Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32978134

RESUMO

Anaeromyxobacter sp. strain PSR-1, a dissimilatory arsenate [As(V)]-reducing bacterium, can utilize As(V) as a terminal electron acceptor for anaerobic respiration. A previous draft genome analysis revealed that strain PSR-1 lacks typical respiratory As(V) reductase genes (arrAB), which suggested the involvement of another protein in As(V) respiration. Dissimilatory As(V) reductase activity of strain PSR-1 was induced under As(V)-respiring conditions and was localized predominantly in the periplasmic fraction. The activity was visualized by partially denaturing gel electrophoresis, and liquid chromatography-tandem mass spectrometry analysis identified proteins involved in the active band. Among these proteins, a protein annotated as molybdopterin-dependent oxidoreductase (PSR1_00330) exhibited the highest sequence coverage, 76%. Phylogenetic analysis revealed that this protein was a homolog of tetrathionate reductase catalytic subunit TtrA. However, the crude extract of strain PSR-1 did not show significant tetrathionate reductase enzyme activity. Comparative proteomic analysis revealed that the protein PSR1_00330 and a homolog of tetrathionate reductase electron transfer subunit TtrB (PSR1_00329) were expressed abundantly and specifically under As(V)-respiring conditions, respectively. The genes encoding PSR1_00330 and PSR1_00329 formed an operon-like structure along with a gene encoding a c-type cytochrome (cyt c), and their transcription was upregulated under As(V)-respiring conditions. These results suggest that the protein PSR1_00330, which lacks tetrathionate reductase activity, functions as a dissimilatory As(V) reductase in strain PSR-1. Considering the wide distribution of TtrA homologs among bacteria and archaea, they may play a hitherto unknown role along with conventional respiratory As(V) reductase (Arr) in the biogeochemical cycling of arsenic in nature.IMPORTANCE Dissimilatory As(V)-reducing prokaryotes play significant roles in arsenic release and contamination in groundwater and threaten the health of people worldwide. Generally, such prokaryotes reduce As(V) by means of a respiratory As(V) reductase designated Arr. However, some dissimilatory As(V)-reducing prokaryotes such as Anaeromyxobacter sp. strain PSR-1 lack genes encoding Arr, suggesting the involvement of other protein in As(V) reduction. In this study, using multiple proteomic and transcriptional analyses, it was found that the dissimilatory As(V) reductase of strain PSR-1 was a protein closely related to the tetrathionate reductase catalytic subunit (TtrA). Tetrathionate reductase is known to play a role in anaerobic respiration of Salmonella on tetrathionate, but strain PSR-1 showed neither growth on tetrathionate nor significant tetrathionate reductase enzyme activity. These results suggest the possibility that TtrA homologs encoded in a wide variety of archaeal and bacterial genomes might function as dissimilatory As(V) reductases.


Assuntos
Arseniatos/metabolismo , Proteínas de Bactérias/metabolismo , Myxococcales/enzimologia , Oxirredutases/metabolismo , Oxirredução
2.
Biotechnol Lett ; 42(10): 2001-2009, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32488442

RESUMO

OBJECTIVE: To produce high concentrations of 13-hydroxy-14,15-epoxy-eicosatrienoic acid (14,15-hepoxilin B3, 14,15-HXB3) and 13,14,15-trihydroxy-eicosatrienoic acid (13,14,15-trioxilin B3, 13,14,15-TrXB3) from arachidonic acid (ARA) using microbial 15-lipoxygenase (15-LOX) without and with epoxide hydrolase (EH), respectively. RESULTS: The products obtained from the bioconversion of ARA by recombinant Escherichia coli cells containing Archangium violaceum 15-LOX without and with Myxococcus xanthus EH were identified as 14,15-HXB3 and 13,14,15-TrXB3, respectively. Under the optimal conditions of 30 g cells L-1, 200 mM ARA, 25 °C, and initial pH 7.5, the cells converted 200 mM ARA into 192 mM 14,15-HXB3 and 100 mM 13,14,15-TrXB3 for 150 min, with conversion yields of 96 and 51% and productivities of 77 and 40 mM h-1, respectively. CONCLUSION: These are the highest concentrations, productivities, and yields of hepoxilin and trioxilin from ARA reported thus far.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Araquidonato 15-Lipoxigenase/metabolismo , Ácidos Araquidônicos , Proteínas de Bactérias/metabolismo , Epóxido Hidrolases/metabolismo , Ácido 8,11,14-Eicosatrienoico/química , Ácido 8,11,14-Eicosatrienoico/metabolismo , Araquidonato 15-Lipoxigenase/genética , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Proteínas de Bactérias/genética , Epóxido Hidrolases/genética , Myxococcales/enzimologia , Myxococcales/genética , Myxococcus xanthus/enzimologia , Myxococcus xanthus/genética
3.
Protein Expr Purif ; 164: 105481, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31470096

RESUMO

The lamC gene encoding a novel ß-(1,3)-glucanase was cloned from Corallococcus sp. EGB and successfully expressed in the industrial yeast Pichia pastoris. The mature protein without the initial 26 residues of signal peptide, designated LamC27, was found to be composed of fascin-like module and laminarinase-like catalytic module. The purified recombinant enzyme (rLamC27) with a calculated molecular mass of 45.3 kDa displays activities toward a broad range of ß-linked polysaccharides, including laminarin, curdlan, pachyman, lichenan, and CMC. Enzymological characterization showed that rLamC27 performes its optimal activity under the condition of 45 °C and pH 7.0, respectively, and preferentially catalyzes the hydrolysis of glucans with a ß-1,3-linkage, which is similar to the LamC previously expressed in E. coli. TherLamC27 enzyme was activated by Mn2+ and Ba2+, while it was inhibited by Cu2+, Zn2+, and Co2+. Moreover, rLamC27 was strongly inhibited by 10 mM EDTA with 7.5% of its original activity remiaining, and weakly by SDS and Triton X-100. In antifungal assay, rLamC27 was conformed to possess lytic and antifungal activity against rice blast fungus. Specifically, a significant decrease germ tube and appressorium formation ratios from 94% to 59% and 97%-51%, respectively, were observed following exposure to rLamC27. H2DCFDA and CFW staining further demonstrated that the fungistasis capability of rLamC27 could be contributed by its ability to hydrolyze components of the cell wall. All these favorable properties indicate a promising potential for using rLamC27 as a biological antifungal agent in areas such as plant protection and food preservation.


Assuntos
Endo-1,3(4)-beta-Glucanase/metabolismo , Myxococcales/enzimologia , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/farmacologia , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Expressão Gênica , Metais/metabolismo , Myxococcales/genética , Myxococcales/metabolismo , Oryza/microbiologia , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Especificidade por Substrato
4.
Biochem J ; 475(17): 2801-2817, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30045877

RESUMO

Oxidative biocatalytic reactions performed by cytochrome P450 enzymes (P450s) are of high interest for the chemical and pharmaceutical industries. CYP267B1 is a P450 enzyme from myxobacterium Sorangium cellulosum So ce56 displaying a broad substrate scope. In this work, a search for new substrates was performed, combined with product characterization and a structural analysis of substrate-bound complexes using X-ray crystallography and computational docking. The results demonstrate the ability of CYP267B1 to perform in-chain hydroxylations of medium-chain saturated fatty acids (decanoic acid, dodecanoic acid and tetradecanoic acid) and a regioselective hydroxylation of flavanone. The fatty acids are mono-hydroxylated at different in-chain positions, with decanoic acid displaying the highest regioselectivity towards ω-3 hydroxylation. Flavanone is preferably oxidized to 3-hydroxyflavanone. High-resolution crystal structures of CYP267B1 revealed a very spacious active site pocket, similarly to other P450s capable of converting macrocyclic compounds. The pocket becomes more constricted near to the heme and is closed off from solvent by residues of the F and G helices and the B-C loop. The crystal structure of the tetradecanoic acid-bound complex displays the fatty acid bound near to the heme, but in a nonproductive conformation. Molecular docking allowed modeling of the productive binding modes for the four investigated fatty acids and flavanone, as well as of two substrates identified in a previous study (diclofenac and ibuprofen), explaining the observed product profiles. The obtained structures of CYP267B1 thus serve as a valuable prediction tool for substrate hydroxylations by this highly versatile enzyme and will encourage future selectivity changes by rational protein engineering.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Ácidos Graxos/química , Flavanonas/química , Simulação de Acoplamento Molecular , Myxococcales/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Hidroxilação , Oxirredução , Estrutura Secundária de Proteína
5.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29500263

RESUMO

1,8-Dihydroxynaphthalene (1,8-DHN) is a key intermediate in the biosynthesis of DHN melanin, which is specific to fungi. In this study, we characterized the enzymatic properties of the gene products of an operon consisting of soceCHS1, bdsA, and bdsB from the Gram-negative bacterium Sorangium cellulosum Heterologous expression of soceCHS1, bdsA, and bdsB in Streptomyces coelicolor caused secretion of a dark-brown pigment into the broth. High-performance liquid chromatography (HPLC) analysis of the broth revealed that the recombinant strain produced 1,8-DHN, indicating that the operon encoded a novel enzymatic system for the synthesis of 1,8-DHN. Simultaneous incubation of the recombinant SoceCHS1, BdsA, and BdsB with malonyl-coenzyme A (malonyl-CoA) and NADPH resulted in the synthesis of 1,8-DHN. SoceCHS1, a type III polyketide synthase (PKS), catalyzed the synthesis of 1,3,6,8-tetrahydroxynaphthalene (T4HN) in vitro T4HN was in turn converted to 1,8-DHN by successive steps of reduction and dehydration, which were catalyzed by BdsA and BdsB. BdsA, which is a member of the aldo-keto reductase (AKR) superfamily, catalyzed the reduction of T4HN and 1,3,8-tetrahydroxynaphthalene (T3HN) to scytalone and vermelone, respectively. The stereoselectivity of T4HN reduction by BdsA occurred on the si-face to give (R)-scytalone with more than 99% optical purity. BdsB, a SnoaL2-like protein, catalyzed the dehydration of scytalone and vermelone to T3HN and 1,8-DHN, respectively. The fungal pathway for the synthesis of 1,8-DHN is composed of a type I PKS, naphthol reductases of the short-chain dehydrogenase/reductase (SDR) superfamily, and scytalone dehydratase (SD). These findings demonstrated 1,8-DHN synthesis by novel enzymes of bacterial origin.IMPORTANCE Although the DHN biosynthetic pathway was thought to be specific to fungi, we discovered novel DHN synthesis enzymes of bacterial origin. The biosynthesis of bacterial DHN utilized a type III PKS for polyketide synthesis, an AKR superfamily for reduction, and a SnoaL2-like NTF2 superfamily for dehydration, whereas the biosynthesis of fungal DHN utilized a type I PKS, SDR superfamily enzyme, and SD-like NTF2 superfamily. Surprisingly, the enzyme systems comprising the pathway were significantly different from each other, suggesting independent, parallel evolution leading to the same biosynthesis. DHN melanin plays roles in host invasion and adaptation to stress in pathogenic fungi and is therefore important to study. However, it is unclear whether DHN biosynthesis occurs in bacteria. Importantly, we did find that bacterial DHN biosynthetic enzymes were conserved among pathogenic bacteria.


Assuntos
Proteínas de Bactérias/genética , Myxococcales/enzimologia , Naftóis/metabolismo , Óperon , Proteínas de Bactérias/metabolismo , Biocatálise , Melaninas/biossíntese , Óperon/genética
6.
Biochemistry ; 56(37): 4927-4930, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28841794

RESUMO

Macrocyclization of peptides is often employed to generate novel structures and biological activities in the biosynthesis of natural products and drug discovery. The enzymatic cross-linking of two side chains in a peptide via an ester or amide has a high potential for making topologically diverse cyclic peptides but is found with only a single consensus sequence in the microviridin class of natural products. Here, we report that a peptide with a new sequence pattern can be enzymatically cross-linked to make a novel microviridin-like peptide, plesiocin, which contains four repeats of a distinct hairpin-like bicyclic structure and shows strong inhibition of proteases. A single ATP-grasp enzyme binds to a leader peptide, of which only 13 residues are required for binding, and performs eight esterification reactions on the core peptide. We also demonstrate that the combination of tandem mass spectrometry and an ester-specific reaction greatly facilitates the determination of connectivity. We suggest that the enzymatic cross-linking of peptide side chains can generate more diverse structures in nature or by engineering.


Assuntos
Organismos Aquáticos/metabolismo , Desenho de Fármacos , Myxococcales/metabolismo , Peptídeos Cíclicos/metabolismo , Peptídeos/metabolismo , Inibidores de Proteases/metabolismo , Processamento de Proteína Pós-Traducional , Organismos Aquáticos/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Cromatografia Líquida de Alta Pressão , Quimotripsina/antagonistas & inibidores , Quimotripsina/metabolismo , Esterificação , Interações Hidrofóbicas e Hidrofílicas , Sequências Repetidas Invertidas , Cinética , Estrutura Molecular , Família Multigênica , Myxococcales/enzimologia , Elastase Pancreática/antagonistas & inibidores , Elastase Pancreática/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Proteólise/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
7.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28625980

RESUMO

A novel ß-(1,3)-glucanase gene designated lamC, cloned from Corallococcus sp. strain EGB, contains a fascin-like module and a glycoside hydrolase family 16 (GH16) catalytic module. LamC displays broad hydrolytic activity toward various polysaccharides. Analysis of the hydrolytic products revealed that LamC is an exo-acting enzyme on ß-(1,3)(1,3)- and ß-(1,6)-linked glucan substrates and an endo-acting enzyme on ß-(1,4)-linked glucan and xylan substrates. Site-directed mutagenesis of conserved catalytic Glu residues (E304A and E309A) demonstrated that these activities were derived from the same active site. Excision of the fascin-like module resulted in decreased activity toward ß-(1,3)(1,3)-linked glucans. The carbohydrate-binding assay showed that the fascin-like module was a novel ß-(1,3)-linked glucan-binding module. The functional characterization of the fascin-like module and catalytic module will help us better understand these enzymes and modules.IMPORTANCE In this report of a bacterial ß-(1,3)(1,3)-glucanase containing a fascin-like module, we reveal the ß-(1,3)(1,3)-glucan-binding function of the fascin-like module present in the N terminus of LamC. LamC displays exo-ß-(1,3)/(1,6)-glucanase and endo-ß-(1,4)-glucanase/xylanase activities with a single catalytic domain. Thus, LamC was identified as a novel member of the GH16 family.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas dos Microfilamentos/metabolismo , Myxococcales/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Clonagem Molecular , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Hidrólise , Myxococcales/química , Myxococcales/genética , Myxococcales/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato
8.
Protein Expr Purif ; 129: 122-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26102340

RESUMO

The gene encoding a novel glucoamylase (GlucaM) from the Corallococcus sp. strain EGB was cloned and heterologous expressed in Escherichia coli BL21(DE3), and the enzymatic characterization of recombinant GlucaM (rGlucaM) was determined in the study. The glucaM had an open reading frame of 1938 bp encoding GlucaM of 645 amino acids with no signal peptide. GlucaM belongs to glycosyl hydrolase family 15 and shares the highest identity 96% with the GH15 glucoamylase of Corallococcus coralloides DSM 2259. The rGlucaM with His-tag was purified by the Ni2+-NTA resin, with a specific activity from 3.4 U/mg up to 180 U/mg, and the molecular weight of rGlucaM was approximately 73 kDa on SDS-PAGE. The Km and Vmax of rGlucaM for soluble starch were 1.2 mg/mL and 46 U/mg, respectively. rGlucaM was optimally active at pH 7.0 and 50 °C and had highly tolerance to high concentrations of salts, detergents, and various organic solvents. rGlucaM hydrolyzed soluble starch to glucose, and hydrolytic activities were also detected with amylopectin, amylase, glycogen, starch (potato), α-cyclodextrin, starch (corn and potato). The analysis of hydrolysis products shown that rGlucaM with α-(1-4),(1-6)-D-glucan glucohydrolase toward substrates. These characteristics indicated that the GlucaM was a new member of glucoamylase family and a potential candidate for industrial application.


Assuntos
Proteínas de Bactérias , Expressão Gênica , Glucana 1,4-alfa-Glucosidase , Myxococcales/genética , Amido/química , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cromatografia de Afinidade , Escherichia coli/genética , Escherichia coli/metabolismo , Glucana 1,4-alfa-Glucosidase/biossíntese , Glucana 1,4-alfa-Glucosidase/química , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/isolamento & purificação , Hidrólise , Myxococcales/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
9.
Proteins ; 84(10): 1375-89, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27273553

RESUMO

The oxygen sensor histidine kinase AfGcHK from the bacterium Anaeromyxobacter sp. Fw 109-5 forms a two-component signal transduction system together with its cognate response regulator (RR). The binding of oxygen to the heme iron of its N-terminal sensor domain causes the C-terminal kinase domain of AfGcHK to autophosphorylate at His183 and then transfer this phosphate to Asp52 or Asp169 of the RR protein. Analytical ultracentrifugation revealed that AfGcHK and the RR protein form a complex with 2:1 stoichiometry. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) suggested that the most flexible part of the whole AfGcHK protein is a loop that connects the two domains and that the heme distal side of AfGcHK, which is responsible for oxygen binding, is the only flexible part of the sensor domain. HDX-MS studies on the AfGcHK:RR complex also showed that the N-side of the H9 helix in the dimerization domain of the AfGcHK kinase domain interacts with the helix H1 and the ß-strand B2 area of the RR protein's Rec1 domain, and that the C-side of the H8 helix region in the dimerization domain of the AfGcHK protein interacts mostly with the helix H5 and ß-strand B6 area of the Rec1 domain. The Rec1 domain containing the phosphorylable Asp52 of the RR protein probably has a significantly higher affinity for AfGcHK than the Rec2 domain. We speculate that phosphorylation at Asp52 changes the overall structure of RR such that the Rec2 area containing the second phosphorylation site (Asp169) can also interact with AfGcHK. Proteins 2016; 84:1375-1389. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/química , Histidina Quinase/química , Myxococcales/química , Oxigênio/química , Transdução de Sinais , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Heme/química , Heme/metabolismo , Histidina/química , Histidina/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Ferro/química , Ferro/metabolismo , Myxococcales/enzimologia , Oxigênio/metabolismo , Fosforilação , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
10.
Chembiochem ; 17(1): 90-101, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26478560

RESUMO

Cytochromes P450 catalyze a variety of synthetically useful reactions. However, it is difficult to determine their physiological or artificial functions when a plethora of orphan P450 systems are present in a genome. CYP260A1 from Sorangium cellulosum So ce56 is a new member among the 21 available P450s in the strain. To identify putative substrates for CYP260A1 we used high-throughput screening of a compound library (ca. 17,000 ligands). Structural analogues of the type I hits were searched for biotechnologically relevant compounds, and this led us to select C-19 steroids as potential substrates. We identified efficient surrogate redox partners for CYP260A1, and an Escherichia coli-based whole-cell biocatalyst system was developed to convert testosterone, androstenedione, and their derivatives methyltestosterone and 11-oxoandrostenedione. A detailed (1) H and (13) C NMR characterization of the product(s) from C-19 steroids revealed that CYP260A1 is the very first 1α-steroid hydroxylase.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Myxococcales/enzimologia , Esteroides/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Hidroxilação , Esteroides/química , Especificidade por Substrato
11.
Metab Eng ; 33: 98-108, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26617065

RESUMO

Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase.


Assuntos
Amida Sintases/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Graxos Insaturados/metabolismo , Engenharia Metabólica/métodos , Myxococcales/enzimologia , Pseudomonas putida/enzimologia , Amida Sintases/genética , Clonagem Molecular/métodos , Ácidos Docosa-Hexaenoicos/genética , Ácidos Docosa-Hexaenoicos/isolamento & purificação , Ácidos Graxos Insaturados/genética , Myxococcales/genética , Pseudomonas putida/genética , Proteínas Recombinantes/metabolismo
12.
Drug Metab Dispos ; 44(4): 495-504, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26842594

RESUMO

The guidelines of the Food and Drug Administration and International Conference on Harmonization have highlighted the importance of drug metabolites in clinical trials. As a result, an authentic source for their production is of great interest, both for their potential application as analytical standards and for required toxicological testing. Since we have previously shown promising biotechnological potential of cytochromes P450 from the soil bacterium Sorangium cellulosum So ce56, herein we investigated the CYP267 family and its application for the conversion of commercially available drugs including nonsteroidal anti-inflammatory, antitumor, and antihypotensive drugs. The CYP267 family, especially CYP267B1, revealed the interesting ability to convert a broad range of substrates. We established substrate-dependent extraction protocols and also optimized the reaction conditions for the in vitro experiments and Escherichia coli-based whole-cell bioconversions. We were able to detect activity of CYP267A1 toward seven out of 22 drugs and the ability of CYP267B1 to convert 14 out of 22 drugs. Moderate to high conversions (up to 85% yield) were observed in our established whole-cell system using CYP267B1 and expressing the autologous redox partners, ferredoxin 8 and ferredoxin-NADP(+) reductase B. With our existing setup, we present a system capable of producing reasonable quantities of the human drug metabolites 4'-hydroxydiclofenac, 2-hydroxyibuprofen, and omeprazole sulfone. Due to the great potential of converting a broad range of substrates, wild-type CYP267B1 offers a wide scope for the screening of further substrates, which will draw further attention to future biotechnological usage of CYP267B1 from S. cellulosum So ce56.


Assuntos
Escherichia coli/enzimologia , Myxococcales/enzimologia , Preparações Farmacêuticas/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Filogenia , Ácido Retinoico 4 Hidroxilase/isolamento & purificação
13.
Anal Biochem ; 513: 28-35, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27567992

RESUMO

Direct electrochemistry and bioelectrocatalysis of a newly discovered C-19 steroid 1α-hydroxylase (CYP260A1) from the myxobacterium Sorangium cellulosum So ce56 were investigated. CYP260A1 was immobilized on screen-printed graphite electrodes (SPE) modified with gold nanoparticles, stabilized by didodecyldimethylammonium bromide (SPE/DDAB/Au). Cyclic voltammograms in argon-saturated substrate free 0.1 M potassium phosphate buffer, pH 7.4, and in enzyme-substrate complex with androstenedione demonstrated a redox processes with a single redox couple of E(0') of -299 ± 16 mV and -297.5 ± 21 mV (vs. Ag/AgCl), respectively. CYP260A1 exhibited an electrocatalytic activity detected by an increase of the reduction current in the presence of dissolved oxygen and upon addition of the substrate (androstenedione) in the air-saturated buffer. The catalytic current of the enzyme correlated with substrate concentration in the electrochemical system and this dependence can be described by electrochemical Michaelis-Menten model. The products of CYP260A1-depended electrolysis at controlled working electrode potential of androstenedione were analyzed by mass-spectrometry. MS analysis revealed a mono-hydroxylated product of CYP260A1-dependent electrocatalytic reaction towards androstenedione.


Assuntos
Androsterona/análise , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Técnicas Eletroquímicas , Enzimas Imobilizadas/química , Myxococcales/enzimologia , Catálise , Ouro/química , Grafite/química , Nanopartículas Metálicas/química
14.
Org Biomol Chem ; 14(13): 3385-93, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26947062

RESUMO

The myxobacterium Sorangium cellulosum So ce56 is a prolific producer of volatile sesquiterpenes. The strain harbours one of the largest prokaryotic genomes (13.1 Mbp). However, it codes only for three type I terpene synthases (TSs; sce1440, sce6369, sce8552) and one type II TS (sce4636), responsible for the production of at least 17 sesquiterpenes. We report here the gene expression of TSs and biosynthesis of the TS products in E. coli. Comparison with the So ce56 volatiles allows the assignment of the terpenes to their synthesizing genes. Both, the geosmin synthase sce1440 and the previously examined (+)-eremophilene synthase sce8552 are highly specific. In contrast, Sce6369, the first characterized 10-epi-cubebol synthase, is responsible for the formation of most of the So ce56 sesquiterpenes, mainly cadalanes and cubebanes. In contrast, Sce4636 does not convert FPP. Having characterized the So ce56 TSs, we screened all the 27 sequenced myxobacterial species from the NCBI and JGI-IMG databases for parent genes to predict the sesquiterpenes produced by them.


Assuntos
Alquil e Aril Transferases/metabolismo , Myxococcales/enzimologia , Sesquiterpenos/metabolismo , Estrutura Molecular , Sesquiterpenos/química
15.
Biometals ; 29(4): 715-29, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27395436

RESUMO

AfGcHK is a globin-coupled histidine kinase that is one component of a two-component signal transduction system. The catalytic activity of this heme-based oxygen sensor is due to its C-terminal kinase domain and is strongly stimulated by the binding of O2 or CO to the heme Fe(II) complex in the N-terminal oxygen sensing domain. Hydrogen sulfide (H2S) is an important gaseous signaling molecule and can serve as a heme axial ligand, but its interactions with heme-based oxygen sensors have not been studied as extensively as those of O2, CO, and NO. To address this knowledge gap, we investigated the effects of H2S binding on the heme coordination structure and catalytic activity of wild-type AfGcHK and mutants in which residues at the putative O2-binding site (Tyr45) or the heme distal side (Leu68) were substituted. Adding Na2S to the initial OH-bound 6-coordinate Fe(III) low-spin complexes transformed them into SH-bound 6-coordinate Fe(III) low-spin complexes. The Leu68 mutants also formed a small proportion of verdoheme under these conditions. Conversely, when the heme-based oxygen sensor EcDOS was treated with Na2S, the initially formed Fe(III)-SH heme complex was quickly converted into Fe(II) and Fe(II)-O2 complexes. Interestingly, the autophosphorylation activity of the heme Fe(III)-SH complex was not significantly different from the maximal enzyme activity of AfGcHK (containing the heme Fe(III)-OH complex), whereas in the case of EcDOS the changes in coordination caused by Na2S treatment led to remarkable increases in catalytic activity.


Assuntos
Biocatálise/efeitos dos fármacos , Heme/metabolismo , Histidina Quinase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Myxococcales/enzimologia , Heme/química , Histidina Quinase/química , Histidina Quinase/genética , Sulfeto de Hidrogênio/química , Cinética , Estrutura Molecular , Mutagênese Sítio-Dirigida , Oxigênio/química , Oxigênio/metabolismo , Fosforilação/efeitos dos fármacos
16.
Appl Microbiol Biotechnol ; 100(10): 4447-57, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26767988

RESUMO

Due to their bioactive properties as well as their application as precursors in chemical synthesis, hydroxylated isoprenoids and norisoprenoids are very valuable compounds. The efficient hydroxylation of such compounds remains a challenge in organic chemistry caused by the formation of a variety of side products and lack of overall regio- and stereoselectivity. In contrast, cytochromes P450 are known for their selective oxidation under mild conditions. Here, we demonstrate for the first time the ability of myxobacterial CYP260B1 and CYP267B1 from Sorangium cellulosum So ce56 to oxidize such carotenoid-derived aroma compounds. A focused library of 14 substrates such as ionones, damascones, as well as some of their isomers and derivatives was screened in vitro. Both P450s were capable of an efficient oxidation of all tested compounds. CYP260B1-dependent conversions mainly formed multiple products, whereas conversions by CYP267B1 resulted predominantly in a single product. To identify the main products by NMR spectroscopy, an Escherichia coli-based whole-cell system was used. CYP267B1 showed a hydroxylase activity towards the formation of allylic alcohols. Likewise, CYP260B1 performed the allylic hydroxylation of ß-damascone [(E)-1-(2,6,6-trimethylcyclohex-1-enyl)but-2-en-1-one] and δ-damascone [(E)-1-(2,6,6-trimethylcyclohex-3-enyl)but-2-en-1-one]. Moreover, CYP260B1 showed an epoxidase activity towards ß-ionone [(E)-4-(2,6,6-trimethylcyclohex-1-enyl)but-3-en-2-one] as well as the methyl-substituted α-ionone derivatives raldeine [(E)-1-(2,6,6-trimethylcyclohex-2-enyl)pent-1-en-3-one] and isoraldeine [(E)-3-methyl-4-(2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one]. In addition, to known products, also novel products such as 2-OH-δ-damascone [(E)-1-(5-hydroxy-2,6,6-trimethylcyclohex-3-enyl)but-2-en-1-one], 3-OH-allyl-α-ionone [(E)-1-(4-hydroxy-2,6,6-trimethylcyclohex-2-enyl)hepta-1,6-dien-3-one], and 4-OH-allyl-ß-ionone [(E)-1-(3-hydroxy-2,6,6-trimethylcyclohex-1-enyl)hepta-1,6-dien-3-one] were identified during our studies.


Assuntos
Carotenoides/química , Sistema Enzimático do Citocromo P-450/metabolismo , Myxococcales/enzimologia , Odorantes , Oxirredução , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Hidroxilação , Microbiologia Industrial , Espectroscopia de Ressonância Magnética , Norisoprenoides/química , Oxirredutases/metabolismo
17.
Biochemistry ; 54(32): 5017-29, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26212354

RESUMO

The globin-coupled histidine kinase, AfGcHK, is a part of the two-component signal transduction system from the soil bacterium Anaeromyxobacter sp. Fw109-5. Activation of its sensor domain significantly increases its autophosphorylation activity, which targets the His183 residue of its functional domain. The phosphate group of phosphorylated AfGcHK is then transferred to the cognate response regulator. We investigated the effects of selected variables on the autophosphorylation reaction's kinetics. The kcat values of the heme Fe(III)-OH(-), Fe(III)-cyanide, Fe(III)-imidazole, and Fe(II)-O2 bound active AfGcHK forms were 1.1-1.2 min(-1), and their Km(ATP) values were 18.9-35.4 µM. However, the active form bearing a CO-bound Fe(II) heme had a kcat of 1.0 min(-1) but a very high Km(ATP) value of 357 µM, suggesting that its active site structure differs strongly from the other active forms. The Fe(II) heme-bound inactive form had kcat and Km(ATP) values of 0.4 min(-1) and 78 µM, respectively, suggesting that its low activity reflects a low affinity for ATP relative to that of the Fe(III) form. The heme-free form exhibited low activity, with kcat and Km(ATP) values of 0.3 min(-1) and 33.6 µM, respectively, suggesting that the heme iron complex is essential for high catalytic activity. Overall, our results indicate that the coordination and oxidation state of the sensor domain heme iron profoundly affect the enzyme's catalytic activity because they modulate its ATP binding affinity and thus change its kcat/Km(ATP) value. The effects of the response regulator and different divalent metal cations on the autophosphorylation reaction are also discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Myxococcales/enzimologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Monóxido de Carbono/metabolismo , Cátions Bivalentes/química , Ativação Enzimática , Globinas/metabolismo , Heme/química , Histidina Quinase , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Myxococcales/genética , Oxirredução , Oxigênio/metabolismo , Fosforilação , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
18.
Chembiochem ; 16(18): 2624-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26449371

RESUMO

Sesquiterpenes are natural products derived from the common precursor farnesyl pyrophosphate (FPP) but are highly diverse in structure and function. Cytochrome P450 enzymes (P450s) exhibit the unique ability to introduce molecular oxygen into non-activated C-H bonds. In plant biosynthetic pathways, P450s commonly derivatize sesquiterpene hydrocarbons. However, the potential of bacterial P450s for terpene derivatization is still underinvestigated. This work compares the substrate specificities and regioselectivities of the sesquiterpene hydroxylases CYP260A1 and CYP264B1 from myxobacterium Sorangium cellulosum So ce56. Four tested substrate classes (eremophilanes, humulanes, caryophyllanes, and cedranes) were converted by both P450s. The achievable variety of oxidations is demonstrated on the model substrates (+)-nootkatone and zerumbone. Increasing the number of functionally investigated P450s, this study represents a step towards the selective derivatization of sesquiterpenes.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Myxococcales/enzimologia , Sesquiterpenos/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/genética , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Oxirredução , Sesquiterpenos Policíclicos , Sesquiterpenos/análise , Sesquiterpenos/química , Especificidade por Substrato
19.
Appl Environ Microbiol ; 81(6): 1977-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576603

RESUMO

A novel α-amylase, AmyM, was purified from the culture supernatant of Corallococcus sp. strain EGB. AmyM is a maltohexaose-forming exoamylase with an apparent molecular mass of 43 kDa. Based on the results of matrix-assisted laser desorption ionization-time of flight mass spectrometry and peptide mass fingerprinting of AmyM and by comparison to the genome sequence of Corallococcus coralloides DSM 2259, the AmyM gene was identified and cloned into Escherichia coli. amyM encodes a secretory amylase with a predicted signal peptide of 23 amino acid residues, which showed no significant identity with known and functionally verified amylases. amyM was expressed in E. coli BL21(DE3) cells with a hexahistidine tag. The signal peptide efficiently induced the secretion of mature AmyM in E. coli. Recombinant AmyM (rAmyM) was purified by Ni-nitrilotriacetic acid (NTA) affinity chromatography, with a specific activity of up to 14,000 U/mg. rAmyM was optimally active at 50°C in Tris-HCl buffer (50 mM; pH 7.0) and stable at temperatures of <50°C. rAmyM was stable over a wide range of pH values (from pH 5.0 to 10.0) and highly tolerant to high concentrations of salts, detergents, and various organic solvents. Its activity toward starch was independent of calcium ions. The Km and Vmax of recombinant AmyM for soluble starch were 6.61 mg ml(-1) and 44,301.5 µmol min(-1) mg(-1), respectively. End product analysis showed that maltohexaose accounted for 59.4% of the maltooligosaccharides produced. These characteristics indicate that AmyM has great potential in industrial applications.


Assuntos
Myxococcales/enzimologia , Oligossacarídeos/metabolismo , alfa-Amilases/metabolismo , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Myxococcales/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Temperatura , alfa-Amilases/química , alfa-Amilases/genética , alfa-Amilases/isolamento & purificação
20.
Antimicrob Agents Chemother ; 58(2): 950-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24277032

RESUMO

Corallopyronin A is a promising in vivo active antibiotic, currently undergoing preclinical evaluation. This myxobacterial compound interferes with a newly identified drug target site, i.e., the switch region of the bacterial DNA-dependent RNA-polymerase (RNAP). Since this target site differs from that of known RNAP inhibitors such as the rifamycins, corallopyronin A shows no cross-resistance with other antibacterial agents. Corallopyronin A is a polyketide synthase- and nonribosomal peptide synthetase-derived molecule whose structure and biosynthesis is distinguished by several peculiarities, such as the unusual vinyl carbamate functionality whose formation involves carbonic acid as an unprecedented C1-starter unit. Using in vitro experiments the nature of this starter molecule was revealed to be the methyl ester of carbonic acid. Biochemical investigations showed that methylation of carbonic acid is performed by the O-methyltransferase CorH. These experiments shed light on the biosynthesis of the Eastern chain of α-pyrone antibiotics such as corallopyronin A.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/química , Lactonas/metabolismo , Metiltransferases/química , Uretana/análogos & derivados , Motivos de Aminoácidos , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Carbônico/química , Ácido Carbônico/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ésteres , Expressão Gênica , Lactonas/química , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Myxococcales/química , Myxococcales/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uretana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA