Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(19): 5999-6011, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548665

RESUMO

Anaerobic fungi found in the guts of large herbivores are prolific biomass degraders whose genomes harbor a wealth of carbohydrate-active enzymes (CAZymes), of which only a handful are structurally or biochemically characterized. Here, we report the structure and kinetic rate parameters for a glycoside hydrolase (GH) family 5 subfamily 4 enzyme (CelD) from Piromyces finnis, a modular, cellulosome-incorporated endoglucanase that possesses three GH5 domains followed by two C-terminal fungal dockerin domains (double dockerin). We present the crystal structures of an apo wild-type CelD GH5 catalytic domain and its inactive E154A mutant in complex with cellotriose at 2.5 and 1.8 Å resolution, respectively, finding the CelD GH5 catalytic domain adopts the (ß/α)8-barrel fold common to many GH5 enzymes. Structural superimposition of the apo wild-type structure with the E154A mutant-cellotriose complex supports a catalytic mechanism in which the E154 carboxylate side chain acts as an acid/base and E278 acts as a complementary nucleophile. Further analysis of the cellotriose binding pocket highlights a binding groove lined with conserved aromatic amino acids that when docked with larger cellulose oligomers is capable of binding seven glucose units and accommodating branched glucan substrates. Activity analyses confirm P. finnis CelD can hydrolyze mixed linkage glucan and xyloglucan, as well as carboxymethylcellulose (CMC). Measured kinetic parameters show the P. finnis CelD GH5 catalytic domain has CMC endoglucanase activity comparable to other fungal endoglucanases with kcat = 6.0 ± 0.6 s-1 and Km = 7.6 ± 2.1 g/L CMC. Enzyme kinetics were unperturbed by the addition or removal of the native C-terminal dockerin domains as well as the addition of a non-native N-terminal dockerin, suggesting strict modularity among the domains of CelD. KEY POINTS: • Anaerobic fungi host a wealth of industrially useful enzymes but are understudied. • P. finnis CelD has endoglucanase activity and structure common to GH5_4 enzymes. • CelD's kinetics do not change with domain fusion, exhibiting high modularity.


Assuntos
Celulase , Piromyces , Celulase/metabolismo , Anaerobiose , Glucanos/metabolismo , Piromyces/metabolismo
2.
J Basic Microbiol ; 57(11): 933-940, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28791723

RESUMO

Anaerobic fungi are potent lignocellulose degraders, but have not yet been exploited in this capacity, largely owing to their poor metabolic characterization. In the current study, a time course of fermentation was conducted to study the effect of the co-cultured methanogens on xylose metabolism by anaerobic fungi. The fermentation end-products from anaerobic fungal monoculture were H2 (6.7 ml), CO2 (65.7 ml), formate (17.90 mM), acetate (9.00 mM), lactate (11.89 mM), ethanol, and malate after 96 h fermentation. Compared to the monoculture, the end-products of co-culture shifted to more CO2 (71.8 ml) and acetate (15.20 mM), methane (14.9 ml), less lactate (5.28 mM), and hardly detectable formate and H2 at the end of fermentation. After 48 h, accumulated formate was remarkably consumed by co-cultured methanogens, accompanied by significantly increased acetate, CO2 and pH, and decreased lactate and malate. Xylose utilization, in both cultures, was similar during fermentation. However, the relative flux of carbon in hydrogenosomes in the co-culture was higher than that in the monoculture. In conclusion, the co-culture with methanogens enhanced "energy yields" of anaerobic fungi by removing the accumulated formate, decreased the metabolism in cytosol, for example, the lactate pathway, and increased the metabolism in hydrogenosomes, for example, the acetate pathway.


Assuntos
Fungos/metabolismo , Xilose/metabolismo , Acetatos/metabolismo , Anaerobiose , Dióxido de Carbono/metabolismo , Técnicas de Cocultura , Meios de Cultura/química , Etanol/metabolismo , Fermentação , Formiatos/metabolismo , Fungos/crescimento & desenvolvimento , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Malatos/metabolismo , Metano/metabolismo , Methanobrevibacter/metabolismo , Piromyces/metabolismo
3.
Microb Cell Fact ; 15(1): 212, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27998268

RESUMO

BACKGROUND: Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive and rather extreme environment. RESULTS: Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. CONCLUSIONS: We report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass degrading, extracellular enzymes produce.


Assuntos
Carboidratos , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Intestinos/microbiologia , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Anaerobiose , Animais , Fezes/microbiologia , Proteínas Fúngicas/genética , Fungos/classificação , Fungos/genética , Perfilação da Expressão Gênica/métodos , Cabras , Cavalos , Lignina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neocallimastigales/genética , Neocallimastigales/metabolismo , Piromyces/genética , Piromyces/metabolismo , Ligação Proteica , Proteoma/genética , Ovinos , Especificidade da Espécie , Transcriptoma/genética
4.
Curr Microbiol ; 73(3): 434-441, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27287262

RESUMO

Although the scheme of metabolic pathways involved in the production of the major end products has been described, the dynamic profile of metabolites of anaerobic fungi co-cultured with methanogens is limited, especially for the intermediate metabolites. In the present study, the fermentation of the co-culture of Piromyces sp. F1 and Methanobrevibacter thaueri on glucose was investigated. The presence of methanogens shortened the growth lag time of anaerobic fungi and enhanced the total gas production. The occurrence of the maximum cell dry weight and the disappearance of most of the substrate were observed at 24 h for the co-culture and 48 h for the fungal mono-culture. In the co-culture, hydrogen was detected at a very low level during fermentation, and formate transitorily accumulated at 24 h and disappeared at 48 h, resulting in an increase of pH. Acetate was higher during the fermentation in the co-culture (P < 0.05), while lactate and ethanol were higher only in the initial stage of fermentation (P < 0.05). After 48 h, lactate in the mono-culture became much higher than that in the co-culture (P < 0.05), and ethanol tended to remain the same in both cultures. Moreover, malate tended to be exhausted in the co-culture, while it accumulated in the mono-culture. Citrate was also detected in both co-culture and mono-culture. Collectively, these results suggest that methanogen enhanced the malate pathway and weakened the lactate pathway of anaerobic fungus.


Assuntos
Metano/metabolismo , Methanobrevibacter/metabolismo , Piromyces/metabolismo , Anaerobiose , Técnicas de Cocultura , Fermentação , Glucose/metabolismo , Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Malatos/metabolismo , Methanobrevibacter/crescimento & desenvolvimento , Piromyces/química , Piromyces/crescimento & desenvolvimento
5.
Biotechnol Prog ; 37(5): e3172, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960738

RESUMO

Development of the bioeconomy is driven by our ability to access the energy-rich carbon trapped in recalcitrant plant materials. Current strategies to release this carbon rely on expensive enzyme cocktails and physicochemical pretreatment, producing inhibitory compounds that hinder subsequent microbial bioproduction. Anaerobic fungi are an appealing solution as they hydrolyze crude, untreated biomass at ambient conditions into sugars that can be converted into value-added products by partner organisms. However, some carbon is lost to anaerobic fungal fermentation products. To improve efficiency and recapture this lost carbon, we built a two-stage bioprocessing system pairing the anaerobic fungus Piromyces indianae with the yeast Kluyveromyces marxianus, which grows on a wide range of sugars and fermentation products. In doing so we produce fine and commodity chemicals directly from untreated lignocellulose. P. indianae efficiently hydrolyzed substrates such as corn stover and poplar to generate sugars, fermentation acids, and ethanol, which K. marxianus consumed while producing 2.4 g/L ethyl acetate. An engineered strain of K. marxianus was also able to produce 550 mg/L 2-phenylethanol and 150 mg/L isoamyl alcohol from P. indianae hydrolyzed lignocellulosic biomass. Despite the use of crude untreated plant material, production yields were comparable to optimized rich yeast media due to the use of all available carbon including organic acids, which formed up to 97% of free carbon in the fungal hydrolysate. This work demonstrates that anaerobic fungal pretreatment of lignocellulose can sustain the production of fine chemicals at high efficiency by partnering organisms with broad substrate versatility.


Assuntos
Kluyveromyces/metabolismo , Lignina , Engenharia Metabólica/métodos , Piromyces/metabolismo , Açúcares , Ácidos/química , Ácidos/metabolismo , Anaerobiose/fisiologia , Ésteres/química , Ésteres/metabolismo , Hidrólise , Lignina/química , Lignina/metabolismo , Açúcares/química , Açúcares/metabolismo
6.
ACS Synth Biol ; 8(9): 2174-2185, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31461261

RESUMO

Consortium-based approaches are a promising avenue toward efficient bioprocessing. However, many complex microbial interactions dictate community dynamics and stability that must be replicated in synthetic systems. The rumen and/or hindguts of large mammalian herbivores harbor complex communities of biomass-degrading fungi and bacteria, as well as archaea and protozoa that work collectively to degrade lignocellulose, yet the microbial interactions responsible for stability, resilience, and activity of the community remain largely uncharacterized. In this work, we demonstrate a "top-down" enrichment-based methodology for selecting a minimal but effective lignocellulose-degrading community that produces methane-rich fermentation gas (biogas). The resulting enrichment consortium produced 0.75-1.9-fold more fermentation gas at 1.4-2.1 times the rate compared to a monoculture of fungi from the enrichment. Metagenomic sequencing of the top-down enriched consortium revealed genomes encoding for functional compartmentalization of the community, spread across an anaerobic fungus (Piromyces), a bacterium (Sphaerochaeta), and two methanogenic archaea (Methanosphaera and Methanocorpusculum). Guided by the composition of the top-down enrichment, several synthetic cocultures were formed from the "bottom-up" using previously isolated fungi, Neocallimastix californiae and Anaeromyces robustus paired with the methanogen Methanobacterium bryantii. While cross-feeding occurred in synthetic co-cultures, removal of fungal metabolites by methanogens did not increase the rate of gas production or the rate of substrate deconstruction by the synthetic community relative to fungal monocultures. Metabolomic characterization verified that syntrophy was established within synthetic co-cultures, which generated methane at similar concentrations compared to the enriched consortium but lacked the temporal stability (resilience) seen in the native system. Taken together, deciphering the membership and metabolic potential of an enriched gut consortium enables the design of methanogenic synthetic co-cultures. However, differences in the growth rate and stability of enriched versus synthetic consortia underscore the difficulties in mimicking naturally occurring syntrophy in synthetic systems.


Assuntos
Biomassa , Methanobacteriaceae/metabolismo , Piromyces/metabolismo , Spirochaetaceae/metabolismo , Anaerobiose , Biocombustíveis , Lignina/metabolismo , Metano/metabolismo , Methanobacteriaceae/crescimento & desenvolvimento , Consórcios Microbianos , Piromyces/crescimento & desenvolvimento , Spirochaetaceae/crescimento & desenvolvimento
7.
J Mol Biol ; 373(3): 612-22, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17869267

RESUMO

The assembly into supramolecular complexes of proteins having complementary activities is central to cellular function. One such complex of considerable biological and industrial significance is the plant cell wall-degrading apparatus of anaerobic microorganisms, termed the cellulosome. A central feature of bacterial cellulosomes is a large non-catalytic protein, the scaffoldin, which contains multiple cohesin domains. An array of digestive enzymes is incorporated into the cellulosome through the interaction of the dockerin domains, present in the catalytic subunits, with the cohesin domains that are present in the scaffoldin. By contrast, in anaerobic fungi, such as Piromyces equi, the dockerins of cellulosomal enzymes are often present in tandem copies; however, the identity of the cognate cohesin domains in these organisms is unclear, hindering further biotechnological development of the fungal cellulosome. Here, we characterise the solution structure and function of a double-dockerin construct from the P. equi endoglucanase Cel45A. We show that the two domains are connected by a flexible linker that is short enough to keep the binding sites of the two domains on adjacent surfaces, and allows the double-dockerin construct to bind more tightly to cellulosomes than a single domain and with greater coverage. The double dockerin binds to the GH3 beta-glucosidase component of the fungal cellulosome, which is thereby identified as a potential scaffoldin.


Assuntos
Celulossomas/metabolismo , Proteínas Fúngicas/metabolismo , Piromyces/metabolismo , Sequência de Aminoácidos , Celulase/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Piromyces/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Biochim Biophys Acta ; 1628(1): 30-9, 2003 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-12850270

RESUMO

Anaerobic fungi possess high cellulolytic activities, which are organised in high molecular mass (HMM) complexes. Besides catalytic modules, the cellulolytic enzyme components of these complexes contain non-catalytic modules, known as dockerins, that play a key role in complex assembly. Screening of a genomic and a cDNA library of two Piromyces species resulted in the isolation of two clones containing inserts of 5.5 kb (Piromyces sp. E2) and 1.5 kb (Piromyces equi). Both clones contained the complete coding region of a glycoside hydrolase (GH) from family 6, consisting of a 20 amino acid signal peptide, a 76 (sp. E2)/81 (P. equi) amino acid stretch comprising two fungal non-catalytic docking domains (NCDDs), a 24 (sp. E2)/16 (P. equi) amino acid linker, and a 369 amino acid catalytic module. Homology modelling of the catalytic module strongly suggests that the Piromyces enzymes will be processive cellobiohydrolases. The catalytic residues and all nearby residues are conserved. The reaction is thus expected to proceed via a classical single-displacement (inverting) mechanism that is characteristic of this family of GHs. The enzyme, defined as Cel6A, encoded by the full-length Piromyces E2 sequence was expressed in Escherichia coli. The recombinant protein expressed had a molecular mass of 55 kDa and showed activity against Avicel, supporting the observed relationship of the sequence to those of known cellobiohydrolases. Affinity-purified cellulosomes of Piromyces sp. E2 were analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis. A major band was detected with the molecular weight of Cel6A. A tryptic fingerprint of this protein confirmed its identity.


Assuntos
Celulase/química , Celulase/fisiologia , Proteínas Fúngicas/fisiologia , Piromyces/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Celulase/genética , Celulose 1,4-beta-Celobiosidase , Clonagem Molecular , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Biblioteca Gênica , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/farmacologia
9.
J Mol Biol ; 337(2): 417-26, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15003456

RESUMO

The structural and thermodynamic basis for carbohydrate-protein recognition is of considerable importance. NCP-1, which is a component of the Piromyces equi cellulase/hemicellulase complex, presents a provocative model for analyzing how structural and mutational changes can influence the ligand specificity of carbohydrate-binding proteins. NCP-1 contains two "family 29" carbohydrate-binding modules designated CBM29-1 and CBM29-2, respectively, that display unusually broad specificity; the proteins interact weakly with xylan, exhibit moderate affinity for cellulose and mannan, and bind tightly to the beta-1,4-linked glucose-mannose heteropolymer glucomannan. The crystal structure of CBM29-2 in complex with cellohexaose and mannohexaose identified key residues involved in ligand recognition. By exploiting this structural information and the broad specificity of CBM29-2, we have used this protein as a template to explore the evolutionary mechanisms that can lead to significant changes in ligand specificity. Here, we report the properties of the E78R mutant of CBM29-2, which displays ligand specificity that is different from that of wild-type CBM29-2; the protein retains significant affinity for cellulose but does not bind to mannan or glucomannan. Significantly, E78R exhibits a stoichiometry of 0.5 when binding to cellohexaose, and both calorimetry and ultracentrifugation show that the mutant protein displays ligand-mediated dimerization in solution. The three-dimensional structure of E78R in complex with cellohexaose reveals the intriguing molecular basis for this "dimeric" binding mode that involves the lamination of the oligosaccharide between two CBM molecules. The 2-fold screw axis of the ligand is mirrored in the orientation of the two protein domains with adjacent sugar rings stacking against the equivalent aromatic residues in the binding site of each protein molecule of the molecular sandwich. The sandwiching of an oligosaccharide chain between two protein modules, leading to ligand-induced formation of the binding site, represents a completely novel mechanism for protein-carbohydrate recognition that may mimic that displayed by naturally dimeric protein-carbohydrate interactions.


Assuntos
Metabolismo dos Carboidratos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Sequência de Bases , Sítios de Ligação , Carboidratos/química , Celulase/química , Celulase/genética , Celulase/metabolismo , Cristalografia por Raios X , DNA Fúngico/genética , Dimerização , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Ligantes , Substâncias Macromoleculares , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutagênese Sítio-Dirigida , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Piromyces/genética , Piromyces/metabolismo , Termodinâmica
10.
Bioresour Technol ; 185: 79-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25755016

RESUMO

Bioaugmentation with an anaerobic fungus, Piromyces rhizinflata YM600, was evaluated in an anaerobic two-stage system digesting corn silage and cattail. Comparable methane yields of 328.8±16.8mLg(-1)VS and 295.4±14.5mLg(-1)VS and hydrogen yields of 59.4±4.1mLg(-1)VS and 55.6±6.7mLg(-1)VS were obtained for unaugmented and bioaugmented corn silage, respectively. Similar CH4 yields of 101.0±4.8mLg(-1)VS and 104±19.1mLg(-1)VS and a low H2 yield (<1mLg(-1)VS) were obtained for unaugmented and bioaugmented cattail, respectively. However, bioaugmentation resulted in an initial increase in CH4 and H2 production rates and also increased volatile fatty acid degradation rate for both substrates. Our study demonstrates the potential of bioaugmentation with anaerobic fungus for improving the digestibility of lignocellulose substrates for biogas and biohydrogen production.


Assuntos
Hidrogênio/metabolismo , Metano/metabolismo , Piromyces/metabolismo , Silagem/microbiologia , Typhaceae/microbiologia , Zea mays/microbiologia , Reatores Biológicos/microbiologia , Hidrogênio/isolamento & purificação , Lignina/metabolismo , Metano/isolamento & purificação
11.
FEMS Microbiol Lett ; 212(2): 243-7, 2002 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-12113941

RESUMO

Anaerobic fungi are an important component of the cellulolytic ruminal microflora. Ammonia alone as N source supports growth, but amino acid mixtures are stimulatory. In order to evaluate the extent of de novo synthesis of individual amino acids in Piromyces communis and Neocallimastix frontalis, isotope enrichment in amino acids was determined during growth on (15)NH(4)Cl in different media. Most cell N (0.78 and 0.63 for P. communis and N. frontalis, respectively) and amino acid N (0.73 and 0.59) continued to be formed de novo from ammonia when 1 g l(-1) trypticase was added to the medium; this concentration approximates the peak concentration of peptides in the rumen after feeding. Higher peptide/amino acid concentrations decreased de novo synthesis. Lysine was exceptional, in that its synthesis decreased much more than other amino acids when Trypticase or amino acids were added to the medium, suggesting that lysine synthesis might limit fungal growth in the rumen.


Assuntos
Aminoácidos/biossíntese , Neocallimastix/metabolismo , Piromyces/metabolismo , Rúmen/microbiologia , Amônia/metabolismo , Anaerobiose , Animais , Nitrogênio/metabolismo
12.
DNA Seq ; 13(6): 313-20, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12652902

RESUMO

Sequencing of two cDNAs from the anaerobic fungi Piromyces equi and Piromyces sp. strain E2 revealed that they both encode a glycoside hydrolase (GH) family 48 cellulase, containing two C-terminal fungal dockerin domains. N-terminal sequencing of the major component of the Piromyces multi-enzyme cellulase/hemicellulase complex, termed the cellulosome, showed that these 80 kDa proteins corresponded to the GH family 48 enzyme. These data show for the first time that GH family 48 cellulases are not confined to bacteria, and that bacterial and fungal cellulosomes share the same pivotal component.


Assuntos
Glicosídeo Hidrolases/genética , Piromyces/genética , Domínio Catalítico , Glicosídeo Hidrolases/metabolismo , Filogenia , Piromyces/metabolismo , Análise de Sequência de DNA
13.
Mycol Res ; 112(Pt 8): 999-1006, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18539447

RESUMO

A gene encoding a novel component of the cellulolytic complex (cellulosome) of the anaerobic fungus Piromyces sp. strain E2 was identified. The encoded 538 amino acid protein, named celpin, consists of a signal peptide, a positively charged domain of unknown function followed by two fungal dockerins, typical for components of the extracellular fungal cellulosome. The C-terminal end consists of a 380 amino acid serine proteinase inhibitor (or serpin) domain homologue, sharing 30% identity and 50% similarity to vertebrate and bacterial serpins. Detailed protein sequence analysis of the serpin domain revealed that it contained all features of a functional serpin. It possesses the conserved amino acids present in more than 70% of known serpins, and it contained the consensus of inhibiting serpins. Because of the confined space of the fungal cellulosome inside plant tissue and the auto-proteolysis of plant material in the rumen, the fungal serpin is presumably involved in protection of the cellulosome against plant proteinases. The celpin protein of Piromyces sp. strain E2 is the first non-structural, non-hydrolytic fungal cellulosome component. Furthermore, the celpin protein of Piromyces sp. strain E2 is the first representative of a serine proteinase inhibitor of the fungal kingdom.


Assuntos
Celulossomas/genética , Proteínas Fúngicas/genética , Piromyces/genética , Serpinas/genética , Sequência de Aminoácidos , Anaerobiose , Sequência de Bases , Celulossomas/química , Celulossomas/metabolismo , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Piromyces/química , Piromyces/metabolismo , Alinhamento de Sequência , Serpinas/química , Serpinas/metabolismo
14.
Anaerobe ; 14(1): 19-28, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17996466

RESUMO

Responses of the rumen anaerobic fungus, Piromyces communis M014, to octadecanic long-chain fatty acids (LCFAs) were evaluated by measuring total and hydrogen gas productions, filter paper (FP) cellulose degradation and polysaccharidase enzyme activities. Octadecanic acids (stearic acid, C(18:0); oleic acid, C(18:1); linoleic acid, C(18:2) and linolenic acid, C(18:3)) were emulsified by ultrasonication under anaerobic conditions, and added to the medium at the level of 0.001%. When P. communis M014 was grown in culture with stearic and oleic acids, the cumulative gas production, FP cellulose digestion and enzyme activities were significantly (p<0.05) increased in the early incubation times relative to those for the control. However, the addition of linolenic acid inhibited all of the investigated parameters, including cellulose degradation, enzyme activities and gas production, up to 168h incubation. These results indicated that stearic and oleic acids tended to have stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effect on cellulolysis by the rumen fungus. The fungus, P. communis M014, can biohydrogenate C(18) unsaturated fatty acids to escape from their toxic effects. Therefore, in this study, the results indicated that the more highly the added C(18) LCFA to the fungal culture was unsaturated, the higher the inhibition of gas production and cellulase enzyme activity was.


Assuntos
Celulose/metabolismo , Hidrogênio/metabolismo , Piromyces/metabolismo , Rúmen/microbiologia , Ácidos Esteáricos/farmacologia , Amônia/metabolismo , Anaerobiose , Animais , Celulase/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Ácido Linoleico/farmacologia , Ácido Oleico/farmacologia , Piromyces/efeitos dos fármacos , Piromyces/crescimento & desenvolvimento , Xilosidases/metabolismo , Ácido alfa-Linolênico/farmacologia
15.
Arch Anim Nutr ; 61(5): 416-23, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18030922

RESUMO

Fifteen Murrah buffalo calves (age about 10 months, 163-176 kg BW) were divided into three groups. Group I (Control) was fed a complete feed mixture consisted of 50% wheat straw and 50% concentrate mixture (contained per kg: maize 330 g, groundnut cake 210 g, mustard cake 120 g, wheat bran 200 g, de-oiled rice bran 110 g, mineral mixture 20 g and common salt 10 g) along with 2 kg green oats per animal and day to meet the vitamin A requirements. Calves of Groups II and III were fed with the Control diet supplemented with Orpinomyces sp. C-14 and Piromyces sp. WNG-12 cultures, respectively. The digestibility of DM was significantly highest with Piromyces sp. WNG-12 in Group III (62.2%) followed by Orpinomyces sp. C-14 in Group II (60.3%), and Control (53.5%). A similar pattern of increase in digestibility of crude protein and cell-wall contents was observed in treatment groups. The digestible energy in terms of percent total digestible nutrients was also significantly enhanced in Groups II (56.6%) and III (59.9%) when compared to Control (49.2%). The rumen fermentation parameters such as pH and NH3-N were found to be lower, whereas total nitrogen, tricarboxylic acid precipitable-, nitrogen, total volatile fatty acids and zoospore counts per millilitre of rumen liquor were significantly higher in fungal administered groups. After administration of fungal cultures, improvements of animal growth rate (i.e. body weight gain) and feed efficiency were also observed.


Assuntos
Ração Animal , Búfalos/crescimento & desenvolvimento , Fibras na Dieta/metabolismo , Digestão , Piromyces/metabolismo , Rúmen/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Búfalos/metabolismo , Bovinos , Digestão/efeitos dos fármacos , Feminino , Fermentação/efeitos dos fármacos , Masculino , Distribuição Aleatória , Rúmen/microbiologia , Aumento de Peso/efeitos dos fármacos
16.
J Biol Chem ; 280(25): 23718-26, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15784618

RESUMO

The recycling of photosynthetically fixed carbon, by the action of microbial plant cell wall hydrolases, is integral to one of the major geochemical cycles and is of considerable industrial importance. Non-catalytic carbohydrate-binding modules (CBMs) play a key role in this degradative process by targeting hydrolytic enzymes to their cognate substrate within the complex milieu of polysaccharides that comprise the plant cell wall. Family 29 CBMs have, thus far, only been found in an extracellular multienzyme plant cell wall-degrading complex from the anaerobic fungus Piromyces equi, where they exist as a CBM29-1:CBM29-2 tandem. Here we present both the structure of the CBM29-1 partner, at 1.5 A resolution, and examine the importance of hydrophobic stacking interactions as well as direct and solvent-mediated hydrogen bonds in the binding of CBM29-2 to different polysaccharides. CBM29 domains display unusual binding properties, exhibiting specificity for both beta-manno- and beta-gluco-configured ligands such as mannan, cellulose, and glucomannan. Mutagenesis reveals that "stacking" of tryptophan residues in the n and n+2 subsites plays a critical role in ligand binding, whereas the loss of tyrosine-mediated stacking in the n+4 subsite reduces, but does not abrogate, polysaccharide recognition. Direct hydrogen bonds to ligand, such as those provided by Arg-112 and Glu-78, play a pivotal role in the interaction with both mannan and cellulose, whereas removal of water-mediated interactions has comparatively little effect on carbohydrate binding. The interactions of CBM29-2 with the O2 of glucose or mannose contribute little to binding affinity, explaining why this CBM displays dual gluco/manno specificity.


Assuntos
Metabolismo dos Carboidratos , Proteínas Fúngicas/metabolismo , Sequência de Carboidratos , Cristalização , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Sondas Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Piromyces/metabolismo , Conformação Proteica
17.
J Ind Microbiol Biotechnol ; 30(4): 205-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12687490

RESUMO

Two anaerobic fungi, one a monocentric strain ( Piromyces sp. KSX1) and the other a polycentric strain ( Orpinomyces sp. 478P1), were immobilised in calcium alginate beads and cultured in sequential batches where spent medium (containing 0.25% cellobiose) was repeatedly drained and replaced. beta-Glucosidase production with KSX1 was maintained for 45 days over six repeated batch cultures yielding a maximum level of 107 mIU/ml. For 478P1, beta-glucosidase production was maintained for 30 days over four repeated batches yielding a maximum level of 34 mIU/ml. Although repeat-batch cultures of KSX1 produced more beta-glucosidase than strain 478P1, the maximum specific beta-glucosidase produced from these immobilised cultures was similar. The immobilised polycentric strain proved to be operationally superior to strain KSX1, as strain 478P1 did not produce any growth in the culture liquor.


Assuntos
Microbiologia Industrial/métodos , Neocallimastigales/metabolismo , Piromyces/metabolismo , beta-Glucosidase/biossíntese , Anaerobiose , Géis , Microesferas , Micélio/metabolismo
18.
J Biol Chem ; 276(46): 43010-7, 2001 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-11560933

RESUMO

The recycling of photosynthetically fixed carbon by the action of microbial plant cell wall hydrolases is a fundamental biological process that is integral to one of the major geochemical cycles and, in addition, has considerable industrial potential. Enzyme systems that attack the plant cell wall contain noncatalytic carbohydrate-binding modules (CBMs) that mediate attachment to this composite structure and play a pivotal role in maximizing the hydrolytic process. Anaerobic fungi that colonize herbivores are the most efficient plant cell wall degraders known, and this activity is vested in a high molecular weight complex that binds tightly to the plant cell wall. To investigate whether plant cell wall attachment is mediated by noncatalytic proteins, a cDNA library of the anaerobic fungus Piromyces equi was screened for sequences that encode noncatalytic proteins that are components of the cellulase-hemicellulase complex. A 1.6-kilobase cDNA was isolated encoding a protein of 479 amino acids with a M(r) of 52548 designated NCP1. The mature protein had a modular architecture comprising three copies of the noncatalytic dockerin module that targets anaerobic fungal proteins to the cellulase-hemicellulase complex. The two C-terminal modules of NCP1, CBM29-1 and CBM29-2, respectively, exhibit 33% sequence identity with each other but have no homologues in protein data bases. A truncated form of NCP1 comprising CBM29-1 and CBM29-2 (CBM29-1-2) and each of the two individual copies of CBM29 bind primarily to mannan, cellulose, and glucomannan, displaying the highest affinity for the latter polysaccharide. CBM29-1-2 exhibits 4-45-fold higher affinity than either CBM29-1 or CBM29-2 for the various ligands, indicating that the two modules, when covalently linked, act in synergy to bind to an array of different polysaccharides. This paper provides the first report of a CBM-containing protein from an anaerobic fungal cellulase-hemicellulase complex. The two CBMs constitute a novel CBM family designated CBM29 whose members exhibit unusually wide ligand specificity. We propose, therefore, that NCP1 plays a role in sequestering the fungal enzyme complex onto the plant cell wall.


Assuntos
Metabolismo dos Carboidratos , Carboidratos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Piromyces/química , Sequência de Aminoácidos , Aminoácidos/química , Animais , Sequência de Bases , Western Blotting , Calorimetria , Bovinos , Parede Celular , DNA/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Biblioteca Gênica , Cinética , Ligantes , Mananas/metabolismo , Dados de Sequência Molecular , Piromyces/metabolismo , Plantas/química , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Albumina Sérica/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA