Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.196
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 598(7881): 479-482, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34588694

RESUMO

During sleep, most animal species enter a state of reduced consciousness characterized by a marked sensory disconnect. Yet some processing of the external world must remain intact, given that a sleeping animal can be awoken by intense stimuli (for example, a loud noise or a bright light) or by soft but qualitatively salient stimuli (for example, the sound of a baby cooing or hearing one's own name1-3). How does a sleeping brain retain the ability to process the quality of sensory information? Here we present a paradigm to study the functional underpinnings of sensory discrimination during sleep in Drosophila melanogaster. We show that sleeping vinegar flies, like humans, discern the quality of sensory stimuli and are more likely to wake up in response to salient stimuli. We also show that the salience of a stimulus during sleep can be modulated by internal states. We offer a prototypical blueprint detailing a circuit involved in this process and its modulation as evidence that the system can be used to explore the cellular underpinnings of how a sleeping brain experiences the world.


Assuntos
Drosophila melanogaster/fisiologia , Percepção/fisiologia , Sensação/fisiologia , Sono/fisiologia , Animais , Drosophila melanogaster/genética , Masculino , Neurônios/fisiologia , Odorantes/análise , Percepção Olfatória/genética , Percepção Olfatória/fisiologia , Estimulação Física , Sensação/genética , Sono/genética , Olfato/genética , Olfato/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(25): e2312293121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857385

RESUMO

The perception of sensory attributes is often quantified through measurements of sensitivity (the ability to detect small stimulus changes), as well as through direct judgments of appearance or intensity. Despite their ubiquity, the relationship between these two measurements remains controversial and unresolved. Here, we propose a framework in which they arise from different aspects of a common representation. Specifically, we assume that judgments of stimulus intensity (e.g., as measured through rating scales) reflect the mean value of an internal representation, and sensitivity reflects a combination of mean value and noise properties, as quantified by the statistical measure of Fisher information. Unique identification of these internal representation properties can be achieved by combining measurements of sensitivity and judgments of intensity. As a central example, we show that Weber's law of perceptual sensitivity can coexist with Stevens' power-law scaling of intensity ratings (for all exponents), when the noise amplitude increases in proportion to the representational mean. We then extend this result beyond the Weber's law range by incorporating a more general and physiology-inspired form of noise and show that the combination of noise properties and sensitivity measurements accurately predicts intensity ratings across a variety of sensory modalities and attributes. Our framework unifies two primary perceptual measurements-thresholds for sensitivity and rating scales for intensity-and provides a neural interpretation for the underlying representation.


Assuntos
Percepção , Humanos , Percepção/fisiologia , Limiar Sensorial/fisiologia , Sensação/fisiologia , Julgamento/fisiologia
3.
Annu Rev Neurosci ; 41: 77-97, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29799773

RESUMO

Understanding how cognitive processes affect the responses of sensory neurons may clarify the relationship between neuronal population activity and behavior. However, tools for analyzing neuronal activity have not kept up with technological advances in recording from large neuronal populations. Here, we describe prevalent hypotheses of how cognitive processes affect sensory neurons, driven largely by a model based on the activity of single neurons or pools of neurons as the units of computation. We then use simple simulations to expand this model to a new conceptual framework that focuses on subspaces of population activity as the relevant units of computation, uses comparisons between brain areas or to behavior to guide analyses of these subspaces, and suggests that population activity is optimized to decode the large variety of stimuli and tasks that animals encounter in natural behavior. This framework provides new ways of understanding the ever-growing quantity of recorded population activity data.


Assuntos
Vias Aferentes/fisiologia , Córtex Cerebral/citologia , Cognição/fisiologia , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador , Humanos , Modelos Neurológicos , Percepção/fisiologia
4.
Nat Rev Neurosci ; 22(7): 389-406, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958775

RESUMO

Functions of the neocortex depend on its bidirectional communication with the thalamus, via cortico-thalamo-cortical (CTC) loops. Recent work dissecting the synaptic connectivity in these loops is generating a clearer picture of their cellular organization. Here, we review findings across sensory, motor and cognitive areas, focusing on patterns of cell type-specific synaptic connections between the major types of cortical and thalamic neurons. We outline simple and complex CTC loops, and note features of these loops that appear to be general versus specialized. CTC loops are tightly interlinked with local cortical and corticocortical (CC) circuits, forming extended chains of loops that are probably critical for communication across hierarchically organized cerebral networks. Such CTC-CC loop chains appear to constitute a modular unit of organization, serving as scaffolding for area-specific structural and functional modifications. Inhibitory neurons and circuits are embedded throughout CTC loops, shaping the flow of excitation. We consider recent findings in the context of established CTC and CC circuit models, and highlight current efforts to pinpoint cell type-specific mechanisms in CTC loops involved in consciousness and perception. As pieces of the connectivity puzzle fall increasingly into place, this knowledge can guide further efforts to understand structure-function relationships in CTC loops.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Axônios/ultraestrutura , Córtex Cerebral/citologia , Estado de Consciência/fisiologia , Dendritos/ultraestrutura , Humanos , Camundongos , Neurônios/classificação , Neurônios/fisiologia , Neurônios/ultraestrutura , Percepção/fisiologia , Especificidade da Espécie , Sinapses/fisiologia , Tálamo/citologia
5.
Nat Rev Neurosci ; 21(4): 231-242, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157237

RESUMO

The idea that predictions shape how we perceive and comprehend the world has become increasingly influential in the field of systems neuroscience. It also forms an important framework for understanding neuropsychiatric disorders, which are proposed to be the result of disturbances in the mechanisms through which prior information influences perception and belief, leading to the production of suboptimal models of the world. There is a widespread tendency to conceptualize the influence of predictions exclusively in terms of 'top-down' processes, whereby predictions generated in higher-level areas exert their influence on lower-level areas within an information processing hierarchy. However, this excludes from consideration the predictive information embedded in the 'bottom-up' stream of information processing. We describe evidence for the importance of this distinction and argue that it is critical for the development of the predictive processing framework and, ultimately, for an understanding of the perturbations that drive the emergence of neuropsychiatric symptoms and experiences.


Assuntos
Encéfalo/fisiologia , Percepção/fisiologia , Humanos , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Modelos Neurológicos , Redes Neurais de Computação
6.
Nat Rev Neurosci ; 21(2): 80-92, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31911627

RESUMO

Cortical gain regulation allows neurons to respond adaptively to changing inputs. Neural gain is modulated by internal and external influences, including attentional and arousal states, motor activity and neuromodulatory input. These influences converge to a common set of mechanisms for gain modulation, including GABAergic inhibition, synaptically driven fluctuations in membrane potential, changes in cellular conductance and changes in other biophysical neural properties. Recent work has identified GABAergic interneurons as targets of neuromodulatory input and mediators of state-dependent gain modulation. Here, we review the engagement and effects of gain modulation in the cortex. We highlight key recent findings that link phenomenological observations of gain modulation to underlying cellular and circuit-level mechanisms. Finally, we place these cellular and circuit interactions in the larger context of their impact on perception and cognition.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Animais , Nível de Alerta/fisiologia , Atenção/fisiologia , Humanos , Aprendizagem/fisiologia , Percepção/fisiologia
7.
J Cogn Neurosci ; 36(8): 1620-1642, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695762

RESUMO

Research into ascending sensory pathways and cortical networks has generated detailed models of perception. These same cortical regions are strongly connected to subcortical structures, such as the basal ganglia (BG), which have been conceptualized as playing key roles in reinforcement learning and action selection. However, because the BG amasses experiential evidence from higher and lower levels of cortical hierarchies, as well as higher-order thalamus, it is well positioned to dynamically influence perception. Here, we review anatomical, functional, and clinical evidence to demonstrate how the BG can influence perceptual processing and conscious states. This depends on the integrative relationship between cortex, BG, and thalamus, which allows contributions to sensory gating, predictive processing, selective attention, and representation of the temporal structure of events.


Assuntos
Atenção , Gânglios da Base , Estado de Consciência , Percepção , Gânglios da Base/fisiologia , Humanos , Estado de Consciência/fisiologia , Atenção/fisiologia , Percepção/fisiologia , Animais , Vias Neurais/fisiologia , Córtex Cerebral/fisiologia
8.
J Cogn Neurosci ; 36(8): 1599-1609, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527095

RESUMO

Perceptual awareness in infants during the first year of life is understudied, despite the philosophical, scientific, and clinical importance of understanding how and when consciousness emerges during human brain development. Although parents are undoubtedly convinced that their infant is conscious, the lack of adequate experimental paradigms to address this question in preverbal infants has been a hindrance to research on this topic. However, recent behavioral and brain imaging studies have shown that infants are engaged in complex learning from an early age and that their brains are more structured than traditionally thought. I will present a rapid overview of these results, which might provide indirect evidence of early perceptual awareness and then describe how a more systematic approach to this question could stand within the framework of global workspace theory, which identifies specific signatures of conscious perception in adults. Relying on these brain signatures as a benchmark for conscious perception, we can deduce that it exists in the second half of the first year, whereas the evidence before the age of 5 months is less solid, mainly because of the paucity of studies. The question of conscious perception before term remains open, with the possibility of short periods of conscious perception, which would facilitate early learning. Advances in brain imaging and growing interest in this subject should enable us to gain a better understanding of this important issue in the years to come.


Assuntos
Conscientização , Humanos , Lactente , Conscientização/fisiologia , Estado de Consciência/fisiologia , Desenvolvimento Infantil/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Percepção/fisiologia
9.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R472-R483, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557152

RESUMO

The role of muscle mass in modulating performance and perceived fatigability across the entire intensity spectrum during cycling remains unexplored. We hypothesized that at task failure (Tlim), muscle contractile function would decline more following single- (SL) versus double-leg (DL) cycling within severe and extreme intensities, but not moderate and heavy intensities. After DL and SL ramp-incremental tests, on separate days, 11 recreationally active males (V̇o2max: 49.5 ± 7.7 mL·kg-1·min-1) completed SL and DL cycling until Tlim within each intensity domain. Power output for SL trials was set at 60% of the corresponding DL trial. Before and immediately after Tlim, participants performed an isometric maximal voluntary contraction (MVC) coupled with one superimposed and three resting femoral nerve stimulations [100 Hz; 10 Hz; single twitch (Qtw)] to measure performance fatigability. Perceived fatigue, leg pain, dyspnea, and effort were collected during trials. Tlim within each intensity domain was not different between SL and DL (all P > 0.05). MVC declined more for SL versus DL following heavy- (-42 ± 16% vs. -30 ± 18%; P = 0.011) and severe-intensity cycling (-41 ± 12% vs. -31 ± 15%; P = 0.036). Similarly, peak Qtw force declined more for SL following heavy- (-31 ± 12% vs. -22 ± 10%; P = 0.007) and severe-intensity cycling (-49 ± 13% vs. -40 ± 7%; P = 0.048). Except for heavy intensity, voluntary activation reductions were similar between modes. Similarly, except for dyspnea, which was lower for SL versus DL across all domains, ratings of fatigue, pain, and effort were similar at Tlim between exercise modes. Thus, the amount of muscle mass modulates the extent of contractile function impairment in an intensity-dependent manner.NEW & NOTEWORTHY We investigated the modulatory role of muscle mass on performance and perceived fatigability across the entire intensity spectrum. Despite similar time-to-task failure, single-leg cycling resulted in greater impairments in muscle contractile function within the heavy- and severe-intensity domains, but not the moderate- and extreme-intensity domains. Perceived fatigue, pain, and effort were similar between cycling modes. This indicates that the modulatory role of muscle mass on the extent of performance fatigability is intensity domain-dependent.


Assuntos
Ciclismo , Fadiga Muscular , Músculo Esquelético , Humanos , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Adulto Jovem , Adulto , Percepção/fisiologia , Contração Muscular , Contração Isométrica , Estimulação Elétrica , Esforço Físico
10.
Brain Behav Immun ; 119: 741-749, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670241

RESUMO

Social withdrawal is a well-established part of sickness behavior, but in some contexts sick animals might gain from keeping close instead of keeping away. For instance, sick individuals are more willing to be near known individuals who can provide care and safety (close others) compared to when healthy. Yet, interactions with some strangers might also be beneficial (i.e., healthcare professionals), but it is not known how sickness interplay with social behavior towards such individuals. Here, we assessed if sickness affects perception of caregivers, and developed a new task, the Caregiver Perception Task (CgPT). Twenty-six participants performed the CgPT, once after an injection of lipopolysaccharide (LPS, 0.8 ng/kg body weight, n = 24), and once after an injection of saline (n = 25), one hour and forty-five minutes post-injection. During the task, participants watched short video clips of three types of caregivers: a healthcare professional taking care of a sick individual, a healthcare professional not taking care of a sick individual, and a non-healthcare professional taking care of their sick adult child or partner. After each video clip, the likability, trustworthiness, professionalism, and willingness to interact with and receive care from the caregiver were rated on visual analogue scales. Results showed that participants injected with saline rated healthcare professionals who did not take care of a sick individual less positively on all aspects compared to healthcare professionals who took care of a sick individual. Moreover, compared to saline, LPS increased the participants' willingness to receive care from healthcare professionals and non-healthcare professionals providing care, but not from healthcare professionals not providing care. Thus, our results indicate that sick individuals may approach unknown individuals with potential to provide care and support.


Assuntos
Cuidadores , Endotoxemia , Comportamento de Doença , Lipopolissacarídeos , Humanos , Masculino , Cuidadores/psicologia , Feminino , Adulto , Endotoxemia/psicologia , Adulto Jovem , Percepção/fisiologia , Comportamento Social
11.
Epilepsy Behav ; 156: 109821, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704987

RESUMO

Epilepsy is a chronic disease characterized by recurrent epileptic seizures that can affect the perception of stigma and compromise the quality of life of those living with it. In addition, sociodemographic factors such as employment and maintaining a job, education, and the autonomy to drive vehicles are often impaired. OBJECTIVE: To assess the social inclusion of adult women with epilepsy in relation to the perception of stigma and quality of life, and the clinical aspects of the disease. METHODOLOGY: Data from 70 adult Brazilian women with epilepsy regarding aspects related to their social inclusion were verified. Such data were linked to clinical aspects and scores from the questionnaires: Quality of Life in Epilepsy Inventory 31 (QOLIE-31) and the Epilepsy Stigma Scale (ESS), with a significance level of p < 0.05. RESULTS: Average age of 45.5 years, 40 (57.1 %) women were divorced/single/widowed, 31 (44.3 %) women had less than 10 years of formal education, 32 (45.7 %) women had no income, and 57 (81.4 %) did not have a driver's license. The age at the time of the first seizure was 18 years, the seizures were focal in 46 (65.7 %) cases, and 26 (37.1 %) cases were seizure-free in the last year. A high number of women reported that the diagnosis of epilepsy negatively influenced aspects of autonomy such as the possession of a driver's license and going out alone. Longer duration of epilepsy was associated with lower education, not having children, and lower scores on the QOLIE-31. Higher scores on the QOLIE-31 were correlated with lower frequency of seizures and with the age at the time of the first seizure. Values in the dimension - energy and fatigue of the QOLIE-31 were significantly lower in the group with less independence compared to the other two groups with more independence, in latent class analyses (ANOVA, adjusted for age 42.1 ± 35.6 vs 57.2 ± 28.4 vs 73.9 ± 23.8, p = 0.0295). DISCUSSION: Clinical aspects of epilepsy and having a partner, autonomy, and independence such as driving vehicles are factors that contribute to social inclusion and to the perception of a better quality of life for adult women with epilepsy. CONCLUSION: It was observed that having a partner, autonomy, and independence such as driving vehicles are factors that contribute to social inclusion and to the perception of a better quality of life for adult women with epilepsy.


Assuntos
Epilepsia , Qualidade de Vida , Estigma Social , Humanos , Feminino , Qualidade de Vida/psicologia , Epilepsia/psicologia , Epilepsia/epidemiologia , Brasil/epidemiologia , Adulto , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem , Idoso , Percepção/fisiologia
12.
Brain Cogn ; 179: 106184, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843762

RESUMO

The embodied approach argues that interaction with the environment plays a crucial role in brain development and that the presence of sensory effects generated by movements is fundamental. The movement of the fetus is initially random. Then, the repeated execution of the movement creates a link between it and its sensory effects, allowing the selection of movements that produce expected sensations. During fetal life, the brain develops from a transitory fetal circuit to the permanent cortical circuit, which completes development after birth. Accordingly, this process must concern the interaction of the fetus with the intrauterine environment and of the newborn with the new aerial environment, which provides a new sensory stimulation, light. The goal of the present review is to provide suggestions for neuroscientific research capable of shedding light on brain development process by describing from a functional point of view the relationship between the motor and sensory abilities of fetuses and newborns and the increasing complexity of their interaction with objects in the womb and outside of it.


Assuntos
Encéfalo , Desenvolvimento Fetal , Humanos , Recém-Nascido , Desenvolvimento Fetal/fisiologia , Encéfalo/fisiologia , Encéfalo/crescimento & desenvolvimento , Desenvolvimento Infantil/fisiologia , Feto/fisiologia , Feminino , Percepção/fisiologia
13.
Nature ; 561(7722): 239-242, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209365

RESUMO

The ability to extend sensory information processing beyond the nervous system1 has been observed throughout the animal kingdom; for example, when rodents palpate objects using whiskers2 and spiders localize prey using webs3. We investigated whether the ability to sense objects with tools4-9 represents an analogous information processing scheme in humans. Here we provide evidence from behavioural psychophysics, structural mechanics and neuronal modelling, which shows that tools are treated by the nervous system as sensory extensions of the body rather than as simple distal links between the hand and the environment10,11. We first demonstrate that tool users can accurately sense where an object contacts a wooden rod, just as is possible on the skin. We next demonstrate that the impact location is encoded by the modal response of the tool upon impact, reflecting a pre-neuronal stage of mechanical information processing akin to sensing with whiskers2 and webs3. Lastly, we use a computational model of tactile afferents12 to demonstrate that impact location can be rapidly re-encoded into a temporally precise spiking code. This code predicts the behaviour of human participants, providing evidence that the information encoded in motifs shapes localization. Thus, we show that this sensory capability emerges from the functional coupling between the material, biomechanical and neural levels of information processing13,14.


Assuntos
Fenômenos Biomecânicos/fisiologia , Percepção/fisiologia , Córtex Somatossensorial/fisiologia , Madeira , Potenciais de Ação , Adulto , Animais , Cegueira/fisiopatologia , Feminino , Mãos/fisiologia , Humanos , Masculino , Mecanorreceptores/metabolismo , Tato/fisiologia , Vibração , Vibrissas/fisiologia , Adulto Jovem
14.
Eur J Appl Physiol ; 124(1): 317-327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37505231

RESUMO

PURPOSE: Menthol is known to elicit opposing thermoregulatory and perceptual alterations during intense exercise. The current purpose was to determine the thermoregulatory and perceptual effects of topical menthol application prior to walking in the heat. METHODS: Twelve participants walked (1.6 m s-1, 5% grade) for 30 min in the heat (38 °C, 60% relative humidity) with either a 4% menthol or control gel on the upper (shoulder to wrist) and lower (mid-thigh to ankle) limbs. Skin blood flow (SkBF), sweat (rate, composition), skin conductivity, heart rate, temperature (skin, core), and thermal perception were measured prior to and during exercise. RESULTS: Skin conductivity expressed as time to 10, 20, 30, and 40 µS was delayed due to menthol (559 ± 251, 770 ± 292, 1109 ± 301, 1299 ± 335 s, respectively) compared to the control (515 ± 260, 735 ± 256, 935 ± 300, 1148 ± 298 s, respectively, p = 0.048). Sweat rate relative to body surface area was lower due to menthol (0.55 ± 0.16 L h-1 m(2)-1) than the control (0.64 ± 0.16 L h-1 m(2)-1, p = 0.049). Core temperature did not differ at baseline between the menthol (37.4 ± 0.3 °C) and control (37.3 ± 0.4 °C, p = 0.298) but was higher at 10, 20, and 30 min due to menthol (37.5 ± 0.3, 37.7 ± 0.2, 38.1 ± 0.3 °C, respectively) compared to the control (37.3 ± 0.4, 37.4 ± 0.3, 37.7 ± 0.3 °C, respectively, p < 0.05). The largest rise in core temperature from baseline was at 30 min during menthol (0.7 ± 0.3 °C) compared to the control (0.4 ± 0.2 °C, p = 0.004). Overall, the menthol treatment was perceived cooler, reaching "slightly warm" whereas the control treatment reached "warm" (p < 0.001). CONCLUSION: Menthol application to the limbs impairs whole-body thermoregulation while walking in the heat despite perceiving the environment as cooler.


Assuntos
Temperatura Alta , Mentol , Humanos , Mentol/farmacologia , Regulação da Temperatura Corporal/fisiologia , Sudorese , Temperatura Cutânea , Caminhada , Percepção/fisiologia
15.
Eur J Appl Physiol ; 124(5): 1587-1599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38165446

RESUMO

PURPOSE: The present study examined the effects of sustained, isometric low- versus high-intensity tasks on time to task failure (TTF), performance fatigability (PF), ratings of perceived exertion (RPE), and the perceived causes of task termination from a post-test questionnaire (PTQ). METHODS: Ten men (mean ± SD: age = 21.1 ± 2.3 years; height = 180.2 ± 5.7 cm; body mass = 79.5 ± 8.8 kg) performed maximal voluntary isometric contractions (MVICs) before and after fatiguing, isometric forearm flexion tasks anchored to the torque corresponding to RPE values of 2 (TRQ2FT = 23.8 ± 7.1 N·m) and 8 (TRQ8FT = 60.9 ± 11.4 N·m). In addition, the subjects completed a PTQ which surveyed whether the perceived sensations of fatigue or pain, and/or the psychological factors of loss of focus and motivation contributed to the decision to terminate the task. Repeated measures ANOVAs, Wilcoxon-Signed Rank tests, and Spearman's Rank-Order Correlations were used to analyze the data. RESULTS: Across the fatiguing tasks, there were similar decreases in MVIC torque (95.2 ± 20.3 vs. 68.9 ± 15.6 N·m; p < 0.001) and RPE values (p = 0.122) at task failure for TRQ2FT (7.4 ± 2.7) and TRQ8FT (8.9 ± 1.0), but a longer (p = 0.005) TTF for the TRQ2FT (245.0 ± 177.0 s) than TRQ8FT (36.8 ± 11.1 s). CONCLUSIONS: Despite reaching task failure, the subjects were able to perform MVICs that were 100-300% greater than the target torque values within seconds of terminating the tasks. Thus, we hypothesized that task failure was not caused by an inability to produce sufficient torque to sustain the tasks, but rather an unwillingness to continue the task.


Assuntos
Contração Isométrica , Fadiga Muscular , Esforço Físico , Humanos , Masculino , Fadiga Muscular/fisiologia , Contração Isométrica/fisiologia , Adulto Jovem , Esforço Físico/fisiologia , Músculo Esquelético/fisiologia , Percepção/fisiologia , Adulto , Torque
16.
Eur J Appl Physiol ; 124(5): 1509-1521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38142449

RESUMO

INTRODUCTION: Lower-body aerobic exercise with blood flow restriction (BFR) offers a unique approach for stimulating improvements in muscular function and aerobic capacity. While there are more than 40 reports documenting acute and chronic responses to lower-body aerobic exercise with BFR, responses to upper-body aerobic exercise with BFR are not clearly established. PURPOSE: We evaluated acute physiological and perceptual responses to arm cranking with and without BFR. METHODS: Participants (N = 10) completed 4 arm cranking (6 × 2 min exercise, 1 min recovery) conditions: low-intensity at 40%VO2peak (LI), low-intensity at 40%VO2peak with BFR at 50% of arterial occlusion pressure (BFR50), low-intensity at 40%VO2peak with BFR at 70% of arterial occlusion pressure (BFR70), and high-intensity at 80%VO2peak (HI) while tissue oxygenation, cardiorespiratory, and perceptual responses were assessed. RESULTS: During exercise, tissue saturation for BFR50 (54 ± 6%), BFR70 (55 ± 6%), and HI (54 ± 8%) decreased compared to LI (61 ± 5%, all P < 0.01) and changes in deoxyhemoglobin for BFR50 (11 ± 4), BFR70 (15 ± 6), and HI (16 ± 10) increased compared to LI (4 ± 2, all P < 0.01). During recovery intervals, tissue saturation for BFR50 and BFR70 decreased further and deoxyhemoglobin for BFR50 and BFR70 increased further (all P < 0.04). Heart rate for BFR70 and HI increased by 9 ± 9 and 50 ± 15b/min, respectively, compared to LI (both P < 0.02). BFR50 (8 ± 2, 1.0 ± 1.0) and BFR70 (10 ± 2, 2.1 ± 1.4) elicited greater arm-specific perceived exertion (6-20 scale) and pain (0-10 scale) compared to LI (7 ± 1, 0.2 ± 0.5, all P < 0.05) and pain for BFR70 did not differ from HI (1.7 ± 1.9). CONCLUSION: Arm cranking with BFR decreased tissue saturation and increased deoxyhemoglobin without causing excessive cardiorespiratory strain and pain.


Assuntos
Braço , Exercício Físico , Consumo de Oxigênio , Fluxo Sanguíneo Regional , Humanos , Masculino , Braço/irrigação sanguínea , Braço/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Consumo de Oxigênio/fisiologia , Exercício Físico/fisiologia , Feminino , Adulto , Músculo Esquelético/fisiologia , Músculo Esquelético/irrigação sanguínea , Adulto Jovem , Percepção/fisiologia , Frequência Cardíaca/fisiologia
17.
Eur J Appl Physiol ; 124(7): 2093-2100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38418703

RESUMO

PURPOSE: Understanding the test-retest reliability of physiological responses to load carriage influences the interpretation of those results. The aim of this study was to determine the test-retest reliability of physiological measures during loaded treadmill walking at 5.5 km h-1 using the MetaMax 3B. METHODS: Fifteen Australian Army soldiers (9 male, 6 female) repeated two 12-min bouts of treadmill walking at 5.5 km h-1 in both a 7.2 kg Control condition (MetaMax 3B, replica rifle) and a 23.2 kg Patrol condition (Control condition plus vest) across three sessions, separated by one week. Expired respiratory gases and heart rate were continuously collected, with the final 3 min of data analysed. Ratings of Perceived Exertion and Omnibus-Resistance Exercise Scale were taken following each trial. Reliability was quantified by coefficient of variation (CV), intra-class correlation coefficients (ICC), smallest worthwhile change (SWC), and standard error of the measurement. RESULTS: Metabolic and cardiovascular variables were highly reliable (≤ 5% CV; excellent-moderate ICC), while the respiratory variables demonstrated moderate reliability (< 8% CV; good-moderate ICC) across both conditions. Perceptual ratings had poorer reliability during the Control condition (12-45% CV; poor ICC) than the Patrol condition (7-16% CV; good ICC). CONCLUSIONS: The test-retest reliability of metabolic and cardiovascular variables was high and relatively consistent during load carriage. Respiratory responses demonstrated moderate test-retest reliability; however, as the SWC differed with load carriage tasks, such data should be interpreted independently across loads. Perceptual measures demonstrated poor to moderate reliability during load carriage, and it is recommended that they only be employed as secondary measures.


Assuntos
Teste de Esforço , Frequência Cardíaca , Suporte de Carga , Humanos , Masculino , Feminino , Reprodutibilidade dos Testes , Teste de Esforço/métodos , Teste de Esforço/normas , Suporte de Carga/fisiologia , Adulto , Frequência Cardíaca/fisiologia , Caminhada/fisiologia , Esforço Físico/fisiologia , Adulto Jovem , Percepção/fisiologia , Militares , Consumo de Oxigênio/fisiologia
18.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916299

RESUMO

The question of why our conceptions of space and time are intertwined with memory in the hippocampal formation is at the forefront of much current theorizing about this brain system. In this article I argue that animals bridge spatial and temporal gaps through the creation of internal models that allow them to act on the basis of things that exist in a distant place and/or existed at a different time. The hippocampal formation plays a critical role in these processes by stitching together spatiotemporally disparate entities and events. It does this by 1) constructing cognitive maps that represent extended spatial contexts, incorporating and linking aspects of an environment that may never have been experienced together; 2) creating neural trajectories that link the parts of an event, whether they occur in close temporal proximity or not, enabling the construction of event representations even when elements of that event were experienced at quite different times; and 3) using these maps and trajectories to simulate possible futures. As a function of these hippocampally driven processes, our subjective sense of both space and time are interwoven constructions of the mind, much as the philosopher Immanuel Kant postulated.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Percepção/fisiologia , Animais , Humanos
19.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34074798

RESUMO

In recent years, scientists have begun to use magic effects to investigate the blind spots in our attention and perception [G. Kuhn, Experiencing the Impossible: The Science of Magic (2019); S. Macknik, S. Martinez-Conde, S. Blakeslee, Sleights of Mind: What the Neuroscience of Magic Reveals about Our Everyday Deceptions (2010)]. Recently, we suggested that similar techniques could be transferred to nonhuman animal observers and that such an endeavor would provide insight into the inherent commonalities and discrepancies in attention and perception in human and nonhuman animals [E. Garcia-Pelegrin, A. K. Schnell, C. Wilkins, N. S. Clayton, Science 369, 1424-1426 (2020)]. Here, we performed three different magic effects (palming, French drop, and fast pass) to a sample of six Eurasian jays (Garrulus glandarius). These magic effects were specifically chosen as they utilize different cues and expectations that mislead the spectator into thinking one object has or has not been transferred from one hand to the other. Results from palming and French drop experiments suggest that Eurasian jays have different expectations from humans when observing some of these effects. Specifically, Eurasian jays were not deceived by effects that required them to expect an object to move between hands when observing human hand manipulations. However, similar to humans, Eurasian jays were misled by magic effects that utilize fast movements as a deceptive action. This study investigates how another taxon perceives the magician's techniques of deception that commonly deceive humans.


Assuntos
Magia , Passeriformes/fisiologia , Percepção/fisiologia , Adolescente , Adulto , Animais , Comportamento de Escolha , Feminino , Mãos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34475203

RESUMO

A prevailing view is that Weber's law constitutes a fundamental principle of perception. This widely accepted psychophysical law states that the minimal change in a given stimulus that can be perceived increases proportionally with amplitude and has been observed across systems and species in hundreds of studies. Importantly, however, Weber's law is actually an oversimplification. Notably, there exist violations of Weber's law that have been consistently observed across sensory modalities. Specifically, perceptual performance is better than that predicted from Weber's law for the higher stimulus amplitudes commonly found in natural sensory stimuli. To date, the neural mechanisms mediating such violations of Weber's law in the form of improved perceptual performance remain unknown. Here, we recorded from vestibular thalamocortical neurons in rhesus monkeys during self-motion stimulation. Strikingly, we found that neural discrimination thresholds initially increased but saturated for higher stimulus amplitudes, thereby causing the improved neural discrimination performance required to explain perception. Theory predicts that stimulus-dependent neural variability and/or response nonlinearities will determine discrimination threshold values. Using computational methods, we thus investigated the mechanisms mediating this improved performance. We found that the structure of neural variability, which initially increased but saturated for higher amplitudes, caused improved discrimination performance rather than response nonlinearities. Taken together, our results reveal the neural basis for violations of Weber's law and further provide insight as to how variability contributes to the adaptive encoding of natural stimuli with continually varying statistics.


Assuntos
Percepção de Movimento/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Feminino , Macaca mulatta , Masculino , Movimento (Física) , Neurônios , Percepção/fisiologia , Psicofísica , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Vestíbulo do Labirinto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA