Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Fish Shellfish Immunol ; 145: 109306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122955

RESUMO

Moritella viscosa (M. viscosa) is one of the major etiological agents of winter-ulcers in Atlantic salmon (Salmo salar) in Norway. Outbreaks of ulcerative disease in farmed fish occur across the North Atlantic region, causing reduced animal welfare and economical challenges, and are of hindrance for sustainable growth within the industry. Commercially available multivalent core vaccines containing inactivated bacterin of M. viscosa reduce mortality and clinical signs related to winter ulcer disease. It has previously been described two major genetic clades within M. viscosa, typical (hereafter referred to as classic) and variant, based on gyrB sequencing. In addition, there are phenotypical traits such as viscosity that may differ between different types of isolates. Western blot using salmon plasma showed that classic non-viscous strains are antigenically different from the classic viscous type included in core vaccines. Further, Western blot also showed that there are similarities in binding patterns between Norwegian variant and classic non-viscous isolates, indicating they may be antigenically related. Vaccination-challenge trials using Norwegian gyrB-classic non-viscous isolates of M. viscosa, demonstrate that the isolates from the classic clade that are included in current commercial multivalent core vaccines, provide limited cross protection against the emerging non-viscous strains. However, a vaccine recently approved for marketing authorization in Norway, containing inactivated antigen of a variant M. viscosa strain, demonstrates reduced mortality as well as clinical signs caused by infections with the classic non-viscous M. viscosa isolated from outbreaks in Norwegian salmon farms. The study shows that there are antigenic similarities between variant and classic non-viscous types of M. viscosa, and these similarities are mirrored in the observed cross-protection in vaccination-challenge trials.


Assuntos
Doenças dos Peixes , Moritella , Salmo salar , Vacinas , Animais , Moritella/genética , Proteção Cruzada , Noruega
2.
Fish Shellfish Immunol ; 148: 109506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508541

RESUMO

Paecilomyces variotii (a filamentous fungus), is a promising novel protein source in fish feeds due to its high nutritional value. Also, P. variotii has Microbial-Associated Molecular Patterns (MAMPs) such as glucans and nucleic acids that could modulate the host's immune response. To understand the potential bioactive properties of this fungus in Atlantic salmon (Salmo salar), our study was conducted to evaluate the gene expression of immune-related biomarkers (e.g., cytokines, effector molecules and receptors) on primary cultures from salmon head kidney (HKLs) and spleen leukocytes (SLs) exposed to either UV inactivated or fractions from P. variotii with or without inactivated Moritella viscosa (a skin pathogen in salmonids). Moreover, the effect of the fermentation conditions and down-stream processing on the physical ultrastructure and cell wall glucan content of P. variotii was characterized. The results showed that drying had a significant effect on the cell wall ultrastructure of the fungi and the choice of fermentation has a significant effect on the quantity of ß-glucans in P. variotii. Furthermore, stimulating Atlantic salmon HKLs and SLs with P. variotii and its fractions induced gene expression related to pro-inflammatory (tnfα, il1ß) and antimicrobial response (cath2) in HKLs, while response in SLs was related to both pro-inflammatory and regulatory response (tnfα, il6 and il10). Similarly, the stimulation with inactivated M. viscosa alone led to an up-regulation of genes related to pro-inflammatory (tnfα, il1ß, il6) antimicrobial response (cath2), intra-cellular signalling and recognition of M. viscosa (sclra, sclrb) and a suppression of regulatory response (il10) in both HKLs and SLs. Interestingly, the co-stimulation of cells with P. variotii and M. viscosa induced immune homeostasis (il6, tgfß) and antimicrobial response (cath2) in SLs at 48h. Thus, P. variotii induces immune activation and cellular communication in Atlantic salmon HKLs and SLs and modulates M. viscosa induced pro-inflammatory responses in SLs. Taken together, the results from physical and chemical characterization of the fungi, along with the differential gene expression of key immune biomarkers, provides a theoretical basis for designing feeding trials and optimize diets with P. variotii as a functional novel feed ingredient for Atlantic salmon.


Assuntos
Anti-Infecciosos , Byssochlamys , Doenças dos Peixes , Moritella , Salmo salar , Animais , Moritella/genética , Interleucina-10 , Interleucina-6 , Fator de Necrose Tumoral alfa , Biomarcadores
3.
Fish Shellfish Immunol ; 149: 109606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705547

RESUMO

Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.


Assuntos
Processamento Alternativo , Copépodes , Doenças dos Peixes , Moritella , Salmo salar , Animais , Salmo salar/imunologia , Salmo salar/genética , Copépodes/fisiologia , Doenças dos Peixes/imunologia , Moritella/imunologia , Moritella/genética , Transcriptoma , Ectoparasitoses/veterinária , Ectoparasitoses/imunologia , Ectoparasitoses/genética
4.
Fish Shellfish Immunol ; 137: 108784, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37141956

RESUMO

Moritella viscosa is one on the major etiological agents of winter-ulcers in Atlantic salmon (Salmo salar) in Norway. Outbreaks of ulcerative disease in farmed fish occurs across the North Atlantic region and is an impeding factor for sustainable growth within the industry. Commercially available multivalent core vaccines containing inactivated bacterin of M. viscosa reduce mortality and clinical signs related to winter ulcer disease. Two major genetic clades within M. viscosa have previously been described based on gyrB sequencing, namely typical (hereafter referred to as classic) and variant. Vaccination-challenge trials using vaccines including either variant and or classic isolates of M. viscosa show that classic clade isolates included in current commercial multivalent core vaccines provide poor cross-protection against emerging variant strains, while variant strains confer high level of protection against variant M. viscosa but to a lesser extent to classic clade isolates. This demonstrates that future vaccine regimens should include a combination of strains from both clades.


Assuntos
Doenças dos Peixes , Moritella , Salmo salar , Animais , Úlcera , Moritella/genética , Vacinas Bacterianas , Vacinação/veterinária , Doenças dos Peixes/prevenção & controle
5.
Nature ; 541(7637): 421-424, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077870

RESUMO

Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways but is often difficult to define or predict. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lipídeos/química , Lipídeos/farmacologia , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Multimerização Proteica/efeitos dos fármacos , Sítios de Ligação/genética , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Moritella/química , Estabilidade Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Termodinâmica , Thermus thermophilus/química
6.
J Fish Dis ; 46(5): 535-543, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36787245

RESUMO

A Multi-Locus Variable number of tandem repeat Analysis (MLVA) genotyping scheme was developed for the epidemiological study of Moritella viscosa, which causes 'winter ulcer' predominantly in sea-reared Atlantic salmon (Salmo salar L.). The assay involves multiplex PCR amplification of six Variable Number of Tandem Repeat (VNTR) loci, followed by capillary electrophoresis and data interpretation. A collection of 747 spatiotemporally diverse M. viscosa isolates from nine fish species was analysed, the majority from farmed Norwegian salmon. MLVA distributed 76% of the isolates across three major clonal complexes (CC1, CC2 and CC3), with the remaining forming minor clusters and singletons. While 90% of the salmon isolates belong to either CC1, CC2 or CC3, only 20% of the isolates recovered from other fish species do so, indicating a considerable degree of host specificity. We further highlight a series of 'clonal shifts' amongst Norwegian salmon isolates over the 35-year sampling period, with CC1 showing exclusive predominance prior to the emergence of CC2, which was later supplanted by CC3, before the recent re-emergence of CC1. Apparently, these shifts have rapidly swept the entire Norwegian coastline and conceivably, as suggested by typing of a small number of non-Norwegian isolates, the Northeast Atlantic region as a whole.


Assuntos
Doenças dos Peixes , Moritella , Salmo salar , Animais , Genótipo , Agricultura
7.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232934

RESUMO

A new phospholipase D from marine Moritella sp. JT01 (MsPLD) was recombinantly expressed and biochemically characterized. The optimal reaction temperature and pH of MsPLD were determined to be 35 °C and 8.0. MsPLD was stable at a temperature lower than 35 °C, and the t1/2 at 4 °C was 41 days. The crystal structure of apo-MsPLD was resolved and the functions of a unique extra loop segment on the enzyme activity were characterized. The results indicated that a direct deletion or fastening of the extra loop segment by introducing disulfide bonds both resulted in a complete loss of its activity. The results of the maximum insertion pressure indicated that the deletion of the extra loop segment significantly decreased MsPLD's interfacial binding properties to phospholipid monolayers. Finally, MsPLD was applied to the synthesis of phosphatidic acid by using a biphasic reaction system. Under optimal reaction conditions, the conversion rate of phosphatidic acid reached 86%. The present research provides a foundation for revealing the structural-functional relationship of this enzyme.


Assuntos
Moritella , Fosfolipase D , Cristalização , Dissulfetos , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232620

RESUMO

Mining of Phospholipase D (PLD) with high activity and stability has attracted strong interest for investigation. A novel PLD from marine Moritella sp. JT01 (MsPLD) was biochemically and structurally characterized in our previous study; however, the short half-life time (t1/2) under its optimum reaction temperature seriously hampered its further applications. Herein, the disulfide bond engineering strategy was applied to improve its thermostability. Compared with wild-type MsPLD, mutant S148C-T206C/D225C-A328C with the addition of two disulfide bonds exhibited a 3.1-fold t1/2 at 35 °C and a 5.7 °C increase in melting temperature (Tm). Unexpectedly, its specific activity and catalytic efficiency (kcat/Km) also increased by 22.7% and 36.5%, respectively. The enhanced activity might be attributed to an increase in the activation entropy by displacing more water molecules by the transition state. The results of molecular dynamics simulations (MD) revealed that the introduction of double disulfide bonds rigidified the global structure of the mutant, which might cause the enhanced thermostability. Finally, the synthesis capacity of the mutant to synthesize phosphatidic acid (PA) was evaluated. The conversion rate of PA reached about 80% after 6 h reaction with wild-type MsPLD but reached 78% after 2 h with mutant S148C-T206C/D225C-A328C, which significantly reduced the time needed for the reaction to reach equilibrium. The present results pave the way for further application of MsPLD in the food and pharmaceutical industries.


Assuntos
Moritella , Fosfolipase D , Dissulfetos/química , Estabilidade Enzimática , Ácidos Fosfatídicos , Fosfolipase D/genética , Engenharia de Proteínas/métodos , Temperatura , Água
9.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232504

RESUMO

Moritella viscosa is a bacterial pathogen causing winter-ulcer disease in Atlantic salmon. The lesions on affected fish lead to increased mortality, decreased fish welfare, and inferior meat quality in farmed salmon. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional regulation by guiding the miRNA-induced silencing complex to specific mRNA transcripts (target genes). The goal of this study was to identify miRNAs responding to Moritella viscosa in salmon by investigating miRNA expression in the head-kidney and the muscle/skin from lesion sites caused by the pathogen. Protein coding gene expression was investigated by microarray analysis in the same materials. Seventeen differentially expressed guide-miRNAs (gDE-miRNAs) were identified in the head-kidney, and thirty-nine in lesion sites, while the microarray analysis reproduced the differential expression signature of several thousand genes known as infection-responsive. In silico target prediction and enrichment analysis suggested that the gDE-miRNAs were predicted to target genes involved in immune responses, hemostasis, angiogenesis, stress responses, metabolism, cell growth, and apoptosis. The majority of the conserved gDE-miRNAs (e.g., miR-125, miR-132, miR-146, miR-152, miR-155, miR-223 and miR-2188) are known as infection-responsive in other vertebrates. Collectively, the findings indicate that gDE-miRNAs are important post-transcriptional gene regulators of the host response to bacterial infection.


Assuntos
MicroRNAs , Moritella , Salmo salar , Animais , Rim Cefálico/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Salmo salar/genética , Salmo salar/metabolismo
10.
Biochemistry ; 59(50): 4735-4743, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33283513

RESUMO

Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential ingredients of the human diet. They are synthesized by LC-PUFA synthases (PFASs) expressed in marine bacteria and other organisms. PFASs are large enzyme complexes that are homologous to mammalian fatty acid synthases and microbial polyketide synthases. One subunit of each PFAS harbors consecutive ketosynthase (KSc) and chain length factor (CLF) domains that collectively catalyze the elongation of a nascent fatty acyl chain via iterative carbon-carbon bond formation. We report the X-ray crystal structure of the KS-CLF didomain from a well-studied PFAS in Moritella marina. Our structure, in combination with biochemical analysis, provides a foundation for understanding the mechanism of substrate recognition and chain length control by the KS-CLF didomain as well as its interaction with a cognate acyl carrier protein partner.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos Insaturados/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Vias Biossintéticas , Domínio Catalítico/genética , Cristalografia por Raios X , Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos Insaturados/química , Humanos , Espectrometria de Massas , Modelos Moleculares , Moritella/enzimologia , Moritella/genética , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato
11.
Mar Drugs ; 18(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033203

RESUMO

The mucus of fish skin plays a vital role in innate immune defense. Some mucus proteins have the potential to incapacitate pathogens and/or inhibit their passage through the skin. In this study the aim was to isolate and characterize galectin(s), ß-galactosides binding proteins, present in skin mucus. A novel short form of galectin-3 was isolated from Atlantic salmon skin mucus by α-lactose agarose based affinity chromatography followed by Sephadex G-15 gel filtration. Mass spectrometric analysis showed that the isolated protein was the C-terminal half of galectin-3 (galectin-3C). Galectin-3C showed calcium independent and lactose inhabitable hemagglutination, and agglutinated the Gram-negative pathogenic bacteria Moritella viscosa. Galectin-3 mRNA was highly expressed in skin and gill, followed by muscle, hindgut, spleen, stomach, foregut, head kidney, and liver. Moritella viscosa incubated with galectin-3C had a modified proteome. Proteins with changed abundance included multidrug transporter and three ribosomal proteins L7/12, S2, and S13. Overall, this study shows the isolation and characterization of a novel galectin-3 short form involved in pathogen recognition and modulation, and hence in immune defense of Atlantic salmon.


Assuntos
Galectina 3/imunologia , Galectina 3/metabolismo , Moritella/efeitos dos fármacos , Muco/metabolismo , Aglutinação , Animais , Proteínas de Transporte , Proteínas de Peixes , Galectina 3/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Imunidade Inata , Peptídeos , Domínios e Motivos de Interação entre Proteínas , Proteoma , Salmo salar/metabolismo , Pele/metabolismo
12.
J Fish Dis ; 43(4): 459-473, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100325

RESUMO

This study was conducted to determine the effects of a co-infection with Moritella viscosa at different exposure levels of sea lice Lepeophtheirus salmonis in Atlantic salmon (Salmo salar). M. viscosa (1.14 × 106  cfu/ml) was introduced to all experimental tanks at 10 days post-lice infection (dpLs). Mean lice counts decreased over time in both the medium lice co-infection (31.5 ± 19.0 at 7 dpLs; 16.9 ± 9.3 at 46 dpLs) and high lice co-infection (62.0 ± 10.8 at 7 dpLs; 37.6 ± 11.3 at 46 dpLs). There were significantly higher mortalities and more severe skin lesions in the high lice co-infected group compared to medium lice co-infected group or M. viscosa-only infection. Quantitative gene expression analysis detected a significant upregulation of genes in skin from the high lice co-infection group consistent with severe inflammation (il-8, mmp-9, hep, saa). Skin lesions retrieved throughout the study were positive for M. viscosa growth, but these were rarely located in regions associated with lice. These results suggest that while M. viscosa infection itself may induce skin lesion development in salmon, co-infection with high numbers of lice can enhance this impact and significantly reduce the ability of these lesions to resolve, resulting in increased mortality.


Assuntos
Coinfecção/veterinária , Copépodes/fisiologia , Doenças dos Peixes/mortalidade , Infecções por Bactérias Gram-Negativas/veterinária , Moritella/fisiologia , Salmo salar , Dermatopatias Bacterianas/veterinária , Animais , Aquicultura , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/parasitologia , Feminino , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Infecções por Bactérias Gram-Negativas/mortalidade , Imunidade Inata , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/parasitologia , Inflamação/veterinária , Masculino , Dermatopatias Bacterianas/epidemiologia , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/parasitologia , Cicatrização/genética
13.
Dis Aquat Organ ; 133(2): 119-125, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31019136

RESUMO

Skin ulcers in Atlantic salmon Salmo salar in the Canadian east coast salmon aquaculture industry lead to high mortality rates. This condition is clinically similar to winter ulcer disease in Norway with the exception that it occurs at temperatures above 10°C. Moritella viscosa is thought to be the causative agent for winter ulcer disease in Norway, and it is occasionally also isolated from skin ulcer cases in Atlantic Canada. This bacterium is known to produce cytotoxins. The objective of this study was to determine if extracellular products (ECP) from an Atlantic Canadian strain of M. viscosa could induce a tissue response similar to what is observed with M. viscosa infections in Atlantic salmon in eastern Canada. We injected fish subcutaneously with ECP and monitored the development of skin lesions. We sampled fish with early skin lesions and ulcers to describe the pathology associated with the condition. Samples were taken for histopathology, bacterial culture, and quantitative PCR (qPCR). All experimental fish expressed early skin lesions, with 5 fish (8.3%) developing deep skin ulcers after 12 d post-exposure. Our results suggest the ECP of M. viscosa from the east coast of Canada induces a similar tissue response to what is described in ulcer disease in Atlantic salmon. These extracelluar products may partially explain the pathology associated with M. viscosa.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas/veterinária , Moritella , Salmo salar , Animais , Canadá , Noruega
14.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909394

RESUMO

Determining the effects of extreme conditions on proteins from "extremophilic" and mesophilic microbes is important for understanding how life adapts to living at extremes as well as how extreme conditions can be used for sterilization and food preservation. Previous molecular dynamics simulations of dihydrofolate reductase (DHFR) from a psychropiezophile (cold- and pressure-loving), Moritella profunda (Mp), and a mesophile, Escherichia coli (Ec), at various pressures and temperatures indicate that atomic fluctuations, which are important for enzyme function, increase with both temperature and pressure. Here, the factors that cause increases in atomic fluctuations in the simulations are examined. The fluctuations increase with temperature not only because of greater thermal energy and thermal expansion of the protein but also because hydrogen bonds between protein atoms are weakened. However, the increase in fluctuations with pressure cannot be due to thermal energy, which remains constant, nor the compressive effects of pressure, but instead, the hydrogen bonds are also weakened. In addition, increased temperature causes larger increases in fluctuations of the loop regions of MpDHFR than EcDHFR, and increased pressure causes both increases and decreases in fluctuations of the loops, which differ between the two.


Assuntos
Moritella/enzimologia , Pressão , Temperatura , Tetra-Hidrofolato Desidrogenase/química , Ativação Enzimática , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo
15.
J Fish Dis ; 41(11): 1751-1758, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30132897

RESUMO

Winter ulcer disease, caused by Moritella viscosa, is a significant problem in cold water salmonid farming, although the bacterium can infect and cause disease in a number of other fish species, such as lumpfish (Cyclopterus lumpus). Lumpfish are used as cleaner fish, to eat sea lice from Atlantic salmon (Salmo salar) in sea pens. It remains to be established whether M. viscosa can be transmitted between the fish species. In this study, we examined whether a salmon isolate of M. viscosa could infect and cause disease in lumpfish. We further examined whether a lumpfish isolate of M. viscosa could infect and cause disease in salmon. Finally, we examined whether vaccination of salmon with a salmon isolate of M. viscosa conferred protection against a lumpfish isolate. The data indicate that while lumpfish appeared to be resistant to a salmon isolate of M. viscosa, the salmon could be infected with a lumpfish isolate of M. viscosa. Vaccination protected the salmon against the salmon isolate of M. viscosa but did not confer sufficient protection to prevent infection with the lumpfish isolate.


Assuntos
Doenças dos Peixes/microbiologia , Peixes , Infecções por Bactérias Gram-Negativas/veterinária , Moritella/fisiologia , Animais , Infecções por Bactérias Gram-Negativas/microbiologia , Salmo salar
16.
Biochemistry ; 56(32): 4169-4176, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28731682

RESUMO

The main problem for enzymes from psychrophilic species, which need to work near the freezing point of liquid water, is the exponential decay of reaction rates as the temperature is decreased. Cold-adapted enzymes have solved this problem by shifting the activation enthalpy-entropy balance for the catalyzed reaction compared to those of their mesophilic orthologs. To understand the structural basis of this universal feature, it is necessary to examine pairs of such orthologous enzymes, with known three-dimensional structures, at the microscopic level. Here, we use molecular dynamics free energy calculations in combination with the empirical valence bond method to evaluate the temperature dependence of the activation free energy for differently adapted triosephosphate isomerases. The results show that the enzyme from the psychrophilic bacterium Vibrio marinus indeed displays the characteristic shift in enthalpy-entropy balance, compared to that of the yeast ortholog. The origin of this effect is found to be located in a few surface-exposed protein loops that show differential mobilities in the two enzymes. Key mutations render these loops more mobile in the cold-adapted triosephosphate isomerase, which explains both the reduced activation enthalpy contribution from the protein surface and the lower thermostability.


Assuntos
Proteínas de Bactérias/química , Temperatura Baixa , Moritella/enzimologia , Triose-Fosfato Isomerase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Moritella/química , Moritella/genética , Domínios Proteicos , Estrutura Secundária de Proteína , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
17.
BMC Genomics ; 18(1): 313, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28427330

RESUMO

BACKGROUND: Winter-ulcer Moritella viscosa infections continue to be a significant burden in Atlantic salmon (Salmo salar L.) farming. M. viscosa comprises two main clusters that differ in genetic variation and phenotypes including virulence. Horizontal gene transfer through acquisition and loss of mobile genetic elements (MGEs) is a major driving force of bacterial diversification. To gain insight into genomic traits that could affect sublineage evolution within this bacterium we examined the genome sequences of twelve M. viscosa strains. Matches between M. viscosa clustered, regularly interspaced, short palindromic, repeats and associated cas genes (CRISPR-Cas) were analysed to correlate CRISPR-Cas with adaptive immunity against MGEs. RESULTS: The comparative genomic analysis of M. viscosa isolates from across the North Atlantic region and from different fish species support delineation of M. viscosa into four phylogenetic lineages. The results showed that M. viscosa carries two distinct variants of the CRISPR-Cas subtype I-F systems and that CRISPR features follow the phylogenetic lineages. A subset of the spacer content match prophage and plasmid genes dispersed among the M. viscosa strains. Further analysis revealed that prophage and plasmid-like element distribution were reflected in the content of the CRISPR-spacer profiles. CONCLUSIONS: Our data suggests that CRISPR-Cas mediated interactions with MGEs impact genome properties among M. viscosa, and that patterns in spacer and MGE distributions are linked to strain relationships.


Assuntos
Sistemas CRISPR-Cas/genética , Peixes/microbiologia , Genômica , Moritella/genética , Animais , Evolução Molecular , Moritella/fisiologia , Moritella/virologia , Plasmídeos/genética , Prófagos/fisiologia
18.
J Comput Chem ; 38(15): 1174-1182, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28101963

RESUMO

A critical question about piezophilic (pressure-loving) microbes is how their constituent molecules maintain function under high pressure. Here, factors are examined that may lead to the increased activity under pressure in dihydrofolate reductase from the piezophilic Moritella profunda compared to the homologous enzyme from the mesophilic Escherichia coli. Molecular dynamics simulations are performed at various temperatures and pressures to examine how pressure affects the flexibility of the enzymes from these two microbes, since both stability and flexibility are necessary for enzyme activity. The results suggest that collective motions on the 10-ns timescale are responsible for the flexibility necessary for "corresponding states" activity at the growth conditions of the parent organism. In addition, the results suggest that while the lower stability of many enzymes from deep-sea microbes may be an adaptation for greater flexibility at low temperatures, high pressure may enhance their adaptation to low temperatures. © 2017 Wiley Periodicals, Inc.


Assuntos
Escherichia coli/enzimologia , Moritella/enzimologia , Tetra-Hidrofolato Desidrogenase/química , Escherichia coli/química , Cinética , Modelos Moleculares , Moritella/química , Pressão , Temperatura , Termodinâmica
19.
BMC Genomics ; 16: 447, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26059548

RESUMO

BACKGROUND: Aliivibrio wodanis and Moritella viscosa have often been isolated concurrently from fish with winter-ulcer disease. Little is known about the interaction between the two bacterial species and how the presence of one bacterial species affects the behaviour of the other. RESULTS: The impact on bacterial growth in co-culture was investigated in vitro, and the presence of A. wodanis has an inhibitorial effect on M. viscosa. Further, we have sequenced the complete genomes of these two marine Gram-negative species, and have performed transcriptome analysis of the bacterial gene expression levels from in vivo samples. Using bacterial implants in the fish abdomen, we demonstrate that the presence of A. wodanis is altering the gene expression levels of M. viscosa compared to when the bacteria are implanted separately. CONCLUSIONS: From expression profiling of the transcriptomes, it is evident that the presence of A. wodanis is altering the global gene expression of M. viscosa. Co-cultivation studies showed that A. wodanis is impeding the growth of M. viscosa, and that the inhibitorial effect is not contact-dependent.


Assuntos
Aliivibrio/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Moritella/crescimento & desenvolvimento , Salmo salar/microbiologia , Análise de Sequência de RNA/métodos , Aliivibrio/genética , Aliivibrio/isolamento & purificação , Animais , Técnicas de Cocultura , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Moritella/genética , Moritella/isolamento & purificação , Percepção de Quorum , RNA Bacteriano/análise , RNA Mensageiro/análise
20.
Biochemistry ; 53(29): 4769-74, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25014120

RESUMO

Dihydrofolate reductase (DHFR) is often used as a model system to study the relation between protein dynamics and catalysis. We have studied a number of variants of the cold-adapted DHFR from Moritella profunda (MpDHFR), in which the catalytically important M20 and FG loops have been altered, and present a comparison with the corresponding variants of the well-studied DHFR from Escherichia coli (EcDHFR). Mutations in the M20 loop do not affect the actual chemical step of transfer of hydride from reduced nicotinamide adenine dinucleotide phosphate to the substrate 7,8-dihydrofolate in the catalytic cycle in either enzyme; they affect the steady state turnover rate in EcDHFR but not in MpDHFR. Mutations in the FG loop also have different effects on catalysis by the two DHFRs. Despite the two enzymes most likely sharing a common catalytic cycle at pH 7, motions of these loops, known to be important for progression through the catalytic cycle in EcDHFR, appear not to play a significant role in MpDHFR.


Assuntos
Proteínas de Bactérias/química , Moritella/enzimologia , Tetra-Hidrofolato Desidrogenase/química , Proteínas de Bactérias/genética , Biocatálise , Escherichia coli/enzimologia , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , NADP/química , Oxirredução , Conformação Proteica , Especificidade da Espécie , Tetra-Hidrofolato Desidrogenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA