency when deciding upon a clinical microdosing strategy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Aldeído Oxidase/fisiologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Sistema Enzimático do Citocromo P-450/fisiologia , Inibidores Enzimáticos/metabolismo , Imidazóis/metabolismo , Compostos de Espiro/metabolismo , Animais , Macaca fascicularis , Masculino
17.
Zhongguo Zhong Yao Za Zhi ; 40(3): 543-9, 2015 Feb.
Artigo em Zh | MEDLINE | ID: mdl-26084185

RESUMO

HPLC-ELSD was applied to explore the absorption mechanism of pulchinenosides (B3, BD, B7, B10, B11) in rats. The experimental results showed that the absorption rate constant, Ka value (B3, BD) and Permeability coefficient, Peff value (B3, B7) displayed significant difference (P <0.05) in various intestinal segments, The Ka value and Peff value of PRS was different from each other with the highest absorption in duodenum (duodenum > jejunum > colon > ileum); The PRS displayed excessive satuation as the concentration increased over 0.05-2.5 g · L(-1). There were no obvious linear correlations between Peff values and concentrations in duodenum (0.6007 ≤ R2 ≤ 0.7727); Ka and Peff value declined when the PRS was perfused with P-glycoprotein promoter digoxin, on the other hand, inclined when perfused with P-glycoprotein inhibitor verapamil with significant difference among PRS B3, BD, B7, B11 (P <0.05). All the above results demonstrated that B3, BD, B7 were greatly influenced by absorption sites, duodenum was the main absorption site; PRS didn't entirely transported in a concentration dependent manner, and the transporter-protein involved the transportation, so the intestinal absorption of the five pulchinenosides was not entirely passive diffusion; and PRS might be the substrates of P-glycoprotein.


Assuntos
Absorção Intestinal , Ácido Oleanólico/farmacocinética , Pulsatilla/química , Saponinas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Animais , Masculino , Ratos , Ratos Wistar
18.
J Biol Chem ; 288(31): 22576-83, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23754276

RESUMO

A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Antimaláricos/farmacologia , Plasmodium falciparum/fisiologia , Raios Ultravioleta , Animais
19.
Antimicrob Agents Chemother ; 58(3): 1713-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24379203

RESUMO

The blood-testis barrier and blood-brain barrier are responsible for protecting the male genital tract and central nervous system from xenobiotic exposure. In HIV-infected patients, low concentrations of antiretroviral drugs in cerebrospinal fluid and seminal fluid have been reported. One mechanism that may contribute to reduced concentrations is the expression of ATP-binding cassette drug efflux transporters, such as P-glycoprotein (P-gp). The objective of this study was to investigate in vivo the tissue distribution of the HIV protease inhibitor atazanavir in wild-type (WT) mice, P-gp/breast cancer resistance protein (Bcrp)-knockout (Mdr1a-/-, Mdr1b-/-, and Abcg2-/- triple-knockout [TKO]) mice, and Cyp3a-/- (Cyp) mice. WT mice and Cyp mice were pretreated with a P-gp/Bcrp inhibitor, elacridar (5 mg/kg of body weight), and the HIV protease inhibitor and boosting agent ritonavir (2 mg/kg intravenously [i.v.]), respectively. Atazanavir (10 mg/kg) was administered i.v. Atazanavir concentrations in plasma (Cplasma), brain (Cbrain), and testes (Ctestes) were quantified at various times by liquid chromatography-tandem mass spectrometry. In TKO mice, we demonstrated a significant increase in atazanavir Cbrain/Cplasma (5.4-fold) and Ctestes/Cplasma (4.6-fold) ratios compared to those in WT mice (P<0.05). Elacridar-treated WT mice showed a significant increase in atazanavir Cbrain/Cplasma (12.3-fold) and Ctestes/Cplasma (13.5-fold) ratios compared to those in vehicle-treated WT mice. In Cyp mice pretreated with ritonavir, significant (P<0.05) increases in atazanavir Cbrain/Cplasma (1.8-fold) and Ctestes/Cplasma (9.5-fold) ratios compared to those in vehicle-treated WT mice were observed. These data suggest that drug efflux transporters, i.e., P-gp, are involved in limiting the ability of atazanavir to permeate the rodent brain and genital tract. Since these transporters are known to be expressed in humans, they could contribute to the low cerebrospinal and seminal fluid antiretroviral concentrations reported in the clinic.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Encéfalo/metabolismo , Inibidores da Protease de HIV/farmacocinética , Oligopeptídeos/farmacocinética , Piridinas/farmacocinética , Túbulos Seminíferos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Sulfato de Atazanavir , Química Encefálica , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/fisiologia , Inibidores da Protease de HIV/análise , Inibidores da Protease de HIV/sangue , Masculino , Camundongos , Camundongos Knockout , Oligopeptídeos/análise , Oligopeptídeos/sangue , Piridinas/análise , Piridinas/sangue , Ritonavir/análise , Ritonavir/sangue , Ritonavir/farmacocinética , Túbulos Seminíferos/química , Testículo/química , Testículo/metabolismo
20.
Drug Metab Dispos ; 42(4): 482-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24398459

RESUMO

The study objectives were 1) to test the hypothesis that the lack of P-glycoprotein (P-gp) and the inhibition of breast cancer resistance protein (Bcrp) at the blood-brain barrier after cassette dosing of potent P-gp and Bcrp inhibitors were due to low plasma concentrations of those inhibitors and 2) to examine the effects of P-gp on the unbound brain (C(u,brain)) and cerebrospinal fluid (CSF) concentrations (C(u,CSF)) of P-gp substrates in rats. In vitro inhibition of 11 compounds (amprenavir, citalopram, digoxin, elacridar, imatinib, Ko143 [(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester], loperamide, prazosin, quinidine, sulfasalazine, and verapamil) on P-gp and Bcrp was examined in P-gp- and Bcrp-expressing Madin-Darby canine kidney cells, respectively. An in vivo study was conducted in wild-type and Mdr1a(-/-) rats after subcutaneous cassette dosing of the 11 compounds at 1-3 mg/kg, and the brain, CSF, and plasma concentrations of these compounds were determined. At the maximal unbound concentrations observed in rats at 1-3 mg/kg, P-gp and Bcrp were not inhibited by a cassette of the 11 compounds. For non-P-gp/Bcrp substrates, similar C(u,brain), C(u,CSF), and unbound plasma concentrations (C(u,plasma)) were observed in wild-type and P-gp knockout rats. For P-gp/Bcrp substrates, C(u,brain) ≤ C(u,CSF) ≤ C(u,plasma) in wild-type rats, but C(u,brain) and C(u,CSF) increased in the P-gp knockout rats and were within 3-fold of C(u,plasma) for six of the seven P-gp substrates. These results indicate that P-gp and Bcrp inhibition at the blood-brain barrier is unlikely in cassette dosing and also suggest that P-gp and Bcrp activity at the blood-CSF barrier is functionally not important in determination of the CSF concentration for their substrates.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Encéfalo/metabolismo , Preparações Farmacêuticas , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Animais Geneticamente Modificados , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Técnicas de Cultura de Células , Cães , Técnicas de Inativação de Genes , Células Madin Darby de Rim Canino , Masculino , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/líquido cefalorraquidiano , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA