Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578757

RESUMO

We present a reproducible procedure for transforming somatic embryos of cork oak with the CsTL1 gene that codes for a thaumatin-like protein, in order to confer tolerance to Phytophthora cinnamomi. Different concentrations/combinations of the antibiotics carbenicillin and cefotaxime, as bacteriostatic agents, and kanamycin, as a selective agent, were tested. A lethal dose of 125 mg/L kanamycin was employed to select transgenic somatic embryos, and carbenicillin was used as a bacteriostatic agent at a concentration of 300 mg/L, which does not inhibit somatic embryo proliferation. The transformation efficiency was clearly genotype-dependent and was higher for the TGR3 genotype (17%) than for ALM80 (4.5%) and ALM6 (2%). Insertion of the transgenes in genomic DNA was confirmed by PCR analysis, whereas expression of the CsTL1 gene was evaluated by semi-quantitative real-time PCR (qPCR) analysis. A vitrification treatment successfully cryopreserved the transgenic lines generated. The antifungal activity of the thaumatin-like protein expressed by the gene CsTL1 was evaluated in an in vitro bioassay with the oomycete P. cinnamomi. Of the eight transgenic lines analyzed, seven survived for between one or two times longer than non-transgenic plantlets. Expression of the CsTL1 gene and plantlet survival days were correlated, and survival was generally greater in plantlets that strongly expressed the CsTL1 gene.


Assuntos
Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/embriologia , Quercus/embriologia , Agrobacterium tumefaciens/genética , Resistência à Doença , Phytophthora/fisiologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Quercus/genética , Quercus/parasitologia , Transformação Genética , Transgenes
2.
Dev Dyn ; 249(9): 1127-1146, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32319191

RESUMO

BACKGROUND: Understanding developmental processes requires the unambiguous identification of cells and tissues, and the selective manipulation of the properties of those cells and tissues. Both requirements can most efficiently be satisfied through the use of GAL4/GFP enhancer-trap lines. No such lines, however, have been characterized for the study of early leaf development in the Columbia-0 reference genotype of Arabidopsis. RESULTS: Here we address this limitation by identifying and characterizing a set of GAL4/GFP enhancer-trap lines in the Columbia-0 background for the specific labeling of cells and tissues during early leaf development, and for the targeted expression of genes of interest in those cells and tissues. CONCLUSIONS: By using one line in our set to address outstanding questions in leaf vein patterning, we show that these lines can be used to address key questions in plant developmental biology.


Assuntos
Arabidopsis , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde , Folhas de Planta , Plantas Geneticamente Modificadas , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células de Lugar/metabolismo , Folhas de Planta/embriologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética
3.
Int J Mol Sci ; 20(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641963

RESUMO

Several approaches have recently been adopted to improve Agrobacterium-mediated transformation of maize; however, about eight months of in vitro culture are still required to isolate transgenic plants. Furthermore, genetic transformation of maize depends on immature embryos, which greatly increases costs. Here, we report a method that ensures the competency of an embryogenic callus secondary culture under laboratory conditions for Agrobacterium-mediated transformation. Moreover, pretreatment of the cell wall with a mixed lytic enzyme solution prior to Agrobacterium infection, significantly improved transformation efficiency and stability. Average stable transformation efficiency was approximately 30.39%, with peaks of 94.46%. Expression and phenotypic analysis of the Rsc reporter gene were tested in the T0 generation of transgenic plants. Using this system, we successfully regenerated transgenic maize plantlets within three months of the emergence of the embryogenic callus. Additionally, we reduced somaclonal variation accompanying prolonged culture of maize cells in the dedifferentiated state, thus facilitating the molecular breeding of maize.


Assuntos
Agrobacterium tumefaciens/fisiologia , Sementes/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos/métodos , Zea mays/embriologia , Embaralhamento de DNA , Genes Reporter , Fenótipo , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/microbiologia , Sementes/genética , Sementes/microbiologia , Transformação Bacteriana , Zea mays/genética , Zea mays/microbiologia
4.
Ann Bot ; 119(6): 1001-1010, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130222

RESUMO

Background and Aims: Apomixis, or asexual seed formation, in polyploid Hieracium subgenus Pilosella species results in clonal progeny with a maternal genotype. An aposporous embryo sac forms mitotically from a somatic cell, without prior meiosis, while embryo and endosperm formation is fertilization independent (autonomous). The latter two developmental components are tightly linked in Hieracium . Recently, two plants, AutE196 and AutE24, were identified from two different crosses. Both form embryo sacs via the sexual route by undergoing meiosis, and embryo development requires fertilization; however, 18 % of embryo sacs can undergo autonomous endosperm (AutE) formation. This study investigated the qualitative and quantitative inheritance of the AutE trait and factors influencing phenotype expressivity. An additional focus was to identify the linkage group bearing the AutE locus in AutE196. Methods: Crosses and cytology were used to examine the inheritance of AutE from AutE24 and AutE196, and to reintroduce apomictic components into AutE plants, thereby changing the ploidy of developing embryo sacs and increasing the dosage of AutE loci. Markers from a Hieracium apomict linkage map were examined within a backcrossed AutE196 mapping population to identify the linkage group containing the AutE196 locus. Key Results: Qualitative autonomous endosperm in the AutE24 line was conferred by a single dominant locus, and the trait was transmitted through male and female gametes in AutE196 and AutE24. Expressivity of the trait did not significantly increase when AutE loci from AutE196 and AutE24 were both present in the progeny, within embryo sacs formed via apospory, or sexually derived embryo sacs with increased ploidy. It remains unclear if these are identical loci. Conclusions: The qualitative trait of autonomous endosperm formation is conferred by single dominant loci in AutE196 and AutE24. High expressivity of autonomous endosperm formation observed in apomicts requires additional genetic factors. Potential candidates may be signals arising from fertilization-independent embryo formation.


Assuntos
Asteraceae/embriologia , Asteraceae/genética , Proteínas de Plantas/genética , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Óvulo Vegetal , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Sementes/crescimento & desenvolvimento
5.
J Exp Bot ; 66(17): 5217-27, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26071532

RESUMO

Embryo and endosperm development are two well co-ordinated developmental processes in seed formation; however, signals involved in embryo and endosperm interactions remain poorly understood. It has been shown before that CLAVATA3/ESR-RELATED 19 (CLE19) peptide is able to trigger root meristem consumption in a CLV2-dependent manner. In this study, the role of CLE19 in Arabidopsis seed development was explored using antagonistic peptide technology. CLE19 is expressed in the epidermal layers of the cotyledon primordia, hypocotyl, and root cap in the embryo. Transgenic plants carrying an antagonistic CLE19 G6T construct expressed under the control of CLE19 regulatory elements exhibited a dominant seed abortion phenotype, with defective cotyledon establishment in embryos and delayed nuclear proliferation and cellularization in endosperms. Ectopic expression of CLE19 G6T in Arabidopsis under the control of an endosperm-specific ALE1 promoter led to a similar defect in cotyledon establishment in embryos but without an evident effect on endosperm development. We therefore propose that CLE19 may act as a mobile peptide co-ordinating embryo and endosperm development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/embriologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cotilédone/embriologia , Cotilédone/genética , Cotilédone/metabolismo , Endosperma/embriologia , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo , Raízes de Plantas/embriologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/embriologia , Sementes/genética , Sementes/metabolismo
6.
Plant Cell ; 24(3): 1000-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22427333

RESUMO

The plant seed is a major nutritional source for humans as well as an essential embryo development and dispersal unit. To ensure proper seed formation, fine spatial and temporal coordination between the embryo, endosperm, and maternal seed components must be achieved. However, the intercellular signaling pathways that direct the synchronous development of these tissues are poorly understood. Here we show that the Arabidopsis thaliana peptide ligand CLAVATA3/embryo surrounding region-related8 (CLE8) is exclusively expressed in young embryos and endosperm, and that it acts cell and noncell autonomously to regulate basal embryo cell division patterns, endosperm proliferation, and the timing of endosperm differentiation. CLE8 positively regulates expression of the transcription factor gene Wuschel-like homeobox8 (WOX8), and together CLE8 and WOX8 form a signaling module that promotes seed growth and overall seed size. These results demonstrate that seed development is coordinated by a secreted peptide ligand that plays a key early role in orchestrating cell patterning and proliferation in the embryo and endosperm.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Endosperma/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/embriologia , Proteínas de Arabidopsis/genética , Diferenciação Celular , Proliferação de Células , Clonagem Molecular , DNA de Plantas/genética , Endosperma/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Sementes/genética , Transdução de Sinais , Fatores de Transcrição/genética
7.
Genet Mol Res ; 14(1): 1096-105, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25730049

RESUMO

Mature embryos in tissue cultures are advantageous because of their abundance and rapid germination, which reduces genomic instability problems. In this study, 2-day-old isolated mature barley embryos were infected with 2 Agrobacterium hypervirulent strains (AGL1 and EHA105), followed by a 3-day period of co-cultivation in the presence of L-cystein amino acid. Chimeric expression of the b-glucuronidase gene (gusA) directed by a viral promoter of strawberry vein banding virus was observed in coleoptile epidermal cells and seminal roots in 5-day-old germinated seedlings. In addition to varying infectivity patterns in different strains, there was a higher ratio of transient b-glucuronidase expression in developing coleoptiles than in embryonic roots, indicating the high competency of shoot apical meristem cells in the mature embryo. A total of 548 explants were transformed and 156 plants developed to maturity on G418 media after 18-25 days. We detected transgenes in 74% of the screened plant leaves by polymerase chain reaction, and 49% of these expressed neomycin phosphotransferase II gene following AGL1 transformation. Ten randomly selected T0 transformants were analyzed using thermal asymmetric interlaced polymerase chain reaction and 24 fragments ranged between 200-600 base pairs were sequenced. Three of the sequences flanked with transferred-DNA showed high similarity to coding regions of the barley genome, including alpha tubulin5, homeobox 1, and mitochondrial 16S genes. We observed 70-200-base pair filler sequences only in the coding regions of barley in this study.


Assuntos
Hordeum/genética , Plantas Geneticamente Modificadas/genética , Plântula/genética , Transformação Genética , Agrobacterium tumefaciens/genética , Vetores Genéticos , Genoma de Planta , Genômica , Germinação/genética , Hordeum/embriologia , Hordeum/crescimento & desenvolvimento , Canamicina Quinase/genética , Meristema/embriologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plântula/embriologia , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Transgenes
8.
BMC Plant Biol ; 14: 23, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24418064

RESUMO

BACKGROUND: The diploid (2n = 2x = 14) strawberry model plant Fragaria vesca ssp. vesca 'Hawaii 4' was employed for functional analysis of expressed DNA sequences initially identified as being unique to Fragaria and of unknown or poorly understood function. 'Hawaii 4' is prominent in strawberry research due to its ease of Agrobacterium-mediated transformation and regenerability, and its status as the source of the first complete strawberry genomic sequence. Our studies of a set of transformants have documented intriguing, construct-associated effects on leaf morphology, and provide important and unexpected insights into the performance of the 'Hawaii 4' transformation and regeneration system. RESULTS: Following Agrobacterium-mediated transformation of leaf explants with gene constructs carried by Gateway® vectors, plants were regenerated using a modified version of an established 'Hawaii 4' protocol. Expanding upon the findings of prior studies, we documented that plantlet regeneration was occurring via a somatic embryogenic rather than an organogenic developmental pathway. Among transformants, several variations in leaf morphology were observed. Unexpectedly, a particular leaf variant type, occurring in ~17% of all regenerants independent of construct type, was found to be attributable to tetraploidy. The tetraploidy-associated alteration in leaf morphology could be differentiated from the leaf morphology of diploid regenerants on the basis of a quantitative ratio of leaf dimensions: B/A, where B is the width of the central leaflet and A is the overall width of the trifoliate leaf. Variant effects on leaf morphology of four different transgenic constructs were also documented, and were in all cases distinguishable from the effects of tetraploidy. CONCLUSIONS: These results define opportunities to optimize the existing 'Hawaii 4' protocol by focusing on treatments that specifically promote somatic embryogenesis. The reported morphological metric and descriptions will guide future transgenic studies using the 'Hawaii 4' model system by alerting researchers to the potential occurrence of polyploid regenerants, and to differentiating the effects on leaf morphology due to polyploidy versus transgenic manipulations. Finally, an intriguing spectrum of leaf morphology alterations resulting from manipulation of expressed sequences of uncertain function is documented, providing a foundation for detailed studies of the respective genes and their functional roles.


Assuntos
Fragaria/embriologia , Fragaria/genética , Tetraploidia , Fragaria/anatomia & histologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/embriologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética
9.
Plant Cell ; 23(12): 4368-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22207572

RESUMO

Self-maintenance of the shoot apical meristem (SAM), from which aerial organs are formed throughout the life cycle, is crucial in plant development. Class I Knotted1-like homeobox (KNOX) genes restrict cell differentiation and play an indispensable role in maintaining the SAM. However, the mechanism that positively regulates their expression is unknown. Here, we show that expression of a rice (Oryza sativa) KNOX gene, Oryza sativa homeobox1 (OSH1), is positively regulated by direct autoregulation. Interestingly, loss-of-function mutants of OSH1 lose the SAM just after germination but can be rescued to grow until reproductive development when they are regenerated from callus. Double mutants of osh1 and d6, a loss-of-function mutant of OSH15, fail to establish the SAM both in embryogenesis and regeneration. Expression analyses in these mutants reveal that KNOX gene expression is positively regulated by the phytohormone cytokinin and by KNOX genes themselves. We demonstrate that OSH1 directly binds to five KNOX loci, including OSH1 and OSH15, through evolutionarily conserved cis-elements and that the positive autoregulation of OSH1 is indispensable for its own expression and SAM maintenance. Thus, the maintenance of the indeterminate state mediated by positive autoregulation of a KNOX gene is an indispensable mechanism of self-maintenance of the SAM.


Assuntos
Proteínas de Homeodomínio/metabolismo , Meristema/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/metabolismo , Transativadores/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Citocininas , DNA de Plantas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Genes de Plantas , Teste de Complementação Genética , Loci Gênicos , Germinação , Proteínas de Homeodomínio/genética , Meristema/embriologia , Meristema/genética , Meristema/metabolismo , Dados de Sequência Molecular , Mutação , Oryza/embriologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Transativadores/genética , Transformação Genética
10.
Biochem Biophys Res Commun ; 430(1): 32-7, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23200839

RESUMO

During natural or dark-induced senescence, chlorophyll degradation causes leaf yellowing. Recent evidence indicates that chlorophyll catabolic enzymes (CCEs) interact with the photosynthetic apparatus; for example, five CCEs (NYC1, NOL, PPH, PAO and RCCR) interact with LHCII. STAY-GREEN (SGR) and CCEs interact with one another in senescing chloroplasts; this interaction may allow metabolic channeling of potentially phototoxic chlorophyll breakdown intermediates. 7-Hydroxymethyl chlorophyll a reductase (HCAR) also acts as a CCE, but HCAR functions during leaf senescence remain unclear. Here we show that in Arabidopsis, HCAR-overexpressing plants exhibited accelerated leaf yellowing and, conversely, hcar mutants stayed green during dark-induced senescence. Moreover, HCAR interacted with LHCII in in vivo pull-down assays, and with SGR, NYC1, NOL and RCCR in yeast two-hybrid assays, indicating that HCAR is a component of the proposed SGR-CCE-LHCII complex, which acts in chlorophyll breakdown. Notably, HCAR and NOL are expressed throughout leaf development and are drastically down-regulated during dark-induced senescence, in contrast with SGR, NYC1, PPH and PAO, which are up-regulated during dark-induced senescence. Moreover, HCAR and NOL are highly up-regulated during greening of etiolated seedlings, strongly suggesting a major role for NOL and HCAR in the chlorophyll cycle during vegetative stages, possibly in chlorophyll turnover.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Clorofila/análogos & derivados , Oxirredutases/metabolismo , Folhas de Planta/fisiologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Escuridão , Oxirredutases/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
11.
Development ; 137(1): 73-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20023162

RESUMO

Maternal effects are defined by mutations that affect the next generation when they are maternally inherited. To date, most indepth studies of maternal effects in plants have attributed their origin to genomic imprinting that restricts expression to the maternal allele. The DNA glycosylase DEMETER (DME) removes methylated cytosine residues, causing transcriptional activation of the maternal allele of imprinted genes. In this study, we show that loss-of-function of the major DNA LIGASE I (AtLIG1) in Arabidopsis thaliana causes maternal effects in the endosperm, which is the seed tissue that nurtures embryo development. AtLIG1 expression is not imprinted and has a limited impact on imprinted gene expression. Genetic interaction analyses further indicate that AtLIG1 acts downstream of DME. The removal of methylated cytosine residues by DME involves the creation of DNA single-strand breaks and our results suggest that AtLIG1 repairs these breaks.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/embriologia , Arabidopsis/enzimologia , DNA Ligases/fisiologia , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA Ligase Dependente de ATP , DNA Ligases/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Microscopia Confocal , Modelos Genéticos , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/fisiologia , Fenótipo , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polimorfismo Genético/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/metabolismo , Transativadores/genética , Transativadores/fisiologia
12.
Development ; 137(2): 333-45, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20040499

RESUMO

Reversible post-translational modification of numerous proteins by small ubiquitin-related modifiers (SUMOs) represents a major regulatory process in various eukaryotic cellular and developmental processes. To study the role of sumoylation during female gametophyte (FG) development in maize, we identified Zea mays genes encoding SUMO (ZmSUMO1a and ZmSUMO1b) and a diSUMO-like protein called ZmDSUL that contains two head-to-tail SUMO-like domains. Whereas ZmSUMO1a and ZmSUMO1b are almost ubiquitously expressed, ZmDSUL transcripts were detected exclusively in the egg apparatus and zygote. ZmDSUL was selected for detailed studies. ZmDSUL is processed close to the C-terminus, generating a dimeric protein that is similar to animal FAT10 and ISG15, which contain two ubiquitin-like domains. Whereas GFP fused to the ZmDSUL N-terminus was located in the cytoplasm and predominately in the nucleoplasm of some transiently transformed maize suspension cells, C-terminal GFP fusions exclusively accumulated at the nuclear surface. GFP or ZmDSUL-GFP under control of the ZmDSUL promoter first displayed GFP signals in the micropylar-most position of the FG at stage 5/6, when migration of polar nuclei and cellularization occurs. Mature FGs displayed GFP signals exclusively in the egg cell, but the strongest signals were observed shortly after fertilization and disappeared during the first asymmetric zygotic division. RNAi silencing of ZmDSUL showed that it is required for FG viability. Moreover, nuclei segregation and positioning defects occurred at stage FG 5 after mitotic nuclear divisions were completed. In summary, we report a diSUMO-like protein that appears to be essential for nuclei segregation and positioning, the prerequisite for cell specification during FG maturation.


Assuntos
Núcleo Celular/metabolismo , Células Germinativas Vegetais/metabolismo , Proteínas de Plantas/fisiologia , Zea mays/embriologia , Sequência de Aminoácidos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estrutura Secundária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Nicotiana/metabolismo , Ubiquitinas/química , Ubiquitinas/genética , Ubiquitinas/metabolismo , Ubiquitinas/fisiologia , Zea mays/genética , Zea mays/metabolismo
13.
Development ; 137(1): 63-71, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20023161

RESUMO

Amplification of genomic DNA by endoreduplication often marks the initiation of cell differentiation in animals and plants. The transition from mitotic cycles to endocycles should be developmentally programmed but how this process is regulated remains largely unknown. We show that the plant growth regulator auxin modulates the switch from mitotic cycles to endocycles in Arabidopsis; high levels of TIR1-AUX/IAA-ARF-dependent auxin signalling are required to repress endocycles, thus maintaining cells in mitotic cycles. By contrast, lower levels of TIR1-AUX/IAA-ARF-dependent auxin signalling trigger an exit from mitotic cycles and an entry into endocycles. Our data further demonstrate that this auxin-mediated modulation of the mitotic-to-endocycle switch is tightly coupled with the developmental transition from cell proliferation to cell differentiation in the Arabidopsis root meristem. The transient reduction of auxin signalling by an auxin antagonist PEO-IAA rapidly downregulates the expression of several core cell cycle genes, and we show that overexpressing one of the genes, CYCLIN A2;3 (CYCA2;3), partially suppresses an early initiation of cell differentiation induced by PEO-IAA. Taken together, these results suggest that auxin-mediated mitotic-to-endocycle transition might be part of the developmental programmes that balance cell proliferation and cell differentiation in the Arabidopsis root meristem.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Diferenciação Celular , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciclina A/genética , Ciclina A/fisiologia , Ciclina A2 , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas F-Box/genética , Proteínas F-Box/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/antagonistas & inibidores , Meristema/citologia , Meristema/metabolismo , Oxigenases/genética , Oxigenases/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ploidias , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
14.
Plant Physiol ; 160(2): 978-89, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22846192

RESUMO

Transparent Testa16 (TT16), a transcript regulator belonging to the B(sister) MADS box proteins, regulates proper endothelial differentiation and proanthocyanidin accumulation in the seed coat. Our understanding of its other physiological roles, however, is limited. In this study, the physiological and developmental roles of TT16 in an important oil crop, canola (Brassica napus), were dissected by a loss-of-function approach. RNA interference (RNAi)-mediated down-regulation of tt16 in canola caused dwarf phenotypes with a decrease in the number of inflorescences, flowers, siliques, and seeds. Fluorescence microscopy revealed that tt16 deficiency affects pollen tube guidance, resulting in reduced fertility and negatively impacting embryo and seed development. Moreover, Bntt16 RNAi plants had reduced oil content and altered fatty acid composition. Transmission electron microscopy showed that the seeds of the RNAi plants had fewer oil bodies than the nontransgenic plants. In addition, tt16 RNAi transgenic lines were more sensitive to auxin. Further analysis by microarray showed that tt16 down-regulation alters the expression of genes involved in gynoecium and embryo development, lipid metabolism, auxin transport, and signal transduction. The broad regulatory function of TT16 at the transcriptional level may explain the altered phenotypes observed in the transgenic lines. Overall, the results uncovered important biological roles of TT16 in plant development, especially in fatty acid synthesis and embryo development.


Assuntos
Brassica napus/embriologia , Lipídeos/biossíntese , Proteínas de Domínio MADS/metabolismo , Sementes/crescimento & desenvolvimento , Transporte Biológico , Brassica napus/genética , Brassica napus/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos Monoinsaturados/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Metabolismo dos Lipídeos , Proteínas de Domínio MADS/genética , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/metabolismo , Pólen/crescimento & desenvolvimento , Polinização , Interferência de RNA , Óleo de Brassica napus , Sementes/ultraestrutura , Autofertilização , Transdução de Sinais
15.
Plant Physiol ; 160(2): 696-707, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22885936

RESUMO

The wall-associated kinase (WAK) gene family is a unique subfamily of receptor-like kinases (RLKs) in plants. WAK-RLKs play roles in cell expansion, pathogen resistance, and metal tolerance in Arabidopsis (Arabidopsis thaliana). Rice (Oryza sativa) has far more WAK-RLK genes than Arabidopsis, but the functions of rice WAK-RLKs are poorly understood. In this study, we found that one rice WAK-RLK gene, DEFECT IN EARLY EMBRYO SAC1 (OsDEES1), is involved in the regulation of early embryo sac development. OsDEES1 silencing by RNA interference caused a high rate of female sterility. Crossing experiments showed that female reproductive organs lacking OsDEES1 carried a functional defect. A detailed investigation of the ovaries from OsDEES1 RNA interference plants indicated that the knockdown of OsDEES1 expression did not affect megasporogenesis but that it disturbed female gametophyte formation, resulting in a degenerated embryo sac and defective seed formation. OsDEES1 exhibited a tissue-specific expression pattern in flowers and seedlings. In the ovary, OsDEES1 was expressed in the megagametophyte region and surrounding nucellus cells in the ovule near the micropylar region. OsDEES1 was found to be a membrane-localized protein with a unique sequence compared with other WAK-RLKs. These data indicate that OsDEES1 plays a role in rice sexual reproduction by regulating female gametophyte development. This study offers new insight into the functions of the WAK-RLK family.


Assuntos
Parede Celular/enzimologia , Oryza/enzimologia , Óvulo Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Membrana Celular/genética , Membrana Celular/metabolismo , Sobrevivência Celular , Cruzamentos Genéticos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Oryza/embriologia , Oryza/genética , Óvulo Vegetal/enzimologia , Infertilidade das Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Proteínas Quinases/genética , Interferência de RNA
16.
Plant Cell ; 22(10): 3249-67, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21037104

RESUMO

Apomictic plants reproduce asexually through seeds by avoiding both meiosis and fertilization. Although apomixis is genetically regulated, its core genetic component(s) has not been determined yet. Using profiling experiments comparing sexual development in maize (Zea mays) to apomixis in maize-Tripsacum hybrids, we identified six loci that are specifically downregulated in ovules of apomictic plants. Four of them share strong homology with members of the RNA-directed DNA methylation pathway, which in Arabidopsis thaliana is involved in silencing via DNA methylation. Analyzing loss-of-function alleles for two maize DNA methyltransferase genes belonging to that subset, dmt102 and dmt103, which are downregulated in the ovules of apomictic plants and are homologous to the Arabidopsis CHROMOMETHYLASEs and DOMAINS REARRANGED METHYLTRANSFERASE families, revealed phenotypes reminiscent of apomictic development, including the production of unreduced gametes and formation of multiple embryo sacs in the ovule. Loss of DMT102 activity in ovules resulted in the establishment of a transcriptionally competent chromatin state in the archesporial tissue and in the egg cell that mimics the chromatin state found in apomicts. Interestingly, dmt102 and dmt103 expression in the ovule is found in a restricted domain in and around the germ cells, indicating that a DNA methylation pathway active during reproduction is essential for gametophyte development in maize and likely plays a critical role in the differentiation between apomictic and sexual reproduction.


Assuntos
Metilação de DNA , Gametogênese Vegetal , Óvulo Vegetal/crescimento & desenvolvimento , Zea mays/genética , Cromatina/metabolismo , DNA de Plantas/metabolismo , DNA-Citosina Metilases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Histonas/metabolismo , Metiltransferases/metabolismo , Mutação , Óvulo Vegetal/genética , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Reprodução Assexuada , Zea mays/embriologia
17.
J Nanosci Nanotechnol ; 13(3): 2045-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23755644

RESUMO

Immature embryos from immature seeds of rice (Oryza sativa L.) were transformed by biolistic bombardment with the plasmid carrying the coding region of the hygromycin phosphotransferase gene under the control of the 5' region of the cauliflower mosaic virus 35S promoter and the synthetic green fluorescence protein gene (sgfp) under the control of the maize ubiquitine promoter. Southern blot analysis confirmed the stable integration of hpt and sgfp genes in transformants. Subsequently leaves from regenerated plants were resistant to hygromycin, and microscopic observation of the green fluorescence and immunoblotting analysis revealed that green fluorescence protein was not only detected in the leaf and pollen of primary transformants but also in mature seeds. The results bear out the importance of the suitability of GFP as an in vivo marker to follow the processes of selection of somatic hybrid embryos and plants.


Assuntos
Proteínas de Fluorescência Verde/biossíntese , Plantas Geneticamente Modificadas/embriologia , Sementes/metabolismo , Sequência de Bases , Biolística , Southern Blotting , Western Blotting , Primers do DNA , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas
18.
Plant J ; 68(4): 620-32, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21831199

RESUMO

GEX1 is a plasma membrane protein that is conserved among plant species, and has previously been shown to be expressed in sperm cells and some sporophytic tissues. Here we show that GEX1 is also expressed in the embryo sac before cellularization, in the egg cell after cellularization, in the zygote/embryo immediately after fertilization and in the pollen vegetative cell. We functionally characterize GEX1 in Arabidopsis thaliana, and show that it is a versatile protein that performs functions during male and female gametophyte development, and during early embryogenesis. gex1-1/+ plants, which synthesize a truncated GEX1 mRNA encoding a protein lacking the predicted cytoplasmic domain, but still targeted to the plasma membrane, had embryos that arrested before the pre-globular stage. gex1-3/+ plants, carrying a null GEX1 allele, had defects during male and female gametophyte development, and during early embryogenesis. Using an antisense GEX1 transgenic line we demonstrate that the predicted GEX1 extracellular domain is sufficient and necessary for GEX1 function during the development of both gametophytes. The predicted cytoplasmic domain is necessary for correct early embryogenesis and mediates homodimer formation at the plasma membrane. We propose that dimerization of GEX1 in the zygote might be an upstream step in a signaling cascade regulating early embryogenesis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Gametogênese Vegetal , Células Germinativas Vegetais/crescimento & desenvolvimento , Arabidopsis/embriologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Membrana Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Multimerização Proteica
19.
Plant J ; 64(5): 715-30, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21105920

RESUMO

The transition of pea embryos from pre-storage to maturation is partially controlled by abscisic acid (ABA). Immunomodulation in pea embryos specifically reduces free ABA levels during transition stages. Such seeds are, therefore, suitable models for studying ABA deficiency by global transcript and metabolite analysis. Compared with the wild type, anti-ABA seeds are smaller, contain fewer globulins and show lower dry matter accumulation and delayed differentiation. Free sugars are decreased, indicating lower uptake and/or elevated mobilisation. Lower levels of trans-zeatins suggest that ABA reduction influences rates of cytokinin synthesis and/or its level of accumulation. Abscisic acid deficiency leads to a general downregulation of gene expression related to transcription and translation. At the transcriptional level, anti-ABA embryos reveal a wide-range repression of carbohydrate oxidation, downregulated sucrose mobilisation, glycolysis and the tricarboxylic acid cycle/Krebs cycle (TCA cycle). Genes related to starch, amino acid and storage protein biosynthesis are downregulated, indicating a general decrease in metabolic fluxes. We conclude that during embryo differentiation ABA triggers broad upregulation of gene activity and genetic reprogramming, involving regulated protein degradation via the ubiquitin/proteasome system. Abscisic acid deficiency affects gene expression associated with transport processes and stimulation of membrane energisation. Our study identified mediators and downstream signalling elements of ABA during embryo differentiation, such as the transcription factor FUSCA3, SnRK1 kinase and Ca(2+) signalling processes. This suggests that ABA interacts with SnRK1 complexes, thus connecting SnRK1, sugar and stress signalling with ABA. Certain protein kinases/phosphatases known to negatively respond to ABA are upregulated in the modulated line, whilst those which respond positively are downregulated, pointing to a highly coordinated response of the gene network to ABA levels.


Assuntos
Ácido Abscísico/metabolismo , Pisum sativum/embriologia , Reguladores de Crescimento de Plantas/metabolismo , Sementes/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Citocininas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Imunomodulação , Análise de Sequência com Séries de Oligonucleotídeos , Pisum sativum/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/embriologia , Transdução de Sinais , Anticorpos de Cadeia Única/metabolismo
20.
Plant J ; 60(6): 948-61, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19737364

RESUMO

Higher plants maintain iron homeostasis by regulating the expression of iron (Fe)-related genes in accordance with Fe availability. The transcription factor IDEF1 regulates the response to Fe deficiency in Oryza sativa (rice) by recognizing CATGC sequences within the Fe deficiency-responsive cis-acting element IDE1. To investigate the function of IDEF1 in detail, we analyzed the response to Fe deficiency in transgenic rice plants exhibiting induced or repressed IDEF1 expression. Fe-deficiency treatment in hydroponic culture revealed that IDEF1 knock-down plants are susceptible to early-stage Fe deficiency, in contrast to IDEF1-induced plants. Time-course expression analyses using quantitative reverse-transcriptase PCR revealed that the IDEF1 expression level was positively correlated with the level of induction of the Fe utilization-related genes OsIRO2, OsYSL15, OsIRT1, OsYSL2, OsNAS1, OsNAS2, OsNAS3 and OsDMAS1, just after the onset of Fe starvation. However, this overall transactivation mediated by IDEF1 became less evident in subsequent stages. Microarray and in-silico analyses revealed that genes positively regulated by IDEF1, especially at the early stage, exhibit over-representation of CATGC and IDE1-like elements within the proximal promoter regions. These results indicate the existence of early and subsequent responses to Fe deficiency, with the former requiring IDEF1 more specifically. Proximal regions of IDEF1-regulated gene promoters also showed enrichment of RY elements (CATGCA), which regulate gene expression during seed maturation. The expression of several genes encoding late embryogenesis abundant proteins, including Osem, was induced in Fe-deficient roots and/or leaves in an IDEF1-dependent manner, suggesting a possible function of seed maturation-related genes in Fe-deficient vegetative organs.


Assuntos
Deficiências de Ferro , Oryza/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/embriologia , Oryza/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA