RESUMO
Strigolactones are a class of plant hormones involved in shoot branching, growth of symbiotic arbuscular mycorrhizal fungi, and germination of parasitic plant seeds. Assaying new molecules or compound exhibiting strigolactone-like activities is therefore important but unfortunately time-consuming and hard to implement because of the extremely low concentrations at which they are active. Seeds of parasite plants are natural integrator of these hormones since they can perceive molecule concentrations in the picomolar to nanomolar range stimulating their germination. Here we describe a simple and inexpensive method to evaluate the activity of these molecules by scoring the germination of parasitic plant seeds upon treatment with these molecules. Up to four molecules can be assayed from a single 96-well plate by this method. A comparison of SL-like bioactivities between molecules is done by determining the EC50 and the maximum percentage of germination.
Assuntos
Bioensaio , Germinação/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Orobanche/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Sementes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala , Orobanche/embriologia , Sementes/embriologiaRESUMO
Orobanche crenata is a major threat to grain legume production. Fenugreek (Trigonella foenum-graecum) is an annual legume that has been shown to effectively reduce O. crenata infection when intercropped with grain legumes. In this paper, we point that this can be attributed to allelopathy, through inhibition of the germination of O. crenata by fenugreek root exudates. The main inhibitory metabolite was isolated and characterized. Allelopathy was demonstrated in different bioassays, by inhibition of O. crenata seeds germination both by growing fenugreek and pea plants together (intercropped), and by application of fenugreek root exudates. Fenugreek root exudates were extracted with organic solvent and fractionated giving several fractions, two of which showed moderate (27%) and strong (54%) inhibition of O. crenata seed germination, respectively. The most active metabolite is a new monosubstituted trioxazonane, characterized by spectroscopic methods as the 2-butyl-[1,4,7,2]trioxazonane and named trigoxazonane.
Assuntos
Germinação/efeitos dos fármacos , Compostos Heterocíclicos com 1 Anel/farmacologia , Orobanche/embriologia , Raízes de Plantas/química , Sementes/efeitos dos fármacos , Trigonella/química , Cromatografia Líquida de Alta Pressão , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/isolamento & purificação , Espectroscopia de Ressonância Magnética , Orobanche/fisiologia , Sementes/fisiologia , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Three new polyphenols, named peapolyphenols A-C, together with an already well-known polyphenol and a chalcone (1-(2,4-dihydroxyphenyl)-3-hydroxy-3-(4-hydroxyphenyl)-1-propanone and 1-(2,4-dihydroxyphenyl)-3-(4-methoxyphenyl)propenone) were isolated from pea root exudates. They were found to strongly stimulate Orobanche and Phelipanche species seed germination. Interestingly, only peapolyphenol A, 1,3,3-substituted propanone, and 1,3-disubstituted propenone had specific stimulatory activity on O. foetida, excluding any other Orobanche or Phelipanche species tested. This species specificity is relevant, as O. foetida does not respond to the synthetic strigolactone analogue GR24, commonly used as a standard for germination assays. As characterized by spectroscopic methods, peapolyphenols A-C proved to be differently functionalized polyphenols with hydroxy and methoxy groups on both the aromatic rings and the propyl chain.
Assuntos
Flavonoides/farmacologia , Germinação/efeitos dos fármacos , Orobanche/embriologia , Fenóis/farmacologia , Pisum sativum/química , Raízes de Plantas/química , Sementes/efeitos dos fármacos , Flavonoides/química , Espectroscopia de Ressonância Magnética , Fenóis/química , Polifenóis , Sementes/fisiologia , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
A comparative structure-activity relationship (SAR) study has been conducted with several guaianolide sesquiterpene lactones (SLs) as inducers of the germination of sunflower broomrape (Orobanche cumana) seeds. Compounds were selected and synthesized to study the influence of the lactone-enol-gamma-lactone moiety on the selectivity of SLs toward the stimulation of sunflower broomrape germination. The results clearly illustrate that SLs are recognized only by O. cumana, while the introduction of a strigol-like second lactone moiety in the guaianolide backbone results in the loss of specificity and hence the germination of other broomrape species. We have named this new class of compounds guaianestrigolactones (GELs).