Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.560
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(3): 611-623.e17, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29656891

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Progressão da Doença , Neoplasias Renais/genética , Neoplasias Renais/patologia , Mutação , Regiões 5' não Traduzidas , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 3 , Cromossomos Humanos Par 5 , Feminino , Dosagem de Genes , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Telomerase/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
2.
Cell ; 173(3): 595-610.e11, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29656894

RESUMO

The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Biomarcadores Tumorais , Cromossomos , Evolução Clonal , Progressão da Doença , Evolução Molecular , Feminino , Heterogeneidade Genética , Variação Genética , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Mutação , Metástase Neoplásica , Fenótipo , Filogenia , Prognóstico , Estudos Prospectivos , Análise de Sequência de DNA
3.
Cell ; 173(3): 581-594.e12, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29656895

RESUMO

Clear-cell renal cell carcinoma (ccRCC) exhibits a broad range of metastatic phenotypes that have not been systematically studied to date. Here, we analyzed 575 primary and 335 metastatic biopsies across 100 patients with metastatic ccRCC, including two cases sampledat post-mortem. Metastatic competence was afforded by chromosome complexity, and we identify 9p loss as a highly selected event driving metastasis and ccRCC-related mortality (p = 0.0014). Distinct patterns of metastatic dissemination were observed, including rapid progression to multiple tissue sites seeded by primary tumors of monoclonal structure. By contrast, we observed attenuated progression in cases characterized by high primary tumor heterogeneity, with metastatic competence acquired gradually and initial progression to solitary metastasis. Finally, we observed early divergence of primitive ancestral clones and protracted latency of up to two decades as a feature of pancreatic metastases.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Mutação , Metástase Neoplásica , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Biópsia , Mapeamento Cromossômico , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 9 , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Trombose , Resultado do Tratamento
4.
Mol Cell ; 83(8): 1340-1349.e7, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084714

RESUMO

The glycerol-3-phosphate shuttle (G3PS) is a major NADH shuttle that regenerates reducing equivalents in the cytosol and produces energy in the mitochondria. Here, we demonstrate that G3PS is uncoupled in kidney cancer cells where the cytosolic reaction is ∼4.5 times faster than the mitochondrial reaction. The high flux through cytosolic glycerol-3-phosphate dehydrogenase (GPD) is required to maintain redox balance and support lipid synthesis. Interestingly, inhibition of G3PS by knocking down mitochondrial GPD (GPD2) has no effect on mitochondrial respiration. Instead, loss of GPD2 upregulates cytosolic GPD on a transcriptional level and promotes cancer cell proliferation by increasing glycerol-3-phosphate supply. The proliferative advantage of GPD2 knockdown tumor can be abolished by pharmacologic inhibition of lipid synthesis. Taken together, our results suggest that G3PS is not required to run as an intact NADH shuttle but is instead truncated to support complex lipid synthesis in kidney cancer.


Assuntos
Glicerol-3-Fosfato Desidrogenase (NAD+) , Neoplasias Renais , Lipídeos , Humanos , Glicerol/metabolismo , Glicerol-3-Fosfato Desidrogenase (NAD+)/genética , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Lipídeos/biossíntese , NAD/metabolismo , Oxirredução , Fosfatos/metabolismo
5.
Cell ; 163(6): 1556-1556.e1, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26638079

RESUMO

This SnapShot summarizes current knowledge about the key features in mutational landscape, major pathways, and tumor evolution and heterogeneity in renal cell carcinoma, as well as the most recent advances in therapeutic development. To view this SnapShot, open or download the PDF.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Mutação
6.
Nature ; 629(8013): 910-918, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693263

RESUMO

International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden1. In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence2. Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics.


Assuntos
Carcinoma de Células Renais , Exposição Ambiental , Geografia , Neoplasias Renais , Mutagênicos , Mutação , Feminino , Humanos , Masculino , Ácidos Aristolóquicos/efeitos adversos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/induzido quimicamente , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Genoma Humano/genética , Genômica , Hipertensão/epidemiologia , Incidência , Japão/epidemiologia , Neoplasias Renais/genética , Neoplasias Renais/epidemiologia , Neoplasias Renais/induzido quimicamente , Mutagênicos/efeitos adversos , Obesidade/epidemiologia , Fatores de Risco , Romênia/epidemiologia , Sérvia/epidemiologia , Tailândia/epidemiologia , Fumar Tabaco/efeitos adversos , Fumar Tabaco/genética
7.
Mol Cell ; 82(16): 3030-3044.e8, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35764091

RESUMO

Characterized by intracellular lipid droplet accumulation, clear cell renal cell carcinoma (ccRCC) is resistant to cytotoxic chemotherapy and is a lethal disease. Through an unbiased siRNA screen of 2-oxoglutarate (2-OG)-dependent enzymes, which play a critical role in tumorigenesis, we identified Jumonji domain-containing 6 (JMJD6) as an essential gene for ccRCC tumor development. The downregulation of JMJD6 abolished ccRCC colony formation in vitro and inhibited orthotopic tumor growth in vivo. Integrated ChIP-seq and RNA-seq analyses uncovered diacylglycerol O-acyltransferase 1 (DGAT1) as a critical JMJD6 effector. Mechanistically, JMJD6 interacted with RBM39 and co-occupied DGAT1 gene promoter with H3K4me3 to induce DGAT1 expression. JMJD6 silencing reduced DGAT1, leading to decreased lipid droplet formation and tumorigenesis. The pharmacological inhibition (or depletion) of DGAT1 inhibited lipid droplet formation in vitro and ccRCC tumorigenesis in vivo. Thus, the JMJD6-DGAT1 axis represents a potential new therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Diacilglicerol O-Aciltransferase , Histona Desmetilases com o Domínio Jumonji , Neoplasias Renais , Carcinogênese/genética , Carcinoma de Células Renais/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Epigênese Genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Renais/genética , Gotículas Lipídicas/metabolismo
8.
Mol Cell ; 82(7): 1249-1260.e7, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35216667

RESUMO

Fumarate is an oncometabolite. However, the mechanism underlying fumarate-exerted tumorigenesis remains unclear. Here, utilizing human type2 papillary renal cell carcinoma (PRCC2) as a model, we show that fumarate accumulates in cells deficient in fumarate hydratase (FH) and inhibits PTEN to activate PI3K/AKT signaling. Mechanistically, fumarate directly reacts with PTEN at cysteine 211 (C211) to form S-(2-succino)-cysteine. Succinated C211 occludes tethering of PTEN with the cellular membrane, thereby diminishing its inhibitory effect on the PI3K/AKT pathway. Functionally, re-expressing wild-type FH or PTEN C211S phenocopies an AKT inhibitor in suppressing tumor growth and sensitizing PRCC2 to sunitinib. Analysis of clinical specimens indicates that PTEN C211 succination levels are positively correlated with AKT activation in PRCC2. Collectively, these findings elucidate a non-metabolic, oncogenic role of fumarate in PRCC2 via direct post-translational modification of PTEN and further reveal potential stratification strategies for patients with FH loss by combinatorial AKTi and sunitinib therapy.


Assuntos
Carcinoma Papilar , Carcinoma de Células Renais , Fumaratos , Neoplasias Renais , PTEN Fosfo-Hidrolase , Carcinogênese , Carcinoma Papilar/tratamento farmacológico , Carcinoma Papilar/enzimologia , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cisteína/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/farmacologia , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Sunitinibe/farmacologia
9.
Mol Cell ; 77(6): 1294-1306.e5, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32023483

RESUMO

von Hippel-Lindau (VHL) is a critical tumor suppressor in clear cell renal cell carcinomas (ccRCCs). It is important to identify additional therapeutic targets in ccRCC downstream of VHL loss besides hypoxia-inducible factor 2α (HIF2α). By performing a genome-wide screen, we identified Scm-like with four malignant brain tumor domains 1 (SFMBT1) as a candidate pVHL target. SFMBT1 was considered to be a transcriptional repressor but its role in cancer remains unclear. ccRCC patients with VHL loss-of-function mutations displayed elevated SFMBT1 protein levels. SFMBT1 hydroxylation on Proline residue 651 by EglN1 mediated its ubiquitination and degradation governed by pVHL. Depletion of SFMBT1 abolished ccRCC cell proliferation in vitro and inhibited orthotopic tumor growth in vivo. Integrated analyses of ChIP-seq, RNA-seq, and patient prognosis identified sphingosine kinase 1 (SPHK1) as a key SFMBT1 target gene contributing to its oncogenic phenotype. Therefore, the pVHL-SFMBT1-SPHK1 axis serves as a potential therapeutic avenue for ccRCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Prognóstico , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Proteínas Repressoras/genética , Células Tumorais Cultivadas , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell ; 148(5): 886-95, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22385958

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer and has very few mutations that are shared between different patients. To better understand the intratumoral genetics underlying mutations of ccRCC, we carried out single-cell exome sequencing on a ccRCC tumor and its adjacent kidney tissue. Our data indicate that this tumor was unlikely to have resulted from mutations in VHL and PBRM1. Quantitative population genetic analysis indicates that the tumor did not contain any significant clonal subpopulations and also showed that mutations that had different allele frequencies within the population also had different mutation spectrums. Analyses of these data allowed us to delineate a detailed intratumoral genetic landscape at a single-cell level. Our pilot study demonstrates that ccRCC may be more genetically complex than previously thought and provides information that can lead to new ways to investigate individual tumors, with the aim of developing more effective cellular targeted therapies.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Análise de Célula Única/métodos , Proteínas de Ligação a DNA , Exoma , Frequência do Gene , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Filogenia , Projetos Piloto , Análise de Componente Principal , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
11.
Proc Natl Acad Sci U S A ; 121(25): e2310793121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861592

RESUMO

mTORC1 is aberrantly activated in renal cell carcinoma (RCC) and is targeted by rapalogs. As for other targeted therapies, rapalogs clinical utility is limited by the development of resistance. Resistance often results from target mutation, but mTOR mutations are rarely found in RCC. As in humans, prolonged rapalog treatment of RCC tumorgrafts (TGs) led to resistance. Unexpectedly, explants from resistant tumors became sensitive both in culture and in subsequent transplants in mice. Notably, resistance developed despite persistent mTORC1 inhibition in tumor cells. In contrast, mTORC1 became reactivated in the tumor microenvironment (TME). To test the role of the TME, we engineered immunocompromised recipient mice with a resistance mTOR mutation (S2035T). Interestingly, TGs became resistant to rapalogs in mTORS2035T mice. Resistance occurred despite mTORC1 inhibition in tumor cells and could be induced by coculturing tumor cells with mutant fibroblasts. Thus, enforced mTORC1 activation in the TME is sufficient to confer resistance to rapalogs. These studies highlight the importance of mTORC1 inhibition in nontumor cells for rapalog antitumor activity and provide an explanation for the lack of mTOR resistance mutations in RCC patients.


Assuntos
Carcinoma de Células Renais , Resistencia a Medicamentos Antineoplásicos , Neoplasias Renais , Alvo Mecanístico do Complexo 1 de Rapamicina , Serina-Treonina Quinases TOR , Animais , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Sirolimo/farmacologia , Mutação , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico
12.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38426322

RESUMO

Cancer is a complex and high-mortality disease regulated by multiple factors. Accurate cancer subtyping is crucial for formulating personalized treatment plans and improving patient survival rates. The underlying mechanisms that drive cancer progression can be comprehensively understood by analyzing multi-omics data. However, the high noise levels in omics data often pose challenges in capturing consistent representations and adequately integrating their information. This paper proposed a novel variational autoencoder-based deep learning model, named Deeply Integrating Latent Consistent Representations (DILCR). Firstly, multiple independent variational autoencoders and contrastive loss functions were designed to separate noise from omics data and capture latent consistent representations. Subsequently, an Attention Deep Integration Network was proposed to integrate consistent representations across different omics levels effectively. Additionally, we introduced the Improved Deep Embedded Clustering algorithm to make integrated variable clustering friendly. The effectiveness of DILCR was evaluated using 10 typical cancer datasets from The Cancer Genome Atlas and compared with 14 state-of-the-art integration methods. The results demonstrated that DILCR effectively captures the consistent representations in omics data and outperforms other integration methods in cancer subtyping. In the Kidney Renal Clear Cell Carcinoma case study, cancer subtypes were identified by DILCR with significant biological significance and interpretability.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias , Humanos , Multiômica , Neoplasias/genética , Carcinoma de Células Renais/genética , Algoritmos , Análise por Conglomerados , Neoplasias Renais/genética
14.
J Immunol ; 213(1): 23-28, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758119

RESUMO

Immune checkpoint blockade therapies are widely used for cancer treatment, including advanced renal cell carcinoma (RCC). This study aimed to investigate the impact of zygosity in HLA genes and individual HLA genotypes on the efficacy of an anti-PD-1 Ab, nivolumab, in treating advanced RCC. Patient enrollment was conducted across 23 institutions in Japan from August 19, 2019, to September 30, 2020, with follow-up concluding on March 31, 2021. HLA genotype imputation of HLA-A, B, and C, DQB1, and DRB1 loci was performed. Among 222 patients, the presence of at least one homozygosity of the HLA-II allele significantly improved the best objective response (hazard ratio, 0.34; 95% confidence interval, 0.21-0.96; p = 0.042). The HLA evolutionary divergence (HED) of the HLA-A and HLA-B loci was higher than the HLA-C (p < 0.0001 and p < 0.0001, respectively), with high HED of the HLA-B locus correlating to clinical benefits in nivolumab treatment (hazard ratio, 0.44; 95% confidence interval, 0.21-0.90; p = 0.024) and improving cancer-specific survival compared with the low group (p = 0.0202). Additionally, high HED of the HLA-B locus was correlated with the number of infiltrated CD8+ cells in the tumor microenvironment (correlation coefficient, 0.4042). These findings indicate that the diversity of the HLA-B locus plays a significant role in the anti-tumor effect of nivolumab treatment in advanced RCC, potentially offering insights for improved risk stratification in nivolumab treatment and leading to better medical management of advanced RCC.


Assuntos
Carcinoma de Células Renais , Genótipo , Antígenos HLA , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Antígenos HLA/genética , Antígenos HLA/imunologia , Nivolumabe/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/genética , Adulto , Idoso de 80 Anos ou mais
15.
J Immunol ; 213(1): 29-39, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767437

RESUMO

High-dose (HD) IL-2 was the first immuno-oncology agent approved for treating advanced renal cell carcinoma and metastatic melanoma, but its use was limited because of substantial toxicities. Multiple next-generation IL-2 agents are being developed to improve tolerability. However, a knowledge gap still exists for the genomic markers that define the target pharmacology for HD IL-2 itself. In this retrospective observational study, we collected PBMC samples from 23 patients with metastatic renal cell carcinoma who were treated with HD IL-2 between 2009 and 2015. We previously reported the results of flow cytometry analyses. In this study, we report the results of our RNA-sequencing immunogenomic survey, which was performed on bulk PBMC samples from immediately before (day 1), during (day 3), and after treatment (day 5) in cycle 1 and/or cycle 2 of the first course of HD IL-2. As part of a detailed analysis of immunogenomic response to HD IL-2 treatment, we analyzed the changes in individual genes and immune gene signatures. By day 3, most lymphoid cell types had transiently decreased, whereas myeloid transcripts increased. Although most genes and/or signatures generally returned to pretreatment expression levels by day 5, certain ones representative of B cell, NK cell, and T cell proliferation and effector functions continued to increase, along with B cell (but not T cell) oligoclonal expansion. Regulatory T cells progressively expanded during and after treatment. They showed strong negative correlation with myeloid effector cells. This detailed RNA-sequencing immunogenomic survey of IL-2 pharmacology complements results of prior flow cytometry analyses. These data provide valuable pharmacological context for assessing PBMC gene expression data from patients dosed with IL-2-related compounds that are currently in development.


Assuntos
Carcinoma de Células Renais , Imunoterapia , Interleucina-2 , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/genética , Interleucina-2/administração & dosagem , Interleucina-2/genética , Neoplasias Renais/imunologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Imunoterapia/métodos , Idoso , Estudos Retrospectivos , Adulto , Leucócitos Mononucleares/imunologia , Metástase Neoplásica
16.
J Biol Chem ; 300(5): 107270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599381

RESUMO

Higher demand for nutrients including glucose is characteristic of cancer. "Starving cancer" has been pursued to curb tumor progression. An intriguing regime is to inhibit glucose transporter GLUT1 in cancer cells. In addition, during cancer progression, cancer cells may suffer from insufficient glucose supply. Yet, cancer cells can somehow tolerate glucose starvation. Uncovering the underlying mechanisms shall shed insight into cancer progression and benefit cancer therapy. TFE3 is a transcription factor known to activate autophagic genes. Physiological TFE3 activity is regulated by phosphorylation-triggered translocation responsive to nutrient status. We recently reported TFE3 constitutively localizes to the cell nucleus and promotes cell proliferation in kidney cancer even under nutrient replete condition. It remains unclear whether and how TFE3 responds to glucose starvation. In this study, we show TFE3 promotes kidney cancer cell resistance to glucose starvation by exposing cells to physiologically relevant glucose concentration. We find glucose starvation triggers TFE3 protein stabilization through increasing its O-GlcNAcylation. Furthermore, through an unbiased functional genomic study, we identify SLC36A1, a lysosomal amino acid transporter, as a TFE3 target gene sensitive to TFE3 protein level. We find SLC36A1 is overexpressed in kidney cancer, which promotes mTOR activity and kidney cancer cell proliferation. Importantly, SLC36A1 level is induced by glucose starvation through TFE3, which enhances cellular resistance to glucose starvation. Suppressing TFE3 or SLC36A1 significantly increases cellular sensitivity to GLUT1 inhibitor in kidney cancer cells. Collectively, we uncover a functional TFE3-SLC36A1 axis that responds to glucose starvation and enhances starvation tolerance in kidney cancer.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Glucose , Neoplasias Renais , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glucose/deficiência , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Sistemas de Transporte de Aminoácidos , Simportadores
17.
J Biol Chem ; 300(5): 107297, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641065

RESUMO

A growing body of evidence shows that vasculogenic mimicry (VM) is closely related to the invasion and metastasis of many tumor cells. Although the estrogen receptor (ER) can promote initiation and progression of renal cell carcinoma (RCC), how the downstream biomolecules are involved, and the detailed mechanisms of how ER expression is elevated in RCC remain to be further elucidated. Here, we discovered that long noncoding RNA (LncRNA)-SERB is highly expressed in tumor cells of RCC patients. We used multiple RCC cells and an in vivo mouse model for our study, and results indicated that LncRNA-SERB could boost RCC VM formation and cell invasion in vitro and in vivo. Although a previous report showed that ERß can affect the VM formation in RCC, it is unclear which factor could upregulate ERß. This is the first study to show LncRNA-SERB can be the upstream regulator of ERß to control RCC progression. Mechanistically, LncRNA-SERB may increase ERß via binding to the promoter area, and ERß functions through transcriptional regulation of zinc finger E-box binding homeobox 1 (ZEB1) to regulate VM formation. These results suggest that LncRNA-SERB promotes RCC cell VM formation and invasion by upregulating the ERß/ZEB1 axis and that therapeutic targeting of this newly identified pathway may better inhibit RCC progression.


Assuntos
Carcinoma de Células Renais , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Neovascularização Patológica , RNA Longo não Codificante , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Animais , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Metástase Neoplásica , Camundongos Nus , Masculino , Feminino , Invasividade Neoplásica
18.
Hum Mol Genet ; 32(2): 290-303, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35981075

RESUMO

Patients with end-stage renal disease (ESRD) or receiving dialysis have a much higher risk for renal cell carcinoma (RCC), but carcinogenic mechanisms and genomic features remain little explored and undefined. This study's goal was to identify the genomic features of ESRD RCC and characterize them for associations with tumor histology and dialysis exposure. In this study, we obtained 33 RCCs, with various histological subtypes, that developed in ESRD patients receiving dialysis and performed whole-genome sequencing and transcriptome analyses. Driver events, copy-number alteration (CNA) analysis and mutational signature profiling were performed using an analysis pipeline that integrated data from germline and somatic SNVs, Indels and structural variants as well as CNAs, while transcriptome data were analyzed for differentially expressed genes and through gene set enrichment analysis. ESRD related clear cell RCCs' driver genes and mutations mirrored those in sporadic ccRCCs. Longer dialysis periods significantly correlated with a rare mutational signature SBS23, whose etiology is unknown, and increased mitochondrial copy number. All acquired cystic disease (ACD)-RCCs, which developed specifically in ESRD patients, showed chromosome 16q amplification. Gene expression analysis suggests similarity between certain ACD-RCCs and papillary RCCs and in TCGA papillary RCCs with chromosome 16 gain identified enrichment for genes related to DNA repair, as well as pathways related to reactive oxygen species, oxidative phosphorylation and targets of Myc. This analysis suggests that ESRD or dialysis could induce types of cellular stress that impact some specific types of genomic damage leading to oncogenesis.


Assuntos
Carcinoma de Células Renais , Falência Renal Crônica , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Diálise Renal/efeitos adversos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Genômica
19.
Hum Mol Genet ; 32(7): 1223-1235, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36440963

RESUMO

Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant disorder characterized by fibrofolliculomas, pulmonary cysts, pneumothoraces and renal cell carcinomas. Here, we reveal a novel hereditary disorder in a family with skin and mucosal lesions, extensive lipomatosis and renal cell carcinomas. The proband was initially diagnosed with BHD based on the presence of fibrofolliculomas, but no pathogenic germline variant was detected in FLCN, the gene associated with BHD. By whole exome sequencing we identified a heterozygous missense variant (p.(Cys677Tyr)) in a zinc-finger encoding domain of the PRDM10 gene which co-segregated with the phenotype in the family. We show that PRDM10Cys677Tyr loses affinity for a regulatory binding motif in the FLCN promoter, abrogating cellular FLCN mRNA and protein levels. Overexpressing inducible PRDM10Cys677Tyr in renal epithelial cells altered the transcription of multiple genes, showing overlap but also differences with the effects of knocking out FLCN. We propose that PRDM10 controls an extensive gene program and acts as a critical regulator of FLCN gene transcription in human cells. The germline variant PRDM10Cys677Tyr curtails cellular folliculin expression and underlies a distinguishable syndrome characterized by extensive lipomatosis, fibrofolliculomas and renal cell carcinomas.


Assuntos
Síndrome de Birt-Hogg-Dubé , Carcinoma de Células Renais , Neoplasias Renais , Lipomatose , Neoplasias Cutâneas , Humanos , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/patologia , Carcinoma de Células Renais/genética , Genes Supressores de Tumor , Neoplasias Cutâneas/genética , Lipomatose/genética , Neoplasias Renais/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
20.
Hum Mol Genet ; 32(22): 3135-3145, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37561409

RESUMO

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant condition characterized by the development of cutaneous and uterine leiomyomas and risk for development of an aggressive form of papillary renal cell cancer. HLRCC is caused by germline inactivating pathogenic variants in the fumarate hydratase (FH) gene, which encodes the enzyme that catalyzes the interconversion of fumarate and L-malate. We utilized enzyme and protein mobility assays to evaluate the FH enzyme in a cohort of patients who showed clinical manifestations of HLRCC but were negative for known pathogenic FH gene variants. FH enzyme activity and protein levels were decreased by 50% or greater in three family members, despite normal FH mRNA expression levels as measured by quantitative PCR. Direct Nanopore RNA sequencing demonstrated 57 base pairs of retained intron sequence between exons 9 and 10 of polyadenylated FH mRNA in these patients, resulting in a truncated FH protein. Genomic sequencing revealed a heterozygous intronic alteration of the FH gene (chr1: 241498239 T/C) resulting in formation of a splice acceptor site near a polypyrimidine tract, and a uterine fibroid obtained from a patient showed loss of heterozygosity at this site. The same intronic FH variant was identified in an unrelated patient who also showed a clinical phenotype of HLRCC. These data demonstrate that careful clinical assessment as well as biochemical characterization of FH enzyme activity, protein expression, direct RNA sequencing, and genomic DNA sequencing of patient-derived cells can identify pathogenic variants outside of the protein coding regions of the FH gene.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Neoplasias Cutâneas , Neoplasias Uterinas , Feminino , Humanos , Carcinoma de Células Renais/genética , Leiomiomatose/genética , Leiomiomatose/patologia , Fumarato Hidratase/genética , Fumarato Hidratase/análise , Neoplasias Renais/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Mutação , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA