Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Dev Biol ; 423(1): 77-91, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095300

RESUMO

The C-X-C motif ligand 14 (CXCL14) is a recently discovered chemokine that is highly conserved in vertebrates and expressed in various embryonic and adult tissues. CXCL14 signaling has been implicated to function as an antiangiogenic and anticancer agent in adults. However, its function during development is unknown. We previously identified novel expression of CXCL14 mRNA in various ocular tissues during development. Here, we show that CXCL14 protein is expressed in the anterior eye at a critical time during neurovascular development and in the retina during neurogenesis. We report that RCAS-mediated knockdown of CXCL14 causes severe neural defects in the eye including precocious and excessive innervation of the cornea and iris. Absence of CXCL14 results in the malformation of the neural retina and misprojection of the retinal ganglion neurons. The ocular neural defects may be due to loss of CXCL12 modulation since recombinant CXCL14 diminishes CXCL12-induced axon growth in vitro. Furthermore, we show that knockdown of CXCL14 causes neovascularization of the cornea. Altogether, our results show for the first time that CXCL14 plays a critical role in modulating neurogenesis and inhibiting ectopic vascularization of the cornea during ocular development.


Assuntos
Padronização Corporal , Quimiocinas CXC/metabolismo , Olho/embriologia , Olho/metabolismo , Técnicas de Silenciamento de Genes , Sistema Nervoso/irrigação sanguínea , Sistema Nervoso/embriologia , Animais , Padronização Corporal/genética , Galinhas , Córnea/inervação , Córnea/metabolismo , Substância Própria/metabolismo , Epitélio Corneano/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Iris/embriologia , Iris/inervação , Modelos Biológicos , Codorniz , RNA Interferente Pequeno/metabolismo , Retina/patologia , Nervo Trigêmeo/embriologia , Nervo Trigêmeo/metabolismo
2.
Dev Growth Differ ; 60(5): 291-299, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29785739

RESUMO

A Merkel cell-neurite complex is a touch receptor composed of specialized epithelial cells named Merkel cells and peripheral sensory nerves in the skin. Merkel cells are found in touch-sensitive skin components including whisker follicles. The nerve fibers that innervate Merkel cells of a whisker follicle extend from the maxillary branch of the trigeminal ganglion. Whiskers as a sensory organ attribute to the complicated architecture of the Merkel cell-neurite complex, and therefore it is intriguing how the structure is formed. However, observing the dynamic process of the formation of a Merkel cell-neurite complex in whiskers during embryonic development is still difficult. In this study, we tried to develop an organotypic co-culture method of a whisker pad and a trigeminal ganglion explant to form the Merkel cell-neurite complex in vitro. We initially developed two distinct culture methods of a single whisker row and a trigeminal ganglion explant, and then combined them. By dissecting and cultivating a single row from a whisker pad, the morphogenesis of whisker follicles could be observed under a microscope. After the co-cultivation of the whisker row with a trigeminal ganglion explant, a Merkel cell-neurite complex composed of Merkel cells, which were positive for both cytokeratin 8 and SOX2, Neurofilament-H-positive trigeminal nerve fibers and Schwann cells expressing Nestin, SOX2 and SOX10 was observed via immunohistochemical analyses. These results suggest that the process for the formation of a Merkel cell-neurite complex can be observed under a microscope using our organotypic co-culture method.


Assuntos
Embrião de Mamíferos/citologia , Células de Merkel/metabolismo , Neuritos/metabolismo , Nervo Trigêmeo/embriologia , Vibrissas/embriologia , Animais , Técnicas de Cocultura , Embrião de Mamíferos/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Células de Merkel/citologia , Camundongos , Gânglio Trigeminal
3.
Exp Eye Res ; 172: 137-143, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654771

RESUMO

Intraepithelial corneal nerves (ICNs) help protect the cornea as part of the blink reflex and by modulating tear production. ICNs are also thought to regulate the health and homeostasis of the cornea through the release of trophic factors. Disruption to these nerves can lead to vision loss. Despite their importance little is known about how corneal nerves function and even less is known about how the cornea is initially innervated during its embryonic development. Here, we investigated the innervation of the embryonic chicken cornea. Western blot and immunohistochemistry were used to characterize the localization of the synaptic vesicle marker SV2, a molecule thought to be involved in the release of trophic factors from sensory nerves. The data show that both SV2 and synaptotagmin co-localize to ICNs. Nerves in the conjunctiva also contained SV2 and synaptotagmin, but these were localized to below the basal layers of the conjunctiva epithelium. SV2 isolated from corneal epithelium migrates in western blot at a heavier weight than SV2 isolated from brain, which suggests a role in vesicle targeting, as the deglycosylating enzyme PnGase does not affect corneal SV2.


Assuntos
Biomarcadores/metabolismo , Epitélio Corneano/embriologia , Epitélio Corneano/inervação , Vesículas Secretórias/metabolismo , Nervo Trigêmeo/embriologia , Animais , Western Blotting , Embrião de Galinha , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinaptotagminas/metabolismo , Nervo Trigêmeo/metabolismo
4.
Surg Radiol Anat ; 39(8): 885-895, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28194509

RESUMO

PURPOSE: The aim of this study was to re-examine the structures that determine course of the facial nerve (FN) in the fetal ear region. MATERIALS AND METHODS: We used sagittal or horizontal sections of 28 human fetuses at 7-8, 12-16, and 25-37 weeks. RESULTS: The FN and the chorda tympani nerve ran almost parallel until 7 weeks. The greater petrosal nerve (GPN) ran vertical to the distal FN course due to the trigeminal nerve ganglion being medial to the geniculate ganglion at 7 weeks. Afterwards, due to the radical growth of the former ganglion, the GPN became an anterior continuation of the FN. The lesser petrosal nerve ran straight, parallel to the FN at 7 weeks, but later, it started to wind along the otic capsule, possibly due to the upward invasion of the tympanic cavity epithelium. Notably, the chorda tympanic nerve origin from the FN, and the crossing between the vagus nerve branch and the FN, was located outside of the temporal bone even at 37 weeks. The second knee of the FN was not evident, in contrast to the acute anterior turn below the chorda tympanic nerve origin. In all examined fetuses, the apex of the cochlea did not face the middle cranial fossa, but the tympanic cavity. CONCLUSION: Topographical relation among the FN and related nerves in the ear region seemed not to be established in the fetal age but after birth depending on growth of the cranial fossa.


Assuntos
Nervo Facial/embriologia , Feto/anatomia & histologia , Nervo da Corda do Tímpano/embriologia , Cóclea/embriologia , Fossa Craniana Média/embriologia , Orelha Média/embriologia , Idade Gestacional , Nervo Glossofaríngeo/embriologia , Humanos , Osso Temporal/embriologia , Nervo Trigêmeo/embriologia , Nervo Vago/embriologia
5.
Dev Biol ; 398(2): 193-205, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25478909

RESUMO

Sensory trigeminal growth cones innervate the cornea in a coordinated fashion during embryonic development. Polysialic acid (polySia) is known for its important roles during nerve development and regeneration. The purpose of this work is to determine whether polySia, present in developing eyefronts and on the surface of sensory nerves, may provide guidance cues to nerves during corneal innervation. Expression and localization of polySia in embryonic day (E)5-14 chick eyefronts and E9 trigeminal ganglia were identified using Western blotting and immunostaining. Effects of polySia removal on trigeminal nerve growth behavior were determined in vivo, using exogenous endoneuraminidase (endoN) treatments to remove polySia substrates during chick cornea development, and in vitro, using neuronal explant cultures. PolySia substrates, made by the physical adsorption of colominic acid to a surface coated with poly-d-lysine (PDL), were used as a model to investigate functions of the polySia expressed in axonal environments. PolySia was localized within developing eyefronts and on trigeminal sensory nerves. Distributions of PolySia in corneas and pericorneal regions are developmentally regulated. PolySia removal caused defasciculation of the limbal nerve trunk in vivo from E7 to E10. Removal of polySia on trigeminal neurites inhibited neurite outgrowth and caused axon defasciculation, but did not affect Neural Cell Adhesion Molecule (NCAM) expression or Schwann cell migration in vitro. PolySia substrates in vitro inhibited outgrowth of trigeminal neurites and promoted their fasciculation. In conclusion, polySia is localized on corneal nerves and in their targeting environment during early developing stages of chick embryos. PolySias promote fasciculation of trigeminal axons in vivo and in vitro, whereas, in contrast, their removal promotes defasciculation.


Assuntos
Córnea/efeitos dos fármacos , Córnea/inervação , Sensação/efeitos dos fármacos , Ácidos Siálicos/farmacologia , Animais , Axônios/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Córnea/embriologia , Córnea/fisiopatologia , Desenvolvimento Embrionário/efeitos dos fármacos , Fasciculação/embriologia , Laminina/farmacologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Nervo Trigêmeo/efeitos dos fármacos , Nervo Trigêmeo/embriologia
6.
J Neurosci ; 33(12): 5399-410, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23516305

RESUMO

Axonal branches of the trigeminal ganglion (TG) display characteristic growth and arborization patterns during development. Subsets of TG neurons express different receptors for growth factors, but these are unlikely to explain the unique patterns of axonal arborizations. Intrinsic modulators may restrict or enhance cellular responses to specific ligands and thereby contribute to the development of axon growth patterns. Protein tyrosine phosphatase receptor type O (PTPRO), which is required for Eph receptor-dependent retinotectal development in chick and for development of subsets of trunk sensory neurons in mouse, may be such an intrinsic modulator of TG neuron development. PTPRO is expressed mainly in TrkB-expressing (TrkB(+)) and Ret(+) mechanoreceptors within the TG during embryogenesis. In PTPRO mutant mice, subsets of TG neurons grow longer and more elaborate axonal branches. Cultured PTPRO(-/-) TG neurons display enhanced axonal outgrowth and branching in response to BDNF and GDNF compared with control neurons, indicating that PTPRO negatively controls the activity of BDNF/TrkB and GDNF/Ret signaling. Mouse PTPRO fails to regulate Eph signaling in retinocollicular development and in hindlimb motor axon guidance, suggesting that chick and mouse PTPRO have different substrate specificities. PTPRO has evolved to fine tune growth factor signaling in a cell-type-specific manner and to thereby increase the diversity of signaling output of a limited number of receptor tyrosine kinases to control the branch morphology of developing sensory neurons. The regulation of Eph receptor-mediated developmental processes by protein tyrosine phosphatases has diverged between chick and mouse.


Assuntos
Axônios/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Gravidez , Receptor EphA1/metabolismo , Receptor trkA/metabolismo , Receptor trkC/metabolismo , Transdução de Sinais/fisiologia , Gânglio Trigeminal/embriologia , Nervo Trigêmeo/citologia , Nervo Trigêmeo/embriologia , Nervo Trigêmeo/metabolismo
7.
Clin Anat ; 27(1): 118-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24272859

RESUMO

Descriptions of the anatomy of the neural communications among the cranial nerves and their branches is lacking in the literature. Knowledge of the possible neural interconnections found among these nerves may prove useful to surgeons who operate in these regions to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections among the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized in two parts. Part I concerns the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches with any other nerve trunk or branch in the vicinity. Part II concerns the anastomoses among the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or among these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part I is presented in this article. An extensive anastomotic network exists among the lower cranial nerves. Knowledge of such neural intercommunications is important in diagnosing and treating patients with pathology of the skull base.


Assuntos
Plexo Cervical/anatomia & histologia , Nervo Facial/anatomia & histologia , Nervo Trigêmeo/anatomia & histologia , Nervo Vestibulococlear/anatomia & histologia , Sistema Nervoso Autônomo/anatomia & histologia , Nervo Facial/embriologia , Humanos , Pescoço/inervação , Pescoço/cirurgia , Base do Crânio/inervação , Base do Crânio/cirurgia , Nervo Trigêmeo/embriologia , Nervo Vestibulococlear/embriologia
8.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511331

RESUMO

CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.


Assuntos
Modelos Animais de Doenças , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Animais , Neurogênese/genética , Desenvolvimento Embrionário/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Crânio/embriologia , Crânio/patologia , Camundongos , Fissura Palatina/genética , Fissura Palatina/patologia , Fissura Palatina/embriologia , Fenda Labial/genética , Fenda Labial/patologia , Fenda Labial/embriologia , Nervo Trigêmeo/embriologia , Embrião de Mamíferos/metabolismo , Face/embriologia , Face/anormalidades , Fenótipo , Deficiência Intelectual/genética , Mutação/genética , Proteína Duplacortina
9.
Dev Biol ; 363(1): 115-27, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22236962

RESUMO

The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5 to E8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slits 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation, thus allowing nerves to find the Slit-expressing cornea permissive for growth cones.


Assuntos
Córnea/metabolismo , Glicoproteínas/genética , Cápsula do Cristalino/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores Imunológicos/genética , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Galinhas , Córnea/embriologia , Córnea/inervação , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Cápsula do Cristalino/embriologia , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Técnicas de Cultura de Órgãos , Receptores Imunológicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Tempo , Nervo Trigêmeo/citologia , Nervo Trigêmeo/embriologia , Nervo Trigêmeo/metabolismo , Proteínas Roundabout
10.
Dev Biol ; 357(2): 305-17, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21777575

RESUMO

The formation of branchiomeric nerves (cranial nerves V, VII, IX and X) from their sensory, motor and glial components is poorly understood. The current model for cranial nerve formation is based on the Vth nerve, in which sensory afferents are formed first and must enter the hindbrain in order for the motor efferents to exit. Using transgenic zebrafish lines to discriminate between motor neurons, sensory neurons and peripheral glia, we show that this model does not apply to the remaining three branchiomeric nerves. For these nerves, the motor efferents form prior to the sensory afferents, and their pathfinding show no dependence on sensory axons, as ablation of cranial sensory neurons by ngn1 knockdown had no effect. In contrast, the sensory limbs of the IXth and Xth nerves (but not the Vth or VIIth) were misrouted in gli1 mutants, which lack hindbrain bmn, suggesting that the motor efferents are crucial for appropriate sensory axon projection in some branchiomeric nerves. For all four nerves, peripheral glia were the intermediate component added and had a critical role in nerve integrity but not in axon guidance, as foxd3 null mutants lacking peripheral glia exhibited defasciculation of gVII, gIX, and gX axons. The bmn efferents were unaffected in these mutants. These data demonstrate that multiple mechanisms underlie formation of the four branchiomeric nerves. For the Vth, sensory axons initiate nerve formation, for the VIIth the sensory and motor limbs are independent, and for the IXth/Xth the motor axons initiate formation. In all cases the glia are patterned by the initiating set of axons and are needed to maintain axon fasciculation. These results reveal that coordinated interactions between the three neural cell types in branchiomeric nerves differ according to their axial position.


Assuntos
Nervos Cranianos/embriologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Nervos Cranianos/citologia , Proteínas Hedgehog/metabolismo , Modelos Biológicos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação/genética , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Fatores de Tempo , Nervo Trigêmeo/citologia , Nervo Trigêmeo/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
J Anat ; 220(4): 384-95, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22352373

RESUMO

In adults, the lateral pterygoid muscle (LPM) is usually divided into the upper and lower heads, between which the buccal nerve passes. Using sagittal or horizontal sections of 14 fetuses and seven embryos (five specimens at approximately 20-25 weeks; five at 14-16 weeks; four at 8 weeks; seven at 6-7 weeks), we examined the topographical relationship between the LPM and the buccal nerve. In large fetuses later than 15 weeks, the upper head of the LPM was clearly discriminated from the lower head. However, the upper head was much smaller than the lower head in the smaller fetuses. Thus, in the latter, the upper head was better described as an 'anterior slip' extending from the lower head or the major muscle mass to the anterior side of the buccal nerve. The postero-anterior nerve course seemed to be determined by a branch to the temporalis muscle (i.e. the anterior deep temporal nerve). At 8 weeks, the buccal nerve passed through the roof of the small, fan-like LPM. At 6-7 weeks, the LPM anlage was embedded between the temporobuccal nerve trunk and the inferior alveolar nerve. Therefore, parts of the LPM were likely to 'leak' out of slits between the origins of the mandibular nerve branches at 7-8 weeks, and seemed to grow in size during weeks 14-20 and extend anterosuperiorly along the infratemporal surface of the prominently developing greater wing of the sphenoid bone. Consequently, the topographical relationship between the LPM and the buccal nerve appeared to 'change' during fetal development due to delayed development of the upper head.


Assuntos
Músculos Pterigoides/embriologia , Nervo Trigêmeo/embriologia , Humanos , Nervo Mandibular/embriologia , Músculo Temporal/embriologia
12.
Childs Nerv Syst ; 28(5): 665-71, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22395537

RESUMO

INTRODUCTION: There is limited published work on the abundant innervation of the human dura mater, its role and responses to injury in humans. The dura not only provides mechanical support for the brain but may also have other functions, including control of the outflow of venous blood from the brain via the dural sinuses. The trigeminal nerve supplies sensory fibres to the dura as well as the leptomeninges, intracranial blood vessels, face, nose and mouth. Its relatively large size in embryonic life suggests an importance in development; the earliest fetal reflexes, mediated by the trigeminal, are seen by 8 weeks. Trigeminal functions vital to the fetus include the coordination of sucking and swallowing and the protective oxygen-conserving reflexes. Like other parts of the nervous system, the trigeminal undergoes pruning and remodelling throughout development. METHODS: We have investigated changes in the innervation of the human dura with age in 27 individuals aged between 31 weeks of gestation and 60 years of postnatal life. Using immunocytochemistry with antibodies to neurofilament, we have found significant changes in the density of dural innervation with age RESULTS: The density of innervation increased between 31 and 40 weeks of gestation, peaking at term and decreasing in the subsequent 3 months, remaining low until the sixth decade. CONCLUSIONS: Our observations are consistent with animal studies but are, to our knowledge, the first to show age-related changes in the density of innervation in the human dura. They provide new insights into the functions of the human dura during development.


Assuntos
Dura-Máter/embriologia , Dura-Máter/crescimento & desenvolvimento , Nervo Trigêmeo/embriologia , Nervo Trigêmeo/crescimento & desenvolvimento , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade
13.
Acta Odontol Scand ; 70(3): 184-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21793640

RESUMO

OBJECTIVE: Semaphorin 3A (Sema3A) is an essential chemorepellant controlling peripheral axon pathfinding and patterning, but also serves non-neuronal cellular functions. Incisors of rodent are distinctive from molars as they erupt continuously, have only one root and enamel is present only on the labial side. The aim of this study is to address putative regulatory roles of Sema3A chemorepellant in the development of incisor innervation and formation. MATERIALS AND METHODS: This study analyzed expression of Sema3A mRNAs during embryonic and early post-natal stages of mouse mandibular incisor using sectional radioactive in situ hybridization. RESULTS: Although Sema3A mRNAs were observed in condensed dental mesenchyme during the early bud stage, they were absent in dental papilla or pulp at later stages. Sema3A mRNAs were observed in the dental epithelium including the cervical loops and a prominent expression was also seen in alveolar bone. Interestingly, transcripts were absent from the mesenchymal dental follicle target area (future periodontal ligament) throughout the studied stages. CONCLUSION: The expression patterns of Sema3A indicate that it may control the timing and patterning of the incisor innervation. In particular, Sema3A appears to regulate innervation of the periodontal ligament, while nerve penetration into the incisor dental pulp appears not to be dependent on Sema3A. Moreover, Sema3A may regulate the functions of cervical loops and the development of alveolar bone. Future study with Sema3A deficient mice will help to elucidate the putative neuronal and non-neuronal functions of Sema3A in incisor tooth development.


Assuntos
Polpa Dentária/embriologia , Incisivo/metabolismo , Odontogênese/fisiologia , Ligamento Periodontal/inervação , Semaforina-3A/metabolismo , Animais , Axônios/fisiologia , Polpa Dentária/inervação , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/embriologia , Mandíbula , Camundongos , Ligamento Periodontal/embriologia , RNA Mensageiro/análise , Semaforina-3A/genética , Germe de Dente/embriologia , Germe de Dente/inervação , Nervo Trigêmeo/embriologia , Nervo Trigêmeo/fisiologia
14.
J Neurophysiol ; 105(4): 1681-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21307331

RESUMO

The infraorbital branch of the trigeminal nerve (ION) is essential in whisker-specific neural patterning ("barrelettes") in the principal nucleus of the trigeminal nerve (PrV). The barrelettes are formed by the ION terminal arbors, somata, and dendrites of the PrV cells; they are abolished after neonatal damage to the ION. Physiological studies show that disruption of the barrelettes is accompanied by conversion of functional synapses into silent synapses in the PrV. In this study, we used whole cell recordings with a paired-pulse stimulation protocol and MK-801 blocking rate to estimate the presynaptic release probability (Pr) of ION central trigeminal afferent terminals in the PrV. We investigated Pr during postnatal development, following neonatal ION damage, and determined whether conversion of functional synapses into silent synapses after peripheral denervation results from changes in Pr. The paired-pulse ratio (PPR) was quite variable ranging from 40% (paired-pulse depression) to 175% (paired-pulse facilitation). The results from paired-pulse protocol were confirmed by MK-801 blocking rate experiments. The nonuniform PPRs did not show target cell specificity and developmental regulation. The distribution of PPRs fit nicely to Gaussian function with a peak at ∼ 100%. In addition, neonatal ION transections did not alter the distribution pattern of PPR in their central terminals, suggesting that the conversion from functional synapses into silent synapses in the peripherally denervated PrV is not caused by changes in the Pr.


Assuntos
Neurônios Aferentes/fisiologia , Traumatismos dos Nervos Periféricos , Nervos Periféricos/fisiologia , Nervo Trigêmeo/embriologia , Nervo Trigêmeo/fisiologia , Animais , Animais Recém-Nascidos , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Modelos Animais , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Vibrissas/embriologia , Vibrissas/fisiologia
15.
Dev Dyn ; 239(2): 630-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20014408

RESUMO

Somatosensation is the primary sensory modality employed by rodents in navigating their environments, and mystacial vibrissae on the snout are the primary conveyors of this information to the murine brain. The layout of vibrissae is spatially stereotyped and topographic connections faithfully maintain this layout throughout the neuraxis. Several factors have been shown to influence general vibrissal innervation by trigeminal neurons. Here, the role of a cell surface receptor, EphA4, in directing position-dependent vibrissal innervation is examined. EphA4 is expressed in the ventral region of the presumptive whisker pad and EphA4(-/-) mice lack the ventroposterior-most vibrissae. Analyses reveal that ventral trigeminal axons are abnormal, failing to innervate emerging vibrissae, and resulting in the absence of a select group of vibrissae in EphA4(-/-) mice. EphA4's selective effect on a subset of whiskers implicates cell-based signaling in the establishment of position-dependent connectivity and topography in the peripheral somatosensory system.


Assuntos
Receptor EphA4/metabolismo , Nervo Trigêmeo/embriologia , Vibrissas/embriologia , Animais , Axônios/metabolismo , Expressão Gênica , Camundongos , Camundongos Knockout , Transdução de Sinais , Nervo Trigêmeo/metabolismo , Vibrissas/inervação
16.
Dev Biol ; 319(2): 346-58, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18538759

RESUMO

While most cranial ganglia contain neurons of either neural crest or placodal origin, neurons of the trigeminal ganglion derive from both populations. The Wnt signaling pathway is known to be required for the development of neural crest cells and for trigeminal ganglion formation, however, migrating neural crest cells do not express any known Wnt ligands. Here we demonstrate that Wise, a Wnt modulator expressed in the surface ectoderm overlying the trigeminal ganglion, play a role in promoting the assembly of placodal and neural crest cells. When overexpressed in chick, Wise causes delamination of ectodermal cells and attracts migrating neural crest cells. Overexpression of Wise is thus sufficient to ectopically induce ganglion-like structures consisting of both origins. The function of Wise is likely synergized with Wnt6, expressed in an overlapping manner with Wise in the surface ectoderm. Electroporation of morpholino antisense oligonucleotides against Wise and Wnt6 causes decrease in the contact of neural crest cells with the delaminated placode-derived cells. In addition, targeted deletion of Wise in mouse causes phenotypes that can be explained by a decrease in the contribution of neural crest cells to the ophthalmic lobe of the trigeminal ganglion. These data suggest that Wise is able to function cell non-autonomously on neural crest cells and promote trigeminal ganglion formation.


Assuntos
Coristoma/genética , Doenças dos Nervos Cranianos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas do Tecido Nervoso/genética , Crista Neural/fisiologia , Gânglio Trigeminal , Nervo Trigêmeo/embriologia , Animais , Técnicas de Cultura de Células , Movimento Celular , Embrião de Galinha , DNA Complementar/genética , Cabeça , Camundongos , Crista Neural/citologia , Oligonucleotídeos Antissenso
17.
Neuron ; 24(1): 165-78, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10677035

RESUMO

Trigeminal sensory axons project to several epithelial targets, including those of the maxillary and mandibular processes. Previous studies identified a chemoattractant activity, termed Maxillary Factor, secreted by these processes, which can attract developing trigeminal axons in vitro. We report that Maxillary Factor activity is composed of two neurotrophins, neurotrophin-3 (NT-3) and Brain-Derived Neurotrophic Factor (BDNF), which are produced by both target epithelium and pathway mesenchyme and which are therefore more likely to have a trophic effect on the neurons or their axons than to provide directional information, at least at initial stages of trigeminal axon growth. Consistent with this, the initial trajectories of trigeminal sensory axons are largely or completely normal in mice deficient in both BDNF and NT-3, indicating that other cues must be sufficient for the initial stages of trigeminal axon guidance.


Assuntos
Axônios/fisiologia , Fator Neurotrófico Derivado do Encéfalo/análise , Fatores Quimiotáticos , Maxila/embriologia , Neurotrofina 3/análise , Nervo Trigêmeo/embriologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Técnicas de Cocultura , Epitélio/química , Expressão Gênica , Idade Gestacional , Imuno-Histoquímica , Maxila/química , Maxila/inervação , Nervo Maxilar/embriologia , Mesoderma/química , Camundongos , Camundongos Knockout , Neurotrofina 3/genética , Neurotrofina 3/fisiologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Gânglio Trigeminal/embriologia , Nervo Trigêmeo/ultraestrutura
18.
Neuron ; 19(3): 519-30, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9331345

RESUMO

The molecules of the collapsin/semaphorin gene family have been thought to play an essential role in axon guidance during development. Semaphorin III/D is a member of this family, has been shown to repel dorsal root ganglion (DRG) axons in vitro, and has been implicated in the patterning of sensory afferents in the spinal cord. Although semaphorin III/D mRNA is expressed in a wide variety of neural and nonneural tissues in vivo, the role played by semaphorin III/D in regions other than the spinal cord is not known. Here, we show that mice homozygous for a targeted mutation in semaphorin III/D show severe abnormality in peripheral nerve projection. This abnormality is seen in the trigeminal, facial, vagus, accessory, and glossopharyngeal nerves but not in the oculomotor nerve. These results suggest that semaphorin III/D functions as a selective repellent in vivo.


Assuntos
Glicoproteínas/genética , Fatores de Crescimento Neural/genética , Sistema Nervoso Periférico/anormalidades , Sistema Nervoso Periférico/embriologia , Vias Aferentes , Animais , Axônios/fisiologia , Embrião de Galinha , Quimera , Olho/embriologia , Olho/inervação , Face/embriologia , Face/inervação , Nervo Facial/anormalidades , Nervo Facial/embriologia , Galactosídeos , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Nervo Glossofaríngeo/anormalidades , Nervo Glossofaríngeo/embriologia , Glicoproteínas/deficiência , Homozigoto , Indóis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese/fisiologia , Fatores de Crescimento Neural/deficiência , Nervo Oculomotor/embriologia , Semaforina-3A , Nervos Espinhais/embriologia , Coloração e Rotulagem , Nervo Trigêmeo/anormalidades , Nervo Trigêmeo/embriologia , Nervo Vago/anormalidades , Nervo Vago/embriologia
19.
Curr Biol ; 15(9): 804-14, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15886097

RESUMO

BACKGROUND: Trigeminal sensory neurons detect thermal and mechanical stimuli in the skin through their elaborately arborized peripheral axons. We investigated the developmental mechanisms that determine the size and shape of individual trigeminal arbors in zebrafish and analyzed how these interactions affect the functional organization of the peripheral sensory system. RESULTS: Time-lapse imaging indicated that direct repulsion between growing axons restricts arbor territories. Removal of one trigeminal ganglion allowed axons of the contralateral ganglion to cross the midline, and removal of both resulted in the expansion of spinal cord sensory neuron arbors. Generation of embryos with single, isolated sensory neurons resulted in axon arbors that possessed a vast capacity for growth and expanded to encompass the entire head. Embryos in which arbors were allowed to aberrantly cross the midline were unable to respond in a spatially appropriate way to mechanical stimuli. CONCLUSIONS: Direct repulsive interactions between developing trigeminal and spinal cord sensory axon arbors determine sensory neuron organization and control the shapes and sizes of individual arbors. This spatial organization is crucial for sensing the location of objects in the environment. Thus, a combination of undirected growth and mutual repulsion results in the formation of a functionally organized system of peripheral sensory arbors.


Assuntos
Axônios/metabolismo , Neurônios Aferentes/citologia , Nervo Trigêmeo/embriologia , Nervo Trigêmeo/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/embriologia , Proteínas de Fluorescência Verde , Microscopia Confocal , Neurônios Aferentes/metabolismo , Transgenes/genética , Nervo Trigêmeo/anatomia & histologia
20.
Ann Anat ; 190(2): 178-87, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18413271

RESUMO

During embryogenesis, dental trigeminal axon navigation and patterning in the developing tooth take place in a highly spatio-temporally directed manner that is tightly linked to tooth morphogenesis and cell differentiation. Tooth formation is regulated by sequential and reciprocal tissue interactions between dental epithelium and neural crest-derived ectomesenchymal cells. This odontogenic secondary induction is mediated by signal molecules of different conserved families. Recent molecular and experimental data have provided evidence that local instructive signaling from the early odontogenic epithelium also controls dental axon navigation in the dental mesenchyme. In this review, we discuss recent molecular data regarding tooth formation and innervation and the putative role of the secondary induction in coordinating these two developmental processes. Importantly, because it has not yet been shown that the interactions that regulate tooth innervation include signaling to the dental epithelium and that they are reciprocal, it remains to be demonstrated that secondary induction controls the establishment of tooth nerve supply. Moreover, the key question of which molecule(s), if any, integrate tooth morphogenesis and the development of dental sensory trigeminal innervation remains to be answered.


Assuntos
Axônios/fisiologia , Odontogênese/fisiologia , Dente/embriologia , Dente/inervação , Padronização Corporal , Dentição , Desenvolvimento Embrionário , Humanos , Fibras Nervosas , Nervo Trigêmeo/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA