Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.477
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 206, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858614

RESUMO

OBJECTIVE: This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS: We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS: Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION: Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.


Assuntos
Mutação , Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Tuberculose , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , China/epidemiologia , Humanos , Tuberculose/transmissão , Tuberculose/microbiologia , Tuberculose/epidemiologia , Genoma Bacteriano , Feminino , Masculino , Proteínas de Bactérias/genética , Adulto
2.
Hum Mol Genet ; 30(R1): R146-R153, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33258469

RESUMO

For centuries, the Mycobacterium tuberculosis complex (MTBC) has infected numerous populations, both human and non-human, causing symptomatic tuberculosis (TB) in some hosts. Research investigating the MTBC and how it has evolved with its host over time is sparse and has not resulted in many significant findings. There are even fewer studies investigating adaptation of the human host susceptibility to TB and these have largely focused on genome-wide association and candidate gene association studies. However, results emanating from these association studies are rarely replicated and appear to be population specific. It is, therefore, necessary to relook at the approach taken to investigate the relationship between the MTBC and the human host. Understanding that the evolution of the pathogen is coupled to the evolution of the host might be the missing link needed to effectively investigate their relationship. We hypothesize that this knowledge will bolster future efforts in combating the disease.


Assuntos
DNA/genética , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Adaptação Fisiológica , Animais , Genética Populacional , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Humanos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose/genética , Tuberculose/veterinária
3.
Proc Natl Acad Sci U S A ; 117(15): 8494-8502, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32229570

RESUMO

Human tuberculosis is caused by members of the Mycobacterium tuberculosis complex (MTBC) that vary in virulence and transmissibility. While genome-wide association studies have uncovered several mutations conferring drug resistance, much less is known about the factors underlying other bacterial phenotypes. Variation in the outcome of tuberculosis infection and diseases has been attributed primarily to patient and environmental factors, but recent evidence indicates an additional role for the genetic diversity among MTBC clinical strains. Here, we used metabolomics to unravel the effect of genetic variation on the strain-specific metabolic adaptive capacity and vulnerability. To define the functionality of single-nucleotide polymorphisms (SNPs) systematically, we developed a constraint-based approach that integrates metabolomic and genomic data. Our model-based predictions correctly classify SNP effects in pyruvate kinase and suggest a genetic basis for strain-specific inherent baseline susceptibility to the antibiotic para-aminosalicylic acid. Our method is broadly applicable across microbial life, opening possibilities for the development of more selective treatment strategies.


Assuntos
Antituberculosos/farmacologia , Genômica/métodos , Interações Hospedeiro-Patógeno , Metaboloma , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Tuberculose/genética , Ácido Aminossalicílico/farmacologia , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Fenótipo , Filogenia , Piruvato Quinase/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Virulência
4.
BMC Microbiol ; 22(1): 50, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135478

RESUMO

BACKGROUND: Mycobacterium tuberculosis population in Russia is dominated by the notorious Beijing genotype whose major variants are characterized by contrasting resistance and virulence properties. Here we studied how these strain features could impact the progression of pulmonary tuberculosis (TB) concerning clinical manifestation and lethal outcome. RESULTS: The study sample included 548 M. tuberculosis isolates from 548 patients with newly diagnosed pulmonary TB in Omsk, West Siberia, Russia. Strains were subjected to drug susceptibility testing and genotyping to detect lineages, sublineages, and subtypes (within Beijing genotype). The Beijing genotype was detected in 370 (67.5%) of the studied strains. The strongest association with multidrug resistance (MDR) was found for epidemic cluster Beijing B0/W148 (modern sublineage) and two recently discovered MDR clusters 1071-32 and 14717-15 of the ancient Beijing sublineage. The group of patients infected with hypervirulent and highly lethal (in a mouse model) Beijing 14717-15 showed the highest rate of lethal outcome (58.3%) compared to Beijing B0/W148 (31.4%; P = 0.06), Beijing Central Asian/Russian (29.7%, P = 0.037), and non-Beijing (15.2%, P = 0.001). The 14717-15 cluster mostly included isolates from patients with infiltrative but not with fibrous-cavernous and disseminated TB. In contrast, a group infected with low virulent 1071-32-cluster had the highest rate of fibrous-cavernous TB, possibly reflecting the capacity of these strains for prolonged survival and chronicity of the TB process. CONCLUSIONS: The group of patients infected with hypervirulent and highly lethal in murine model 14717-15 cluster had the highest proportion of the lethal outcome (58.3%) compared to the groups infected with Beijing B0/W148 (31.4%) and non-Beijing (15.2%) isolates. This study carried out in the TB high-burden area highlights that not only drug resistance but also strain virulence should be considered in the implementation of personalized TB treatment.


Assuntos
Variação Genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/mortalidade , Adolescente , Adulto , Antituberculosos/farmacologia , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Federação Russa/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Virulência , Adulto Jovem
5.
Epidemiol Infect ; 150: e22, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35086603

RESUMO

Whole-genome sequencing (WGS) has shown tremendous potential in rapid diagnosis of drug-resistant tuberculosis (TB). In the current study, we performed WGS on drug-resistant Mycobacterium tuberculosis isolates obtained from Shanghai (n = 137) and Russia (n = 78). We aimed to characterise the underlying and high-frequency novel drug-resistance-conferring mutations, and also create valuable combinations of resistance mutations with high predictive sensitivity to predict multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) phenotype using a bootstrap method. Most strains belonged to L2.2, L4.2, L4.4, L4.5 and L4.8 lineages. We found that WGS could predict 82.07% of phenotypically drug-resistant domestic strains. The prediction sensitivity for rifampicin (RIF), isoniazid (INH), ethambutol (EMB), streptomycin (STR), ofloxacin (OFL), amikacin (AMK) and capreomycin (CAP) was 79.71%, 86.30%, 76.47%, 88.37%, 83.33%, 70.00% and 70.00%, respectively. The mutation combination with the highest sensitivity for MDR prediction was rpoB S450L + rpoB H445A/P + katG S315T + inhA I21T + inhA S94A, with a sensitivity of 92.17% (0.8615, 0.9646), and the mutation combination with highest sensitivity for XDR prediction was rpoB S450L + katG S315T + gyrA D94G + rrs A1401G, with a sensitivity of 92.86% (0.8158, 0.9796). The molecular information presented here will be of particular value for the rapid clinical detection of MDR- and XDR-TB isolates through laboratory diagnosis.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , China , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Federação Russa , Sensibilidade e Especificidade , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Sequenciamento Completo do Genoma
6.
J Cell Mol Med ; 25(22): 10504-10520, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34632719

RESUMO

Tuberculosis (TB) remains a worldwide healthcare concern, and the exploration of the host-pathogen interaction is essential to develop therapeutic modalities and strategies to control Mycobacterium tuberculosis (M.tb). In this study, RNA sequencing (transcriptome sequencing) was employed to investigate the global transcriptome changes in the macrophages during the different strains of M.tb infection. THP-1 cells derived from macrophages were exposed to the virulent M.tb strain H37Rv (Rv) or the avirulent M.tb strain H37Ra (Ra), and the M.tb BCG vaccine strain was used as a control. The cDNA libraries were prepared from M.tb-infected macrophages and then sequenced. To assess the transcriptional differences between the expressed genes, the bioinformatics analysis was performed using a standard pipeline of quality control, reference mapping, differential expression analysis, protein-protein interaction (PPI) networks, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Q-PCR and Western blot assays were also performed to validate the data. Our findings indicated that, when compared to BCG or M.tb H37Ra infection, the transcriptome analysis identified 66 differentially expressed genes in the M.tb H37Rv-infected macrophages, out of which 36 genes were up-regulated, and 30 genes were down-regulated. The up-regulated genes were associated with immune response regulation, chemokine secretion, and leucocyte chemotaxis. In contrast, the down-regulated genes were associated with amino acid biosynthetic and energy metabolism, connective tissue development and extracellular matrix organization. The Q-PCR and Western blot assays confirmed increased expression of pro-inflammatory factors, altered energy metabolic processes, enhanced activation of pro-inflammatory signalling pathways and increased pyroptosis in H37Rv-infected macrophage. Overall, our RNA sequencing-based transcriptome study successfully identified a comprehensive, in-depth gene expression/regulation profile in M.tb-infected macrophages. The results demonstrated that virulent M.tb strain H37Rv infection triggers a more severe inflammatory immune response associated with increased tissue damage, which helps in understanding the host-pathogen interaction dynamics and pathogenesis features in different strains of M.tb infection.


Assuntos
Vacina BCG/imunologia , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Transcriptoma , Biologia Computacional/métodos , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/classificação , Transdução de Sinais , Células THP-1 , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/microbiologia
7.
Proteins ; 89(11): 1473-1488, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34196044

RESUMO

In Gram-negative bacteria, the maintenance of lipid asymmetry (Mla) system is involved in the transport of phospholipids between the inner (IM) and outer membrane. The Mla system utilizes a unique IM-associated periplasmic solute-binding protein, MlaD, which possesses a conserved domain, MlaD domain. While proteins carrying the MlaD domain are known to be primarily involved in the trafficking of hydrophobic molecules, not much is known about this domain itself. Thus, in this study, the characterization of the MlaD domain employing bioinformatics analysis is reported. The profiling of the MlaD domain of different architectures reveals the abundance of glycine and hydrophobic residues and the lack of cysteine residues. The domain possesses a conserved N-terminal region and a well-preserved glycine residue that constitutes a consensus motif across different architectures. Phylogenetic analysis shows that the MlaD domain archetypes are evolutionarily closer and marked by the conservation of a functionally crucial pore loop located at the C-terminal region. The study also establishes the critical role of the domain-associated permeases and the driving forces governing the transport of hydrophobic molecules. This sheds sufficient light on the structure-function-evolutionary relationship of MlaD domain. The hexameric interface analysis reveals that the MlaD domain itself is not a sole player in the oligomerization of the proteins. Further, an operonic and interactome map analysis reveals that the Mla and the Mce systems are dependent on the structural homologs of the nuclear transport factor 2 superfamily.


Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana/química , Mycobacterium tuberculosis/metabolismo , Periplasma/metabolismo , Motivos de Aminoácidos , Arabidopsis/classificação , Arabidopsis/genética , Sítios de Ligação , Transporte Biológico , Membrana Celular/genética , Biologia Computacional/métodos , Sequência Conservada , Escherichia coli/classificação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Periplasma/genética , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
BMC Microbiol ; 21(1): 123, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33879047

RESUMO

BACKGROUND: Information on the genetic variability of drug resistant isolates of Mycobacterium tuberculosis is of paramount importance to understand transmission dynamics of disease and to improve TB control strategies. Despite of largest number of multidrug-resistant (MDR) tuberculosis cases (1, 30,000; 27% of the global burden), strains responsible for the expansion or development of drug-resistant Mycobacterium tuberculosis infections have been poorly characterized in India. Present study was aimed to investigate the genetic diversity in MDR isolates of Mycobacterium tuberculosis in North India. RESULTS: Spacer oligonucleotide typing (spoligotyping) was performed on 293 clinical MDR isolates of Mycobacterium tuberculosis recovered from cases of pulmonary tuberculosis from North India. Spoligotyping identified 74 distinct spoligotype patterns. Comparison with an international spoligotype database (spoldb4 database) showed that 240 (81.91%) and 32 (10.92%) strains displayed known and shared type patterns, while 21 (7.16%) strains displayed unique spoligotype patterns. Among the phylogeographic lineages, lineage 3 (East African-Indian) was found most predominant lineage (n = 159, 66.25%), followed by lineage 2 (East Asian; n = 34, 14.16%), lineage 1 (Indo-Oceanic; n = 30, 12.50%) and lineage 4 (Euro American; n = 17, 7.08%). Overall, CAS1_DEL (60.41%; SITs 2585, 26, 2694, 309, 381, 428, 1401, 141, 25, 1327) was found most pre-dominant spoligotype pattern followed by Beijing (14.16%; SITs255, 260, 1941, 269) and EAI3_IND (5.00%; SITs 298, 338, 11). The demographic and clinical characteristics were not found significantly associated with genotypic lineages of MDR-M.tuberculosis isolates recovered from pulmonary TB patients of North India. CONCLUSIONS: Present study reveals high genetic diversity among the Mycobacterium tuberculosis isolates and highlights that SIT141/CAS1_Del followed by SIT26/ Beijing lineage is the most common spoligotype responsible for the development and transmission of MDR-TB in North India. The high presence of shared type and unique spoligotype patterns of MDR strains indicates epidemiological significance of locally evolved strains in ongoing transmission of MDR-TB within this community which needs to be further monitored using robust molecular tools with high discriminatory power.


Assuntos
Variação Genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia , Técnicas de Tipagem Bacteriana , Genótipo , Humanos , Índia , Mycobacterium tuberculosis/classificação
9.
Trop Med Int Health ; 26(9): 1057-1067, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107112

RESUMO

OBJECTIVES: Differences among Mycobacterium tuberculosis complex (MTC) species may predict drug resistance or treatment success. Thus, we optimised and deployed the genotype MTBC assay (gMTBC) to identify MTC to the species level, and then performed comparative genotypic drug-susceptibility testing to anti-tuberculosis drugs from direct sputum of patients with presumed multidrug-resistant tuberculosis (MDR-TB) by the MTBDRplus/sl reference method. METHODS: Patients with positive Xpert® MTB/RIF (Xpert) results were consented to provide early-morning-sputum for testing by the gMTBC and the reference MTBDRplus/sl. Chi-square or Fisher's exact test compared proportions. Modified Poisson regression modelled detection of MTC by gMTBC. RESULTS: Among 73 patients, 53 (73%) were male and had a mean age of 43 (95% CI; 40-45) years. In total, 34 (47%), 36 (49%) and 38 (55%) had positive gMTBC, culture and MTBDR respectively. Forty patients (55%) had low quantity MTC by Xpert, including 31 (78%) with a negative culture. gMTBC was more likely to be positive in patients with chest cavity 4.18 (1.31-13.32, P = 0.016), high-quantity MTC by Xpert 3.03 (1.35-6.82, P = 0.007) and sputum smear positivity 1.93 (1.19-3.14, P = 0.008). The accuracy of gMTBC in detecting MTC was 95% (95% CI; 86-98; κ = 0.89) compared to MTBDRplus/sl. All M. tuberculosis/canettii identified by gMTB were susceptible to fluoroquinolone and aminoglycosides/capreomycin. CONCLUSIONS: The concordance between the gMTBC assay and MTBDRplus/sl in detecting MTC was high but lagged behind the yield of Xpert MTB/RIF. All M. tuberculosis/canettii were susceptible to fluoroquinolones, a core drug in MDR-TB treatment regimens.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Genótipo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/genética , Adulto , Antituberculosos/farmacologia , Estudos Transversais , Feminino , Fluoroquinolonas/farmacologia , Humanos , Isoniazida/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Especificidade da Espécie , Tanzânia/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
10.
Arch Microbiol ; 203(5): 2171-2182, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33620522

RESUMO

In Mycobacterium tuberculosis, heparin-binding hemagglutinin (HBHAMT) has a relevant role in infection. It is also present in non-virulent mycobacteria and ancient actinobacteria, such as Rhodococcus opacus. To have a better understanding of the underlying mechanisms that shaped the evolutionary divergence of these proteins, we performed a comprehensive phylogenetic analysis of the regulatory sequences that drive the expression of hbha in saprophytic and pathogenic mycobacterial species. The alignment of the hbha loci showed the appearance of intergenic sequences containing regulatory elements upstream the hbha gene; this sequence arrangement is present only in slow-growing pathogenic mycobacteria. The heterologous expression of HBHAMT in oleaginous R. opacus PD630 results in protein binding to lipid droplets, as it happens with HBHA proteins from saprophytic mycobacteria. We hypothesize that mycobacterial hbha gene cluster underwent functional divergence during the evolutionary differentiation of slow-growing pathogenic mycobacteria. We propose here an evolutionary scenario to explain the structural and functional divergence of HBHA in fast and slow-growing mycobacteria.


Assuntos
Lectinas/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Fatores de Virulência/genética , Evolução Molecular , Gotículas Lipídicas/metabolismo , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/metabolismo , Filogenia , Ligação Proteica/fisiologia , Rhodococcus/genética
11.
Epidemiol Infect ; 149: e134, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34006336

RESUMO

Hong Kong is an intermediate tuberculosis (TB) burden city in Asia Pacific with slow decline of case notification in the last decade. By 24-loci mycobacterial interspersed repetitive units - variable number of tandem repeats genotyping, we examined 534 Mycobacterium tuberculosis isolates collected from culture-positive hospitalised TB patients in a 1.7 million population geographic region in the city. Overall, 286 (75%) were classified as Beijing genotype, of which 216 (76%) and 59 (21%) belonged to modern and ancient sub-lineage, respectively. Only two cases were genetically clustered while spatial clustering was absent. Male gender, permanent residency in Hong Kong and born in Hong Kong or Mainland China were associated with Beijing genotype. The high prevalence of Beijing modern lineage was similar to that in East Asia, which reflected the pattern resulting from population migration. The paucity of clustering suggested that reactivation accounted for most of the TB disease cases, which was and echoed by observation that half were 60 years old or above, and the presence of co-morbid medical conditions. The predominance of reactivation TB cases in intermediate burden localities implies that the detection and control of latent TB infection would be the major challenge in achieving TB elimination.


Assuntos
Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Efeitos Psicossociais da Doença , DNA Bacteriano/genética , Notificação de Doenças/estatística & dados numéricos , Feminino , Genótipo , Hong Kong/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites/genética , Epidemiologia Molecular , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Prevalência , Tuberculose/microbiologia
12.
Mol Biol Rep ; 48(1): 1025-1031, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394225

RESUMO

Wild boars (Sus scrofa) are susceptible to mycobacterial infections, including tuberculous and non-tuberculous mycobacteria. Recently, Mycobacterium spp. infections were described in Brazilian wild boars, which can act as bacterial reservoirs. Here, we aim to characterize 15 Mycobacterium spp. isolates from Brazilian wild boars' tissues through partial sequencing of the heat shock protein 65 (hsp65) gene and phylogenetic analysis. The isolates were classified as M. tuberculosis (33.3%), M. colombiense (33.3%), M. avium subsp. hominissuis (13.3%), M. parmense (13.3%) and M. mantenii (6.66%). The isolates classified as M. tuberculosis were confirmed as variant bovis by PCR. At phylogenetic analysis some isolates formed separated clades, indicating genetic variability. Different Mycobacterium species were recovered from wild boars circulating in Brazil, including mycobacteria associated to zoonotic infections, such as M. tuberculosis. In addition, this is the first report in Brazilian wild boars on M. mantenii and M. parmense detection, two recently described pathogenic mycobacteria. However, the isolates' genetic diversity-i.e. identities lower than 100% when compared to reference sequences-suggests that other genotyping tools would allow a deeper characterization. Nonetheless, the reported data contributes to the knowledge on mycobacterial infections in wild boars from Brazil.


Assuntos
Mycobacterium tuberculosis/genética , Mycobacterium/genética , Doenças dos Suínos/epidemiologia , Tuberculose/veterinária , Animais , Brasil/epidemiologia , DNA Bacteriano/genética , Reservatórios de Doenças/microbiologia , Variação Genética , Humanos , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Análise de Sequência de DNA , Sus scrofa/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Tuberculose/epidemiologia , Tuberculose/microbiologia
13.
Proc Natl Acad Sci U S A ; 115(15): E3378-E3387, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581275

RESUMO

Mycobacterium tuberculosis (Mtb) grows on host-derived cholesterol during infection. IpdAB, found in all steroid-degrading bacteria and a determinant of pathogenicity, has been implicated in the hydrolysis of the last steroid ring. Phylogenetic analyses revealed that IpdAB orthologs form a clade of CoA transferases (CoTs). In a coupled assay with a thiolase, IpdAB transformed the cholesterol catabolite (R)-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA) and CoASH to 4-methyl-5-oxo-octanedioyl-CoA (MOODA-CoA) and acetyl-CoA with high specificity (kcat/Km = 5.8 ± 0.8 × 104 M-1⋅s-1). The structure of MOODA-CoA was consistent with IpdAB hydrolyzing COCHEA-CoA to a ß-keto-thioester, a thiolase substrate. Contrary to characterized CoTs, IpdAB exhibited no activity toward small CoA thioesters. Further, IpdAB lacks the catalytic glutamate residue that is conserved in the ß-subunit of characterized CoTs and a glutamyl-CoA intermediate was not trapped during turnover. By contrast, Glu105A, conserved in the α-subunit of IpdAB, was essential for catalysis. A crystal structure of the IpdAB·COCHEA-CoA complex, solved to 1.4 Å, revealed that Glu105A is positioned to act as a catalytic base. Upon titration with COCHEA-CoA, the E105AA variant accumulated a yellow-colored species (λmax = 310 nm; Kd = 0.4 ± 0.2 µM) typical of ß-keto enolates. In the presence of D2O, IpdAB catalyzed the deuteration of COCHEA-CoA adjacent to the hydroxylation site at rates consistent with kcat Based on these data and additional IpdAB variants, we propose a retro-Claisen condensation-like mechanism for the IpdAB-mediated hydrolysis of COCHEA-CoA. This study expands the range of known reactions catalyzed by the CoT superfamily and provides mechanistic insight into an important determinant of Mtb pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Hidrolases/metabolismo , Mycobacterium tuberculosis/enzimologia , Tuberculose/microbiologia , Fatores de Virulência/metabolismo , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Colesterol/química , Cristalografia por Raios X , Humanos , Hidrolases/química , Hidrolases/genética , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Filogenia , Tuberculose/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética
14.
Med Princ Pract ; 30(3): 277-284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33592621

RESUMO

OBJECTIVE: This study evaluated the performance of GeneXpert MTB/RIF (Xpert) and ProbeTec ET (PTec-ET) assays in diagnosing extrapulmonary tuberculosis (EPTB) in Kuwait. MATERIALS AND METHODS: We tested nonrespiratory clinical specimens (n = 3,995) collected from 3,995 patients suspected to have EPTB. These included cavitary fluids (n = 2,054), fine-needle aspirate (FNA)/pus/tissue biopsy (n = 1,461), urine (n = 302), cerebrospinal fluid (CSF, n = 118), and others (n = 60). All specimens were processed for acid-fast bacilli (AFB), culture in mycobacteria growth indicator tube 960 system, and nucleic acid detection by Xpert and PTec-ET according to manufacturer's instructions. RESULTS: Of 3,995 specimens, 95 were AFB-positive, 403 were culture-positive, and an additional 86 samples had histopathology suggestive of TB. Using culture as reference, the sensitivity and specificity values were 88.33 and 97.3% for Xpert and 72.95 and 97.80% for PTec-ET, respectively. Although performance of both tests was comparable in AFB-positive samples, Xpert detected significantly more cases in culture-positive samples. Among culture-negative samples, Xpert detected 18 more cases including 16 with histopathological evidence of TB. Lowest positivity was detected for both tests in cavitary fluids. Xpert performed better than PTec-ET in culture-positive FNA/pus/tissue biopsy and CSF samples. CONCLUSIONS: Although performance of both tests was suboptimal for AFB-negative/culture-positive samples, Xpert performed better than PTec-ET and also detected more cases of AFB-negative/culture-negative/histopathology-positive samples. PTec-ET was positive in 3, while Xpert was positive in all 6 culture-positive CSF specimens for rapid diagnosis of TB meningitis. Xpert was thus superior to PTec-ET or smear microscopy in rapid diagnosis of EPTB.


Assuntos
Tipagem Molecular/métodos , Mycobacterium tuberculosis/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Tuberculose Meníngea/diagnóstico , Tuberculose/diagnóstico , Humanos , Kuweit , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
World J Microbiol Biotechnol ; 37(11): 192, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637049

RESUMO

In India, the tribal population constitutes almost 8.6% of the nation's total population. Despite their large presence, there are only a few reports available on Mycobacterium tuberculosis (M. tb) strain prevalence in Indian tribal communities considering the mobile nature of this population and also the influence of the mainstream populations they coexist within many areas for their livelihood. This study attempts to provide critical information pertaining to the TB strain diversity, its public health implications, and distribution among the tribal population in eleven Indian states and Andaman & Nicobar (A&N) Island. The study employed a population-based molecular approach. Clinical isolates were received from 66 villages (10 states and Island) and these villages were selected by implying situation analysis. A total of 78 M. tb clinical isolates were received from 10 different states and A&N Island. Among these, 16 different strains were observed by spoligotyping technique. The major M. tb strains spoligotype belong to the Beijing, CAS1_DELHI, and EAI5 family of M. tb strains followed by EAI1_SOM, EAI6_BGD1, LAM3, LAM6, LAM9, T1, T2, U strains. Drug-susceptibility testing (DST) results showed almost 15.4% of clinical isolates found to be resistant to isoniazid (INH) or rifampicin (RMP) + INH. Predominant multidrug-resistant (MDR-TB) isolates seem to be Beijing strain. Beijing, CAS1_DELHI, EAI3_IND, and EAI5 were the principal strains infecting mixed tribal populations across India. Despite the small sample size, this study has demonstrated higher diversity among the TB strains with significant MDR-TB findings. Prevalence of Beijing MDR-TB strains in Central, Southern, Eastern India and A&N Island indicates the transmission of the TB strains.


Assuntos
Etnicidade , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Feminino , Genes Bacterianos , Humanos , Índia/epidemiologia , Ilhas , Masculino , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Prevalência , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
16.
J Infect Dis ; 221(10): 1636-1646, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31832640

RESUMO

Specific spatial organization of granulomas within the lungs is crucial for protective anti-tuberculosis (TB) immune responses. However, only large animal models such as macaques are thought to reproduce the morphological hallmarks of human TB granulomas. In this study, we show that infection of mice with clinical "hypervirulent" Mycobacterium tuberculosis (Mtb) HN878 induces human-like granulomas composed of bacilli-loaded macrophages surrounded by lymphocytes and organized localization of germinal centers and B-cell follicles. Infection with laboratory-adapted Mtb H37Rv resulted in granulomas that are characterized by unorganized clusters of macrophages scattered between lymphocytes. An in-depth exploration of the functions of B cells within these follicles suggested diverse roles and the activation of signaling pathways associated with antigen presentation and immune cell recruitment. These findings support the use of clinical Mtb HN878 strain for infection in mice as an appropriate model to study immune parameters associated with human TB granulomas.


Assuntos
Linfócitos B/fisiologia , Granuloma/microbiologia , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/microbiologia , Animais , Granuloma/patologia , Cadeias mu de Imunoglobulina/genética , Cadeias mu de Imunoglobulina/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Linfócitos/fisiologia , Macaca mulatta , Macrófagos/fisiologia , Camundongos Knockout , Tuberculose Pulmonar/patologia , Virulência
17.
Proteins ; 88(6): 809-815, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31833106

RESUMO

Trehalose monomycolate (TMM) represents an essential element of the mycobacterial envelope. While synthesized in the cytoplasm, TMM is transported across the inner membrane by MmpL3 but, little is known regarding the MmpL3 partners involved in this process. Recently, the TMM transport factor A (TtfA) was found to form a complex with MmpL3 and to participate in TMM transport, although its biological role remains to be established. Herein, we report the crystal structure of the Mycobacterium smegmatis TtfA core domain. The phylogenetic distribution of TtfA homologues in non-mycolate containing bacteria suggests that TtfA may exert additional functions.


Assuntos
Proteínas de Bactérias/química , Parede Celular/química , Fatores Corda/química , Proteínas de Membrana Transportadoras/química , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Parede Celular/metabolismo , Clonagem Molecular , Fatores Corda/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/classificação , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
BMC Genomics ; 21(1): 80, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992201

RESUMO

BACKGROUND: Mixed infections of Mycobacterium tuberculosis and antibiotic heteroresistance continue to complicate tuberculosis (TB) diagnosis and treatment. Detection of mixed infections has been limited to molecular genotyping techniques, which lack the sensitivity and resolution to accurately estimate the multiplicity of TB infections. In contrast, whole genome sequencing offers sensitive views of the genetic differences between strains of M. tuberculosis within a sample. Although metagenomic tools exist to classify strains in a metagenomic sample, most tools have been developed for more divergent species, and therefore cannot provide the sensitivity required to disentangle strains within closely related bacterial species such as M. tuberculosis. Here we present QuantTB, a method to identify and quantify individual M. tuberculosis strains in whole genome sequencing data. QuantTB uses SNP markers to determine the combination of strains that best explain the allelic variation observed in a sample. QuantTB outputs a list of identified strains, their corresponding relative abundances, and a list of drugs for which resistance-conferring mutations (or heteroresistance) have been predicted within the sample. RESULTS: We show that QuantTB has a high degree of resolution and is capable of differentiating communities differing by less than 25 SNPs and identifying strains down to 1× coverage. Using simulated data, we found QuantTB outperformed other metagenomic strain identification tools at detecting strains and quantifying strain multiplicity. In a real-world scenario, using a dataset of 50 paired clinical isolates from a study of patients with either reinfections or relapses, we found that QuantTB could detect mixed infections and reinfections at rates concordant with a manually curated approach. CONCLUSION: QuantTB can determine infection multiplicity, identify hetero-resistance patterns, enable differentiation between relapse and re-infection, and clarify transmission events across seemingly unrelated patients - even in low-coverage (1×) samples. QuantTB outperforms existing tools and promises to serve as a valuable resource for both clinicians and researchers working with clinical TB samples.


Assuntos
Biologia Computacional/métodos , Genoma Bacteriano , Genômica , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Sequenciamento Completo do Genoma , Algoritmos , Antituberculosos/farmacologia , Bases de Dados Genéticas , Farmacorresistência Bacteriana , Genômica/métodos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Filogenia , Polimorfismo de Nucleotídeo Único , Tuberculose/tratamento farmacológico
19.
PLoS Pathog ; 14(3): e1006939, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505613

RESUMO

Once considered a phenotypically monomorphic bacterium, there is a growing body of work demonstrating heterogeneity among Mycobacterium tuberculosis (Mtb) strains in clinically relevant characteristics, including virulence and response to antibiotics. However, the genetic and molecular basis for most phenotypic differences among Mtb strains remains unknown. To investigate the basis of strain variation in Mtb, we performed genome-wide transposon mutagenesis coupled with next-generation sequencing (TnSeq) for a panel of Mtb clinical isolates and the reference strain H37Rv to compare genetic requirements for in vitro growth across these strains. We developed an analytic approach to identify quantitative differences in genetic requirements between these genetically diverse strains, which vary in genomic structure and gene content. Using this methodology, we found differences between strains in their requirements for genes involved in fundamental cellular processes, including redox homeostasis and central carbon metabolism. Among the genes with differential requirements were katG, which encodes the activator of the first-line antitubercular agent isoniazid, and glcB, which encodes malate synthase, the target of a novel small-molecule inhibitor. Differences among strains in their requirement for katG and glcB predicted differences in their response to these antimicrobial agents. Importantly, these strain-specific differences in antibiotic response could not be predicted by genetic variants identified through whole genome sequencing or by gene expression analysis. Our results provide novel insight into the basis of variation among Mtb strains and demonstrate that TnSeq is a scalable method to predict clinically important phenotypic differences among Mtb strains.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose/genética , Elementos de DNA Transponíveis , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mycobacterium tuberculosis/classificação , Fenótipo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Sequenciamento Completo do Genoma
20.
Clin Chem ; 66(6): 809-820, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32402055

RESUMO

BACKGROUND: The emergence of Mycobacterium tuberculosis with complex drug resistance profiles necessitates a rapid and comprehensive drug susceptibility test for guidance of patient treatment. We developed two targeted-sequencing workflows based on Illumina MiSeq and Nanopore MinION for the prediction of drug resistance in M. tuberculosis toward 12 antibiotics. METHODS: A total of 163 M. tuberculosis isolates collected from Hong Kong and Ethiopia were subjected to a multiplex PCR for simultaneous amplification of 19 drug resistance-associated genetic regions. The amplicons were then barcoded and sequenced in parallel on MiSeq and MinION in respective batch sizes of 24 and 12 samples. A web-based bioinformatics pipeline, BacterioChek-TB, was developed to translate the raw datasets into clinician-friendly reports. RESULTS: Both platforms successfully sequenced all samples with mean read depths of 1,127× and 1,649×, respectively. The variant calling by MiSeq and MinION could achieve 100% agreement if variants with an allele frequency of <40% reported by MinION were excluded. Both workflows achieved a mean clinical sensitivity of 94.8% and clinical specificity of 98.0% when compared with phenotypic drug susceptibility test (pDST). Turnaround times for the MiSeq and MinION workflows were 38 and 15 h, facilitating the delivery of treatment guidance at least 17-18 days earlier than pDST, respectively. The higher cost per sample on the MinION platform ($71.56) versus the MiSeq platform ($67.83) was attributed to differences in batching capabilities. CONCLUSION: Our study demonstrates the interchangeability of MiSeq and MinION platforms for generation of accurate and actionable results for the treatment of tuberculosis.


Assuntos
Resistência a Medicamentos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mycobacterium tuberculosis/classificação , Análise de Sequência de DNA/métodos , Fluxo de Trabalho , Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Reação em Cadeia da Polimerase Multiplex , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA