Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
Environ Microbiol ; 22(1): 76-90, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599077

RESUMO

Clearance and adaptation to reactive oxygen species (ROS) are crucial for cell survival. As in other eukaryotes, the Neurospora catalases are the main enzymes responsible for ROS clearance and their expression are tightly regulated by the growth and environmental conditions. The RNA polymerase II carboxyl terminal domain (RNAPII CTD) kinase complex (CTK complex) is known as a positive elongation factor for many inducible genes by releasing paused RNAPII near the transcription start site and promoting transcription elongation. However, here we show that deletion of CTK complex components in Neurospora led to high CAT-3 expression level and resistance to H2 O2 -induced ROS stress. The catalytic activity of CTK-1 is required for such a response. On the other hand, CTK-1 overexpression led to decreased expression of CAT-3. ChIP assays shows that CTK-1 phosphorylates the RNAPII CTD at Ser2 residues in the cat-3 ORF region during transcription elongation and deletion of CTK-1 led to dramatic decreases of SET-2 recruitment and H3K36me3 modification. As a result, histones at the cat-3 locus become hyperacetylated to promote its transcription. Together, these results demonstrate that the CTK complex is negative regulator of cat-3 expression by affecting its chromatin structure.


Assuntos
Catalase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Neurospora/enzimologia , Neurospora/genética , Fosfotransferases/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Fosforilação , Sítio de Iniciação de Transcrição
2.
Molecules ; 24(4)2019 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-30781572

RESUMO

Integrated enzyme production in the biorefinery can significantly reduce the cost of the entire process. The purpose of the present study is to evaluate the production of two hydrolyzing enzymes (amylase and xylanase) by an edible fungus used in the biorefinery, Neurospora intermedia. The enzyme production was explored through submerged fermentation of synthetic media and a wheat-based waste stream (thin stillage and wheat bran). The influence of a nitrogen source on N. intermedia was investigated and a combination of NaNO3 and yeast extract has been identified as the best nitrogen source for extracellular enzyme production. N. intermedia enzymes showed maximum activity at 65 °C and pH around 5. Under these conditions, the maximum velocity of amylase and xylanase for starch and xylan hydrolysis was found to be 3.25 U mL-1 and 14.77 U mL-1, respectively. Cultivation of N. intermedia in thin stillage and wheat bran medium resulted in relatively high amylase (8.86 ± 0.41 U mL-1, 4.68 ± 0.23) and xylanase (5.48 ± 0.21, 2.58 ± 0.07 U mL-1) production, respectively, which makes this fungus promising for enzyme production through a wheat-based biorefinery.


Assuntos
Amilases/biossíntese , Amilases/química , Neurospora/enzimologia , Xilosidases/biossíntese , Xilosidases/química , Ativação Enzimática , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Nitrogênio/metabolismo , Amido/química , Temperatura , Triticum/química , Triticum/metabolismo , Xilanos/química
3.
Glob Chang Biol ; 24(7): 2884-2897, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29322601

RESUMO

The magnitude and direction of carbon cycle feedbacks under climate warming remain uncertain due to insufficient knowledge about the temperature sensitivities of soil microbial processes. Enzymatic rates could increase at higher temperatures, but this response could change over time if soil microbes adapt to warming. We used the Arrhenius relationship, biochemical transition state theory, and thermal physiology theory to predict the responses of extracellular enzyme Vmax and Km to temperature. Based on these concepts, we hypothesized that Vmax and Km would correlate positively with each other and show positive temperature sensitivities. For enzymes from warmer environments, we expected to find lower Vmax , Km , and Km temperature sensitivity but higher Vmax temperature sensitivity. We tested these hypotheses with isolates of the filamentous fungus Neurospora discreta collected from around the globe and with decomposing leaf litter from a warming experiment in Alaskan boreal forest. For Neurospora extracellular enzymes, Vmax Q10 ranged from 1.48 to 2.25, and Km Q10 ranged from 0.71 to 2.80. In agreement with theory, Vmax and Km were positively correlated for some enzymes, and Vmax declined under experimental warming in Alaskan litter. However, the temperature sensitivities of Vmax and Km did not vary as expected with warming. We also found no relationship between temperature sensitivity of Vmax or Km and mean annual temperature of the isolation site for Neurospora strains. Declining Vmax in the Alaskan warming treatment implies a short-term negative feedback to climate change, but the Neurospora results suggest that climate-driven changes in plant inputs and soil properties are important controls on enzyme kinetics in the long term. Our empirical data on enzyme Vmax , Km , and temperature sensitivities should be useful for parameterizing existing biogeochemical models, but they reveal a need to develop new theory on thermal adaptation mechanisms.


Assuntos
Mudança Climática , Neurospora/enzimologia , Microbiologia do Solo , Adaptação Fisiológica , Ciclo do Carbono/fisiologia , Modelos Biológicos , Neurospora/metabolismo , Solo/química , Temperatura
4.
Nucleic Acids Res ; 44(14): 6924-34, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27166370

RESUMO

The Neurospora VS ribozyme is a catalytic RNA that has the unique ability to specifically recognize and cleave a stem-loop substrate through formation of a highly stable kissing-loop interaction (KLI). In order to explore the engineering potential of the VS ribozyme to cleave alternate substrates, we substituted the wild-type KLI by other known KLIs using an innovative engineering method that combines rational and combinatorial approaches. A bioinformatic search of the protein data bank was initially performed to identify KLIs that are structurally similar to the one found in the VS ribozyme. Next, substrate/ribozyme (S/R) pairs that incorporate these alternative KLIs were kinetically and structurally characterized. Interestingly, several of the resulting S/R pairs allowed substrate cleavage with substantial catalytic efficiency, although with reduced activity compared to the reference S/R pair. Overall, this study describes an innovative approach for RNA engineering and establishes that the KLI of the trans VS ribozyme can be adapted to cleave other folded RNA substrates.


Assuntos
Endorribonucleases/metabolismo , Neurospora/enzimologia , Conformação de Ácido Nucleico , Engenharia de Proteínas , RNA Catalítico/metabolismo , Sequência de Bases , Biocatálise , Biologia Computacional , Cristalografia por Raios X , Bases de Dados de Proteínas , Endorribonucleases/química , Estabilidade Enzimática , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , RNA Catalítico/química , Especificidade por Substrato , Termodinâmica
5.
RNA ; 21(9): 1621-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26124200

RESUMO

As part of an effort to structurally characterize the complete Neurospora VS ribozyme, NMR solution structures of several subdomains have been previously determined, including the internal loops of domains I and VI, the I/V kissing-loop interaction and the III-IV-V junction. Here, we expand this work by determining the NMR structure of a 62-nucleotide RNA (J236) that encompasses the VS ribozyme II-III-VI three-way junction and its adjoining stems. In addition, we localize Mg(2+)-binding sites within this structure using Mn(2+)-induced paramagnetic relaxation enhancement. The NMR structure of the J236 RNA displays a family C topology with a compact core stabilized by continuous stacking of stems II and III, a cis WC/WC G•A base pair, two base triples and two Mg(2+) ions. Moreover, it reveals a remote tertiary interaction between the adenine bulges of stems II and VI. Additional NMR studies demonstrate that both this bulge-bulge interaction and Mg(2+) ions are critical for the stable folding of the II-III-VI junction. The NMR structure of the J236 RNA is consistent with biochemical studies on the complete VS ribozyme, but not with biophysical studies performed with a minimal II-III-VI junction that does not contain the II-VI bulge-bulge interaction. Together with previous NMR studies, our findings provide important new insights into the three-dimensional architecture of this unique ribozyme.


Assuntos
Endorribonucleases/química , Magnésio/metabolismo , Neurospora/enzimologia , RNA Catalítico/química , RNA Fúngico/química , Pareamento de Bases , Sítios de Ligação , Domínio Catalítico , Endorribonucleases/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Neurospora/química , Conformação de Ácido Nucleico , RNA Catalítico/metabolismo , RNA Fúngico/metabolismo
6.
Nat Chem Biol ; 11(11): 840-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26414446

RESUMO

The Varkud satellite (VS) ribozyme mediates rolling-circle replication of a plasmid found in the Neurospora mitochondrion. We report crystal structures of this ribozyme from Neurospora intermedia at 3.1 Å resolution, which revealed an intertwined dimer formed by an exchange of substrate helices. In each protomer, an arrangement of three-way helical junctions organizes seven helices into a global fold that creates a docking site for the substrate helix of the other protomer, resulting in the formation of two active sites in trans. This mode of RNA-RNA association resembles the process of domain swapping in proteins and has implications for RNA regulation and evolution. Within each active site, adenine and guanine nucleobases abut the scissile phosphate, poised to serve direct roles in catalysis. Similarities to the active sites of the hairpin and hammerhead ribozymes highlight the functional importance of active-site features, underscore the ability of RNA to access functional architectures from distant regions of sequence space, and suggest convergent evolution.


Assuntos
Endorribonucleases/química , Proteínas Fúngicas/química , Neurospora/química , RNA Catalítico/química , RNA/química , Adenina/química , Adenina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Endorribonucleases/genética , Endorribonucleases/metabolismo , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Guanina/química , Guanina/metabolismo , Mitocôndrias/química , Mitocôndrias/enzimologia , Simulação de Acoplamento Molecular , Mutação , Neurospora/enzimologia , Conformação de Ácido Nucleico , Fosfatos/química , Fosfatos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , RNA/genética , RNA/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
RNA ; 20(9): 1451-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25051972

RESUMO

Kissing loops are tertiary structure elements that often play key roles in functional RNAs. In the Neurospora VS ribozyme, a kissing-loop interaction between the stem-loop I (SLI) substrate and stem-loop V (SLV) of the catalytic domain is known to play an important role in substrate recognition. In addition, this I/V kissing-loop interaction is associated with a helix shift in SLI that activates the substrate for catalysis. To better understand the role of this kissing-loop interaction in substrate recognition and activation by the VS ribozyme, we performed a thermodynamic characterization by isothermal titration calorimetry using isolated SLI and SLV stem-loops. We demonstrate that preshifted SLI variants have higher affinity for SLV than shiftable SLI variants, with an energetic cost of 1.8-3 kcal/mol for the helix shift in SLI. The affinity of the preshifted SLI for SLV is remarkably high, the interaction being more stable by 7-8 kcal/mol than predicted for a comparable duplex containing three Watson-Crick base pairs. The structural basis of this remarkable stability is discussed in light of previous NMR studies. Comparative thermodynamic studies reveal that kissing-loop complexes containing 6-7 Watson-Crick base pairs are as stable as predicted from comparable RNA duplexes; however, those with 2-3 Watson-Crick base pairs are more stable than predicted. Interestingly, the stability of SLI/ribozyme complexes is similar to that of SLI/SLV complexes. Thus, the I/V kissing loop interaction represents the predominant energetic contribution to substrate recognition by the trans-cleaving VS ribozyme.


Assuntos
Endorribonucleases/genética , Endorribonucleases/metabolismo , Neurospora/enzimologia , RNA Catalítico/genética , RNA Catalítico/metabolismo , Pareamento de Bases , Sequência de Bases , Sítios de Ligação/genética , Domínio Catalítico/genética , Endorribonucleases/química , Magnésio/química , Dados de Sequência Molecular , Neurospora/genética , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade de RNA/genética , RNA Catalítico/química , Especificidade por Substrato , Termodinâmica
8.
Nucleic Acids Res ; 39(10): 4427-37, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21266483

RESUMO

The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem-loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a structure that is consistent with existing biochemical data and most likely reflects its conformation in the VS ribozyme prior to docking with the cleavage site internal loop. Interestingly, the A730 loop adopts an S-turn motif that is also present in loop B within the hairpin ribozyme active site. The S-turn appears necessary to expose the Watson-Crick edge of a catalytically important residue (A756) so that it can fulfill its role in catalysis. The A730 loop and the cleavage site loop of the VS ribozyme display structural similarities to internal loops found in the active site of the hairpin ribozyme. These similarities provided a rationale to build a model of the VS ribozyme active site based on the crystal structure of the hairpin ribozyme.


Assuntos
Endorribonucleases/química , Neurospora/enzimologia , RNA Catalítico/química , Adenina/química , Pareamento de Bases , Sequência de Bases , Domínio Catalítico , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico
9.
Nucleic Acids Res ; 39(14): 6223-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21507887

RESUMO

Many RNAs contain tertiary interactions that contribute to folding the RNA into its functional 3D structure. In the VS ribozyme, a tertiary loop-loop kissing interaction involving stem-loops I and V is also required to rearrange the secondary structure of stem-loop I such that nucleotides at the base of stem I, which contains the cleavage-ligation site, can adopt the conformation required for activity. In the current work, we have used mutants that constitutively adopt the catalytically permissive conformation to search for additional roles of the kissing interaction in vitro. Using mutations that disrupt or restore the kissing interaction, we find that the kissing interaction contributes ~1000-fold enhancement to the rates of cleavage and ligation. Large Mg(2+)-dependent effects on equilibrium were also observed: in the presence of the kissing interaction cleavage is favored >10-fold at micromolar concentrations of Mg(2+); whereas ligation is favored >10-fold at millimolar concentrations of Mg(2+). In the absence of the kissing interaction cleavage exceeds ligation at all concentrations of Mg(2+). These data provide evidence that the kissing interaction strongly affects the observed cleavage and ligation rate constants and the cleavage-ligation equilibrium of the ribozyme.


Assuntos
Endorribonucleases/química , RNA Catalítico/química , Sequência de Bases , Endorribonucleases/metabolismo , Magnésio/química , Dados de Sequência Molecular , Mutação , Neurospora/enzimologia , Conformação de Ácido Nucleico , RNA Catalítico/metabolismo
10.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 11): 1468-78, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23090396

RESUMO

The crystal structure of wild-type endo-ß-D-1,4-mannanase (EC 3.2.1.78) from the ascomycete Chrysonilia sitophila (CsMan5) has been solved at 1.40 Å resolution. The enzyme isolated directly from the source shows mixed activity as both an endo-glucanase and an endo-mannanase. CsMan5 adopts the (ß/α)(8)-barrel fold that is well conserved within the GH5 family and has highest sequence and structural homology to the GH5 endo-mannanases. Superimposition with proteins of this family shows a unique structural arrangement of three surface loops of CsMan5 that stretch over the active centre, promoting an altered topography of the binding cleft. The most relevant feature results from the repositioning of a long loop at the extremity of the binding cleft, resulting in a shortened glycone-binding region with two subsites. The other two extended loops flanking the binding groove produce a narrower cleft compared with the wide architecture observed in GH5 homologues. Two aglycone subsites (+1 and +2) are identified and a nonconserved tryptophan (Trp271) at the +1 subsite may offer steric hindrance. Taken together, these findings suggest that the discrimination of mannan substrates is achieved through modified loop length and structure.


Assuntos
Neurospora/enzimologia , beta-Manosidase/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Neurospora/química , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , beta-Manosidase/metabolismo
11.
Nat Cell Biol ; 2(6): 333-8, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10854323

RESUMO

Here, using a quantitative in vivo assay, we map three regions in the carboxy terminus of conventional kinesin that are involved in cargo association, folding and regulation, respectively. Using C-terminal and internal deletions, point mutations, localization studies, and an engineered 'minimal' kinesin, we identify five heptads of a coiled-coil domain in the kinesin tail that are necessary and sufficient for cargo association. Mutational analysis and in vitro ATPase assays highlight a conserved motif in the globular tail that is involved in regulation of the motor domain; a region preceding this motif participates in folding. Although these sites are spatially and functionally distinct, they probably cooperate during activation of the motor for cargo transport.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Neurospora/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sítios de Ligação , Sequência Conservada/genética , Imunofluorescência , Proteínas Fúngicas/genética , Teste de Complementação Genética , Cinesinas/genética , Cinética , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Neurospora/citologia , Neurospora/metabolismo , Fenótipo , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
12.
RNA ; 14(5): 938-49, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18356538

RESUMO

We describe a chemical coupling procedure that allows joining of two RNAs, one of which contains a site-specific base analog substitution, in the absence of divalent ions. This method allows incorporation of nucleotide analogs at specific positions even into large, cis-cleaving ribozymes. Using this method we have studied the effects of substitution of G638 in the cleavage site loop of the VS ribozyme with a variety of purine analogs having different functional groups and pK(a) values. Cleavage rate versus pH profiles combined with kinetic solvent isotope experiments indicate an important role for G638 in proton transfer during the rate-limiting step of the cis-cleavage reaction.


Assuntos
Endorribonucleases/química , Endorribonucleases/metabolismo , Neurospora/enzimologia , RNA Catalítico/química , RNA Catalítico/metabolismo , RNA Fúngico/química , RNA Fúngico/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Endorribonucleases/genética , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurospora/genética , Conformação de Ácido Nucleico , Nucleotídeos de Purina/química , RNA Catalítico/genética , RNA Fúngico/genética
13.
J Cell Biol ; 37(1): 81-8, 1968 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-4384627

RESUMO

Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged.


Assuntos
Glutamato Desidrogenase/metabolismo , NADP/metabolismo , NAD/metabolismo , Neurospora/enzimologia , Nucleotidases/metabolismo , Neurospora/crescimento & desenvolvimento
14.
J Cell Biol ; 96(1): 248-55, 1983 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-6219116

RESUMO

Subunit 9 of mitochondrial ATPase (Su9) is synthesized in reticulocyte lysates programmed with Neurospora poly A-RNA, and in a Neurospora cell free system as a precursor with a higher apparent molecular weight than the mature protein (Mr 16,400 vs. 10,500). The RNA which directs the synthesis of Su9 precursor is associated with free polysomes. The precursor occurs as a high molecular weight aggregate in the postribosomal supernatant of reticulocyte lysates. Transfer in vitro of the precursor into isolated mitochondria is demonstrated. This process includes the correct proteolytic cleavage of the precursor to the mature form. After transfer, the protein acquires the following properties of the assembled subunit: it is resistant to added protease, it is soluble in chloroform/methanol, and it can be immunoprecipitated with antibodies to F1-ATPase. The precursor to Su9 is also detected in intact cells after pulse labeling. Processing in vivo takes place posttranslationally. It is inhibited by the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). A hypothetical mechanism is discussed for the intracellular transfer of Su9. It entails synthesis on free polysomes, release of the precursor into the cytosol, recognition by a receptor on the mitochondrial surface, and transfer into the inner mitochondrial membrane, which is accompanied by proteolytic cleavage and which depends on an electrical potential across the inner mitochondrial membrane.


Assuntos
Adenosina Trifosfatases/biossíntese , Precursores Enzimáticos/biossíntese , Mitocôndrias/enzimologia , Neurospora crassa/enzimologia , Neurospora/enzimologia , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/imunologia , Anticorpos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Sistema Livre de Células , Polirribossomos/metabolismo , Processamento de Proteína Pós-Traducional
15.
J Cell Biol ; 53(1): 66-72, 1972 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-4259051

RESUMO

Separation of Neurospora mitochondrial outer membranes from the inner membrane/matrix fraction was effected by digitonin treatment and discontinuous density gradient centrifugation. The solubilization of four isoleucine-valine biosynthetic enzymes was studied as a function of digitonin concentration and time of incubation in the detergent. The kinetics of the appearance of valine biosynthetic function in fractions outside of the inner membrane/matrix fraction, coupled with enzyme solubilization patterns similar to that for the matrix marker, mitochondrial malate dehydrogenase, indicate that the four isoleucine-valine pathway enzymes are localized in the mitochondrial matrix.


Assuntos
Isoleucina/biossíntese , Mitocôndrias/enzimologia , Neurospora/enzimologia , Valina/biossíntese , Oxirredutases do Álcool/metabolismo , Centrifugação com Gradiente de Concentração , Citocromos , Glicosídeos Digitálicos , Hidroliases/metabolismo , Cinurenina , Liases/metabolismo , Malato Desidrogenase/metabolismo , Membranas , Mitocôndrias/efeitos dos fármacos , Oxigenases de Função Mista/metabolismo , Neurospora crassa/citologia , Neurospora crassa/enzimologia , Oxirredutases/metabolismo , Saponinas , Espirostanos , Succinatos , Transaminases/metabolismo
16.
Science ; 166(3913): 1635-7, 1969 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-4902680

RESUMO

Direct evidence for the adaptor hypothesis has been obtained by examining the codon recognition of a purified Escherichia coli valine transfer ribonucleic acid which was enzymatically mischarged with phenylalanine labeled with carbn-14 by reaction with purified phenylalanyl-transfer ribonucleic acid synthetase from Neurospora crassa. The mischarged transfer ribonucleic acid recognized the valine codons but failed to recognize the phenylalanine codon when tested in trinucleotide-directed ribosomal binding assay.


Assuntos
Código Genético , RNA de Transferência , Valina , Proteínas de Bactérias/biossíntese , Isótopos de Carbono , Escherichia coli/metabolismo , Neurospora/enzimologia , Fenilalanina , RNA Bacteriano
17.
Int J Biol Macromol ; 109: 1338-1343, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175167

RESUMO

In this study, we have isolated and characterized a fibrinolytic enzyme from the GRAS (Generally Recognized as Safe) fungus, Neurospora sitophila. The enzyme was purified by fractional ammonium sulfate precipitation, hydrophobic interaction, ion exchange and gel filtration chromatography to 45.2 fold with a specific activity of 415.6U/mg protein. The native molecular mass of the enzyme was 49kDa, while the denatured molecular mass was 30kDa and 17.5kDa, indicating that the enzyme was a hetero-dimer. It was optimally active at 50°C and pH 7.4 and stable at human physiological temperature and pH. It was found to be a chymotrypsin-like serine protease which cleaved the synthetic chromogenic substrate, N-Succinyl-Ala-Ala-Pro-Phe-pNA for which the apparent Km and Vmax values were 0.24mM and 4.17×10-5mM/s, respectively. The enzyme hydrolyzed all the chains of fibrinogen by cleaving α chain first, followed by ß chain and then γ chain. Moreover, the enzyme possessed dual function of direct fibrinolysis as well as plasminogen activation. Due to its attractive biochemical and fibrinolytic properties and being from a GRAS fungus, the fibrinolytic enzyme has application as a safe and efficient thrombolytic drug.


Assuntos
Quimotripsina/química , Quimotripsina/metabolismo , Neurospora/enzimologia , Plasminogênio/química , Plasminogênio/metabolismo , Quimotripsina/isolamento & purificação , Ativação Enzimática/efeitos dos fármacos , Fibrinólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Peso Molecular , Plasminogênio/isolamento & purificação , Inibidores de Proteases/farmacologia , Temperatura
18.
Mol Cell Biol ; 9(9): 3630-7, 1989 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-2528685

RESUMO

The ars-1+ gene of Neurospora crassa encodes the enzyme arylsulfatase. ars-1+ is in a group of highly regulated sulfur-related structural genes that are expressed under conditions of sulfur limitation and are under coordinate control of the cys-3+ and scon+ regulatory genes. The ars-1+ gene was cloned by chromosome walking from the qa gene cluster, using a lambda library. Cotransformation of an N. crassa ars-1 mutant with the isolated lambda clones and the benomyl resistance gene, followed by assay for arylsulfatase activity, was used to screen for the ars-1+ gene. Further confirmation that the cloned segment mapped to the ars-1+ locus was obtained by restriction-fragment-length polymorphism analysis. Northern (RNA) blot analysis showed that the ars-1+ gene was transcribed to give an mRNA of 2.3 kilobases. In wild-type cells, the ars-1+ transcript was abundant under sulfur-derepressing conditions but absent under repressing conditions. Time course analysis showed that the appearance of ars-1+ message in sulfur-derepressed cultures paralleled the appearance of arylsulfatase enzyme activity. In addition, transcription of ars-1+ was detected only under derepressing conditions in a nuclear transcription assay. In a cys-3 regulatory mutant that was unable to synthesize arylsulfatase (or other sulfur-controlled enzymes), there was no ars-1+ transcript under repressing or derepressing conditions. In a temperature-sensitive cys-3 mutant, the ars-1+ transcript was present only at the permissive growth temperature and under sulfur derepression. A negative regulatory mutant, sconc, displayed both constitutive expression of arylsulfatase enzyme activity and content of ars-1+ message.


Assuntos
Arilsulfatases/genética , Neurospora crassa/enzimologia , Neurospora/enzimologia , Sulfatases/genética , Clonagem Molecular , Regulação da Expressão Gênica , Genes , Genes Fúngicos , Genes Reguladores , Mutação , Neurospora crassa/genética
19.
Mol Cell Biol ; 9(3): 1362-4, 1989 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2524649

RESUMO

Neurospora crassa mitochondria use a branched electron transport system in which one branch is a conventional cytochrome system and the other is an alternative cyanide-resistant, hydroxamic acid-sensitive oxidase that is induced when the cytochrome system is impaired. We used a monoclonal antibody to the alternative oxidase of the higher plant Sauromatum guttatum to identify a similar set of related polypeptides (Mr, 36,500 and 37,000) that was associated with the alternative oxidase activity of N. crassa mitochondria. These polypeptides were not present constitutively in the mitochondria of a wild-type N. crassa strain, but were produced in high amounts under conditions that induced alternative oxidase activity. Under the same conditions, mutants in the aod-1 gene, with one exception, produced apparently inactive alternative oxidase polypeptides, whereas mutants in the aod-2 gene failed to produce these polypeptides. The latter findings support the hypothesis that aod-1 is a structural gene for the alternative oxidase and that the aod-2 gene encodes a component that is required for induction of alternative oxidase activity. Finally, our results indicate that the alternative oxidase is highly conserved, even between plant and fungal species.


Assuntos
Neurospora crassa/enzimologia , Neurospora/enzimologia , Oxirredutases/imunologia , Anticorpos Monoclonais , Transporte de Elétrons , Genes , Genes Fúngicos , Mitocôndrias/enzimologia , Peso Molecular , Mutação , Neurospora crassa/genética , Neurospora crassa/imunologia , Oxirredutases/biossíntese , Oxirredutases/genética
20.
Mol Cell Biol ; 9(11): 4645-52, 1989 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-2532300

RESUMO

We show that the nuclear genes for the cytoplasmic and mitochondrial leucyl-tRNA synthetase (LeuRS) of Neurospora crassa are distinct in their encoded proteins, codon usage, mRNA levels, and regulation. The 4.2-kilobase-pair region representing the structural gene for cytoplasmic LeuRS and flanking regions has been sequenced. The positions of the 5' and 3' ends of mRNA and of a single 62-base-pair intron have been mapped. The methionine-initiated open reading frame encoded a protein of 1,123 amino acids and displayed a strong codon bias. Although cytoplasmic LeuRS shares with mitochondrial LeuRS some general features common to most aminoacyl-tRNA synthetases, there is little amino acid sequence similarity between them, mRNA levels for cytoplasmic LeuRS were much higher than those for mitochondrial LeuRS. This observation and the strong codon bias in the cytoplasmic LeuRS gene may contribute to a greater abundance of cytoplasmic LeuRS than mitochondrial LeuRS. The genes for cytoplasmic and mitochondrial LeuRS are regulated independently. The cytoplasmic LeuRS gene is regulated by the cross-pathway control system in N. crassa, which is analogous to general amino acid control in Saccharomyces cerevisiae. The cytoplasmic LeuRS mRNA levels are induced by amino acid starvation resulting from the addition of aminotriazole. Part of this increase is due to utilization of new transcription start sites. In contrast, the mitochondrial LeuRS gene is not induced by amino acid limitation. However, the mitochondrial LeuRS mRNA levels did increase dramatically upon inhibition of mitochondrial protein synthesis by chloramphenicol or ethidium bromide or in the temperature-sensitive strain leu-5 carrying a mutation in the mitochondrial LeuRS structural gene.


Assuntos
Aminoacil-tRNA Sintetases/genética , Citoplasma/enzimologia , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Leucina-tRNA Ligase/genética , Mitocôndrias/enzimologia , Neurospora crassa/enzimologia , Neurospora/enzimologia , Sequência de Aminoácidos , Amitrol (Herbicida)/farmacologia , Sequência de Bases , Northern Blotting , Códon , Íntrons , Dados de Sequência Molecular , Neurospora crassa/genética , Inibidores da Síntese de Proteínas , RNA Mensageiro/análise , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA