Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Brain ; 146(8): 3172-3180, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37082980

RESUMO

Multiple system atrophy (MSA) is a neurodegenerative disease characterized by the accumulation of misfolded α-synuclein (αSyn) and myelin disruption. However, the mechanism underlying αSyn accumulation in MSA brains remains unclear. Here, we aimed to identify epsin-2 as a potential regulator of αSyn propagation in MSA brains. In the MSA mouse model, PLP-hαSyn mice, and FABP7/αSyn hetero-aggregate-injected mice, we initially discovered that fatty acid-binding protein 7 (FABP7) is related to MSA development and forms hetero-aggregates with αSyn, which exhibit stronger toxicity than αSyn aggregates. Moreover, the injected FABP7/αSyn hetero-aggregates in mice selectively accumulated only in oligodendrocytes and Purkinje neurons, causing cerebellar dysfunction. Furthermore, bioinformatic analyses of whole blood from MSA patients and FABP7 knockdown mice revealed that epsin-2, a protein expressed in both oligodendrocytes and Purkinje cells, could potentially regulate FABP7/αSyn hetero-aggregate propagation via clathrin-dependent endocytosis. Lastly, adeno-associated virus type 5-dependent epsin-2 knockdown mice exhibited decreased levels of αSyn aggregate accumulation in Purkinje neurons and oligodendrocytes, as well as improved myelin levels and Purkinje neuron function in the cerebellum and motor performance. These findings suggest that epsin-2 plays a significant role in αSyn accumulation in MSA, and we propose epsin-2 as a novel therapeutic target for MSA.


Assuntos
Atrofia de Múltiplos Sistemas , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Camundongos Transgênicos , Oligodendroglia/metabolismo , Encéfalo/metabolismo
2.
Acta Pharmacol Sin ; 45(1): 66-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605049

RESUMO

Multiple system atrophy (MSA) is a rare, fatal neurodegenerative disease characterized by the accumulation of misfolded α-synuclein (αSyn) in glial cells, leading to the formation of glial cytoplasmic inclusions (GCI). We previous found that glial fatty acid-binding protein 7 (FABP7) played a crucial role in alpha-synuclein (αSyn) aggregation and toxicity in oligodendrocytes, inhibition of FABP7 by a specific inhibitor MF 6 reduced αSyn aggregation and enhanced cell viability in cultured cell lines and mouse oligodendrocyte progenitor cells. In this study we investigated whether MF 6 ameliorated αSyn-associated pathological processes in PLP-hαSyn transgenic mice (PLP-αSyn mice), a wildly used MSA mouse model with overexpressing αSyn in oligodendroglia under the proteolipid protein (PLP) promoter. PLP-αSyn mice were orally administered MF6 (0.1, 1 mg ·kg-1 ·d-1) for 32 days starting from the age of 6 months. We showed that oral administration of MF 6 significantly improved motor function assessed in a pole test, and reduced αSyn aggregation levels in both cerebellum and basal ganglia of PLP-αSyn mice. Moreover, MF 6 administration decreased oxidative stress and inflammation levels, and improved myelin levels and Purkinje neuron morphology in the cerebellum. By using mouse brain tissue slices and αSyn aggregates-treated KG-1C cells, we demonstrated that MF 6 reduced αSyn propagation to Purkinje neurons and oligodendrocytes through regulating endocytosis. Overall, these results suggest that MF 6 improves cerebellar functions in MSA by inhibiting αSyn aggregation and propagation. We conclude that MF 6 is a promising compound that warrants further development for the treatment of MSA.


Assuntos
Atrofia de Múltiplos Sistemas , Camundongos , Animais , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Camundongos Transgênicos , Oligodendroglia/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças
3.
Biophys J ; 122(5): 741-752, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36751130

RESUMO

Members of the fatty acid binding protein (FABP) family function as intracellular transporters of long-chain fatty acids and other hydrophobic molecules to different cellular compartments. Brain FABP (FABP7) exhibits ligand-directed differences in cellular transport. For example, when FABP7 binds to docosahexaenoic acid (DHA), the complex relocates to the nucleus and influences transcriptional activity, whereas FABP7 bound with monosaturated fatty acids remains in the cytosol. Preferential binding of FABP7 to polyunsaturated fatty acids like DHA has been previously observed and is thought to play a role in differential localization. However, we find that at 37°C, FABP7 does not display strong selectivity, suggesting that the conformational ensemble of FABP7 and its perturbation upon binding may be important. We use molecular dynamics simulations, NMR, and a variety of biophysical techniques to better understand the conformational ensemble of FABP7, how it is perturbed by fatty acid binding, and how this may be related to ligand-directed transport. We find that FABP7 has high degree of conformational heterogeneity that is substantially reduced upon ligand binding. We also observe substantial heterogeneity in ligand binding poses, which is consistent with our finding that ligand binding is resistant to mutations in key polar residues in the binding pocket. Our NMR experiments show that DHA binding leads to chemical shift perturbations in residues near the nuclear localization signal, which may point toward a mechanism of differential transport.


Assuntos
Proteínas de Ligação a Ácido Graxo , Simulação de Dinâmica Molecular , Ligantes , Proteínas de Ligação a Ácido Graxo/química , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados
4.
Biophys J ; 122(4): 603-615, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36698315

RESUMO

Fatty acid-binding proteins (FABPs) are chaperones that facilitate the transport of long-chain fatty acids within the cell and can provide cargo-dependent localization to specific cellular compartments. Understanding the nature of this transport is important because lipid signaling functions are associated with metabolic pathways impacting disease pathologies including cancer, autism, and schizophrenia. FABPs often associate with cell membranes to acquire and deliver their bound cargo as part of transport. We focus on brain FABP (FABP7), which demonstrates localization to the cytoplasm and nucleus, influencing transcription and fatty acid metabolism. We use a combined biophysical-computational approach to elucidate the interaction between FABP7 and model membranes. Specifically, we use multiple experiments to demonstrate that FABP7 can bind oleic acid and docosahexaenoic acid micelles. Data from NMR and multiscale molecular dynamics simulations reveal that the interaction with micelles is through FABP7's portal region residues. Simulations suggest that binding to membranes occurs through the same residues as micelles. Simulations also capture binding events where fatty acids dissociate from the membrane and enter FABP7's binding pocket. Overall, our data shed light on the interactions between FABP7 and OA or DHA micelles and provide insight into the transport of long-chain fatty acids.


Assuntos
Ácidos Graxos , Neoplasias , Humanos , Ácidos Graxos/metabolismo , Micelas , Proteínas de Ligação a Ácido Graxo/química , Neoplasias/metabolismo , Membrana Celular/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
EMBO J ; 37(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30322894

RESUMO

Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow-cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose-deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7-related metabolic pathways is a viable therapeutic strategy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos/metabolismo , Glioblastoma/metabolismo , Glicólise , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Animais , Linhagem Celular Tumoral , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo
6.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33789996

RESUMO

The hypoxic microenvironment and metabolic reprogramming are two major contributors to the phenotype of oncogenic virus-infected cells. Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) stabilizes hypoxia-inducible factor 1α (HIF1α) and reprograms cellular metabolism. We investigated the comparative transcriptional regulation of all major genes involved in fatty acid and amino acid metabolism in KSHV-positive and -negative cells grown under normoxic or hypoxic conditions. We show a distinct regulation of genes involved in both fatty acid and amino acid metabolism in KSHV-positive cells grown in either normoxic or hypoxic conditions, with a particular focus on genes involved in the acetyl coenzyme A (acetyl-CoA) pathway. The fatty acid binding protein (FABP) family of genes, specifically FABP1, FABP4, and FABP7, was also observed to be synergistically upregulated in hypoxia by KSHV. This pattern of FABP gene expression was also seen in naturally infected KSHV BC3 or BCBL1 cells when compared to KSHV-negative DG75 or BL41 cells. Two KSHV-encoded antigens, which positively regulate HIF1α, the viral G-protein coupled receptor (vGPCR), and the latency-associated nuclear antigen (LANA) were shown to drive upregulation of the FABP gene transcripts. Suppression of FABPs by RNA interference resulted in an adverse effect on hypoxia-dependent viral reactivation. Overall, this study provides new evidence, which supports a rationale for the inhibition of FABPs in KSHV-positive cells as potential strategies, for the development of therapeutic approaches targeting KSHV-associated malignancies.IMPORTANCE Hypoxia is a detrimental stress to eukaryotes and inhibits several cellular processes, such as DNA replication, transcription, translation, and metabolism. Interestingly, the genome of Kaposi's sarcoma-associated herpesvirus (KSHV) is known to undergo productive replication in hypoxia. We investigated the comparative transcriptional regulation of all major genes involved in fatty acid and amino acid metabolism in KSHV-positive and -negative cells grown under normoxic or hypoxic conditions. Several metabolic pathways were observed differentially regulated by KSHV in hypoxia, specifically, the fatty acid binding protein (FABP) family genes (FABP1, FABP4, and FABP7). KSHV-encoded antigens, vGPCR and LANA, were shown to drive upregulation of the FABP transcripts. Suppression of FABPs by RNA interference resulted in an adverse effect on hypoxia-dependent viral reactivation. Overall, this study provides new evidence, which supports a rationale for the inhibition of FABPs in KSHV-positive cells as potential strategies, for the development of therapeutic approaches targeting KSHV-associated malignancies.


Assuntos
Hipóxia Celular , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteínas de Ligação a Ácido Graxo/genética , Herpesvirus Humano 8/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Supressoras de Tumor/genética , Aminoácidos/metabolismo , Antígenos Virais/genética , Antígenos Virais/metabolismo , Linhagem Celular Tumoral , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral
7.
J Recept Signal Transduct Res ; 42(2): 141-150, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33472512

RESUMO

Circular RNAs (circRNAs) monitor the development of clear cell renal cell carcinoma (ccRCC). However, the role of CircPUM1 in ccRCC malignancy is not studied. We estimated the mechanism of CircPUM1 in ccRCC progression in this study. CircPUM1 expression in ccRCC tissues and cells was detected. The expression of CircPUM1 was interfered in ccRCC cells, and its effects on the growth of ccRCC cells were studied. Nuclear/cytosol fractionation assay was performed for the location of CircPUM1, and the downstream miR, gene, and pathway involved in ccRCC progression were explored through gain- and loss-of-function experiments. CircPUM1 was highly expressed in ccRCC samples and cells. Inhibition of CircPUM1 prevented the growth ccRCC cells. CircPUM1 was localized in the cytoplasm and bound to miR-340-5p. Overexpression of miR-340-5p inhibited the growth of ccRCC cells. miR-340-5p targeted FABP7, and CircPUM1 induced FABP7 expression and the activation of MEK/ERK pathway through competitively binding to miR-340-5p. Overexpression of FABP7 attenuated the inhibitory effect of CircPUM1 silencing on the growth of ccRCC cells. Overall, CircPUM1 upregulates FABP7 expression by competitively binding to miR-340-5p, and then activates the MEK/ERK pathway, thus promoting ccRCC progression.


Assuntos
Carcinoma de Células Renais , Proteína 7 de Ligação a Ácidos Graxos , Neoplasias Renais , MicroRNAs , RNA Circular , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Acta Pharmacol Sin ; 43(3): 552-562, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33935286

RESUMO

We previously show that fatty acid-binding protein 3 (FABP3) triggers α-synuclein (Syn) accumulation and induces dopamine neuronal cell death in Parkinson disease mouse model. But the role of fatty acid-binding protein 7 (FABP7) in the brain remains unclear. In this study we investigated whether FABP7 was involved in synucleinopathies. We showed that FABP7 was co-localized and formed a complex with Syn in Syn-transfected U251 human glioblastoma cells, and treatment with arachidonic acid (100 M) significantly promoted FABP7-induced Syn aggregation, which was associated with cell death. We demonstrated that synthetic FABP7 ligand 6 displayed a high affinity against FABP7 with Kd value of 209 nM assessed in 8-anilinonaphthalene-1-sulfonic acid (ANS) assay; ligand 6 improved U251 cell survival via disrupting the FABP7-Syn interaction. We showed that activation of phospholipase A2 (PLA2) by psychosine (10 M) triggered oligomerization of endogenous Syn and FABP7, and induced cell death in both KG-1C human oligodendroglia cells and oligodendrocyte precursor cells (OPCs). FABP7 ligand 6 (1 M) significantly decreased Syn oligomerization and aggregation thereby prevented KG-1C and OPC cell death. This study demonstrates that FABP7 triggers α-synuclein oligomerization through oxidative stress, while FABP7 ligand 6 can inhibit FABP7-induced Syn oligomerization and aggregation, thereby rescuing glial cells and oligodendrocytes from cell death.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Estresse Oxidativo/fisiologia , alfa-Sinucleína/metabolismo , Animais , Ácido Araquidônico/farmacologia , Morte Celular/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Fosfolipases A2/efeitos dos fármacos , Ligação Proteica/fisiologia , Psicosina/farmacologia
9.
Pharm Res ; 38(3): 479-490, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33646504

RESUMO

PURPOSE: Fatty acid-binding protein 7 (FABP7) involved in intracellular lipid dynamics, is highly expressed in melanomas and associated with decreased patient survival. Several studies put FABP7 at the center of melanoma cell proliferation. However, the underlying mechanisms are not well deciphered. This study examines the effects of FABP7 on Wnt/ß-catenin signaling that enhances proliferation in melanoma cells. METHODS: Skmel23 cells with FABP7 silencing and Mel2 cells overexpressed with wild-type FABP7 (FABP7wt) and mutated FABP7 (FABP7mut) were used. Cell proliferation and migration were analyzed by proliferation and wound-healing assay, respectively. Transcriptional activation of the Wnt/ß-catenin signaling was measured by luciferase reporter assay. The effects of a specific FABP7 inhibitor, MF6, on proliferation, migration, and modulation of the Wnt/ß-catenin signaling were examined. RESULTS: FABP7 siRNA knockdown in Skmel23 decreased proliferation and migration, cyclin D1 expression, as well as Wnt/ß-catenin activity. Similarly, FABP7wt overexpression in Mel2 cells increased these effects, but FABP7mut abrogated these effects. Pharmacological inhibition of FABP7 function with MF6 suppressed FABP7-regulated proliferation of melanoma cells. CONCLUSION: These results suggest the importance of the interaction between FABP7 and its ligands in melanoma proliferation modulation, and the beneficial implications of therapeutic targeting of FABP7 for melanoma treatment.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Melanoma/metabolismo , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteína 7 de Ligação a Ácidos Graxos/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ligantes , RNA Interferente Pequeno , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt , beta Catenina/genética
10.
Proc Natl Acad Sci U S A ; 115(12): E2725-E2733, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507213

RESUMO

The dentate gyrus (DG) of the hippocampus is a laminated brain region in which neurogenesis begins during early embryonic development and continues until adulthood. Recent studies have implicated that defects in the neurogenesis of the DG seem to be involved in the genesis of autism spectrum disorders (ASD)-like behaviors. Liver X receptor ß (LXRß) has recently emerged as an important transcription factor involved in the development of laminated CNS structures, but little is known about its role in the development of the DG. Here, we show that deletion of the LXRß in mice causes hypoplasia in the DG, including abnormalities in the formation of progenitor cells and granule cell differentiation. We also found that expression of Notch1, a central mediator of progenitor cell self-renewal, is reduced in LXRß-null mice. In addition, LXRß deletion in mice results in autistic-like behaviors, including abnormal social interaction and repetitive behavior. These data reveal a central role for LXRß in orchestrating the timely differentiation of neural progenitor cells within the DG, thereby providing a likely explanation for its association with the genesis of autism-related behaviors in LXRß-deficient mice.


Assuntos
Transtorno Autístico/etiologia , Giro Denteado/crescimento & desenvolvimento , Receptores X do Fígado/metabolismo , Neurônios/patologia , Animais , Transtorno Autístico/genética , Comportamento Animal/fisiologia , Diferenciação Celular , Proliferação de Células/genética , Giro Denteado/citologia , Giro Denteado/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Receptores X do Fígado/genética , Masculino , Camundongos Knockout , Neuroglia/citologia , Neurônios/fisiologia , Receptor Notch1/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia
11.
Cytokine ; 125: 154771, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400639

RESUMO

To investigate the effect of CXCL12 on regeneration of radial glia like cells after traumatic brain injury (TBI). We randomly divided 48 rats into 4 groups: (1) the sham group, rats were performed craniotomy only, (2) the control group, saline were injected into the ipsilateral cortex after TBI, (3) the CXCL12 group, CXCL12 were injected, and (4) the CXCL12 + AMD3100 group, a mixture of CXCL12 and AMD3100 were injected. Seven days after TBI, the brain tissues were subjected to immunofluorescence double-labeled staining of BrdU/Nestin, BLBP/Nestin, BLBP/Vimentin, BLBP/SOX2, BLBP/CXCR4, BLBP/DCX. Western Blot assay was used to measure the levels of Nestin, BLBP, and Vimentin. Compared with the control group, CXCL12 treatment significantly increased the number of cells stained with BrdU/Nestin, BLBP/Nestin, and BLBP/Vimentin around the injured cortex and corpus callosum areas. CXCL12 + AMD3100 treatment significantly decreased the number of these cells compared with the CXCL12 treatment and control group. The protein levels of Nestin, BLBP, and Vimentin had the same change trends as those of the immunofluorescence staining. The BLBP/Vimentin positive cells presented with the astrocyte pattern around the injured cortex area but with the RGCs pattern around the injured corpus callosum area. The BLBP positive cells also expressed CXCR4 and SOX2. Altogether, CXCL12 promotes the proliferation of neural precursor cells after TBI by combing to its receptor, CXCR4. The proliferating neural precursor cells presents radial glial cell like cells. The RGCs-like cells can differentiate into immature neurons and promote the migration of immature neurons.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/administração & dosagem , Células Ependimogliais/metabolismo , Neurogênese/efeitos dos fármacos , Receptores CXCR4/metabolismo , Animais , Astrócitos/metabolismo , Benzilaminas/administração & dosagem , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Ciclamos/administração & dosagem , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Imunofluorescência , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Nestina/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/antagonistas & inibidores , Fatores de Transcrição SOXB1/metabolismo , Vimentina/metabolismo
12.
Phys Chem Chem Phys ; 22(4): 2262-2275, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31917380

RESUMO

Recently, fatty acid binding proteins 5 and 7 (FABP5 and FABP7) have been regarded as the prospective targets for clinically treating multiple diseases related to FABPs. In this work, multiple short molecular dynamics (MSMD) simulations followed by binding free energy calculations were performed to investigate the binding selectivity of three inhibitors, namely, 65X, 8KS, and 5M8 toward FABP5 and FABP7. The RMSF analysis suggests that the structural flexibility of FABP5 is stronger than that of FABP7; moreover, the calculated molecular surface area of FABP5 is also larger than that of FABP7. Meanwhile, the results from the cross-correlation analysis show that the inhibitor bindings exert different impacts on the internal dynamics of FABP5 and FABP7. Binding free energies predicted by the molecular mechanics/generalized Born surface area (MM-GBSA) method indicate that the increase in the enthalpy changes caused by the bindings of inhibitors toward FABP7 relative to FABP5 mostly drives the binding selectivity of the inhibitors toward FABP5 versus FABP7. Hierarchical clustering analysis based on the energy contributions of separate residues and calculations of residue-based free energy decompositions were carried out by using the equilibrated MSMD trajectories. The obtained results not only recognize the hot interaction spots of inhibitors with FABP5 and FABP7, but also display that several common residues, namely, (T56, T54), (L60, F58), (E75, E73), (A76, A78), (D79, D77), (R81, R79), (R107, R109), (C120, L118), and (R129, R127) belonging to (FABP5, FABP7) induce obvious binding differences in the inhibitors toward FABP5 and FABP7. Therefore, these residues play significant roles in the binding selectivities of inhibitors toward FABP5 and FABP7.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/antagonistas & inibidores , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Simulação de Dinâmica Molecular , Proteínas Supressoras de Tumor/antagonistas & inibidores , Sítios de Ligação , Análise por Conglomerados , Entropia , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Ligação de Hidrogênio , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/metabolismo
13.
J Lipid Res ; 60(11): 1807-1817, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31484694

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, partly due to the lack of targeted therapy available. Cancer cells heavily reprogram their metabolism and acquire metabolic plasticity to satisfy the high-energy demand due to uncontrolled proliferation. Accumulating evidence shows that deregulated lipid metabolism affects cancer cell survival, and therefore we sought to understand the function of fatty acid binding protein 7 (FABP7), which is expressed predominantly in TNBC tissues. As FABP7 was not detected in the TNBC cell lines tested, Hs578T and MDA-MB-231 cells were transduced with lentiviral particles containing either FABP7 open reading frame or red fluorescent protein. During serum starvation, when lipids were significantly reduced, FABP7 decreased the viability of Hs578T, but not of MDA-MB-231, cells. FABP7-overexpressing Hs578T (Hs-FABP7) cells failed to efficiently utilize other available bioenergetic substrates such as glucose to sustain ATP production, which led to S/G2 phase arrest and cell death. We further showed that this metabolic phenotype was mediated by PPAR-α signaling, despite the lack of fatty acids in culture media, as Hs-FABP7 cells attempted to survive. This study provides imperative evidence of metabolic vulnerabilities driven by FABP7 via PPAR-α signaling.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Morte Celular , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
14.
BMC Cancer ; 18(1): 1114, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442117

RESUMO

BACKGROUND: To identify potential therapeutic target in clear cell renal cell carcinoma (ccRCC), we performed a transcriptome analysis. Our analysis showed that fatty acid binding protein 7 (FABP7) has the highest mean differential overexpression in ccRCC compared to normal kidney. We aimed to investigate the significance of FABP7 in ccRCC. METHODS: Immunohistochemical staining for 40 advanced ccRCC cases was performed to investigate correlation between clinicopathological parameters and FABP7. They were composed of 40-83 years old cases with 33 male, 22 cases with pT ≥ 3, 19 cases with M1, and 16 cases with grade 3. The effect of gene knockdown was analysed by a cell viability assay and invasion assay in FABP7-overexpressing cell lines (SKRC7 and SKRC10). RESULTS: Our immunohistochemical analysis showed that higher FABP7 expression significantly correlated with distant metastasis and poor cancer-specific survival (CSS; both p < 0.05). Functional suppression of FABP7 significantly inhibited SKRC10 cell growth (p < 0.05) and resulted in a significant reduction of the invasive potential (p < 0.01), but did not cause growth inhibition of SKRC7 cells. We found that The Cancer Genome Atlas Research Network (TCGA) database shows FABP6 and 7 as equally overexpressed in the FABP family. Functional suppression of fatty acid binding protein 6 (FABP6) resulted in significant growth inhibition of SKRC7 cells (p < 0.005). CONCLUSIONS: Functional suppression of FABP7 significantly reduced cell viability and invasive potential in a ccRCC cell line. FABP7 may play a role in progression in some metastatic ccRCCs. The suppressed function may be compensated by another FABP family member.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Hormônios Gastrointestinais/metabolismo , Neoplasias Renais/patologia , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Sobrevivência Celular , Progressão da Doença , Proteína 7 de Ligação a Ácidos Graxos/antagonistas & inibidores , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Hormônios Gastrointestinais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Humanos , Rim/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Invasividade Neoplásica/patologia , Intervalo Livre de Progressão , RNA Interferente Pequeno/metabolismo , Taxa de Sobrevida , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
15.
Cereb Cortex ; 27(7): 3736-3751, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27600849

RESUMO

The oxygen (O2) concentration is a vital parameter for controlling the survival, proliferation, and differentiation of neural stem cells. A prenatal reduction of O2 levels (hypoxia) often leads to cognitive and behavioral defects, attributable to altered neural development. In this study, we analyzed the effects of O2 levels on human cortical progenitors, the radial glia cells (RGCs), during active neurogenesis, corresponding to the second trimester of gestation. Small changes in O2 levels profoundly affected RGC survival, proliferation, and differentiation. Physiological hypoxia (3% O2) promoted neurogenesis, whereas anoxia (<1% O2) and severe hypoxia (1% O2) arrested the differentiation of human RGCs, mainly by altering the generation of glutamatergic neurons. The in vitro activation of Wnt-ß-catenin signaling rescued the proliferation and neuronal differentiation of RGCs subjected to anoxia. Pathologic hypoxia (≤1% O2) also exerted negative effects on gliogenesis, by decreasing the number of O4+ preoligodendrocytes and increasing the number of reactive astrocytes derived from cortical RGCs. O2-dependent alterations in glutamatergic neurogenesis and oligodendrogenesis can lead to significant changes in cortical circuitry formation. A better understanding of the cellular effects caused by changes in O2 levels during human cortical development is essential to elucidating the etiology of numerous neurodevelopmental disorders.


Assuntos
Hipóxia Celular/fisiologia , Córtex Cerebral/citologia , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Neurais/fisiologia , Oxigênio/metabolismo , Antígenos/genética , Antígenos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Células Ependimogliais/efeitos dos fármacos , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Feto , Idade Gestacional , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Antígeno Ki-67/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Oxigênio/farmacologia , Proteoglicanas/genética , Proteoglicanas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
16.
Biochemistry ; 56(27): 3454-3462, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28632393

RESUMO

Human FABP5 and FABP7 are intracellular endocannabinoid transporters. SBFI-26 is an α-truxillic acid 1-naphthyl monoester that competitively inhibits the activities of FABP5 and FABP7 and produces antinociceptive and anti-inflammatory effects in mice. The synthesis of SBFI-26 yields several stereoisomers, and it is not known how the inhibitor binds the transporters. Here we report co-crystal structures of SBFI-26 in complex with human FABP5 and FABP7 at 2.2 and 1.9 Å resolution, respectively. We found that only (S)-SBFI-26 was present in the crystal structures. The inhibitor largely mimics the fatty acid binding pattern, but it also has several unique interactions. Notably, the FABP7 complex corroborates key aspects of the ligand binding pose at the canonical site previously predicted by virtual screening. In FABP5, SBFI-26 was unexpectedly found to bind at the substrate entry portal region in addition to binding at the canonical ligand-binding pocket. Our structural and binding energy analyses indicate that both R and S forms appear to bind the transporter equally well. We suggest that the S enantiomer observed in the crystal structures may be a result of the crystallization process selectively incorporating the (S)-SBFI-26-FABP complexes into the growing lattice, or that the S enantiomer may bind to the portal site more rapidly than to the canonical site, leading to an increased local concentration of the S enantiomer for binding to the canonical site. Our work reveals two binding poses of SBFI-26 in its target transporters. This knowledge will guide the development of more potent FABP inhibitors based upon the SBFI-26 scaffold.


Assuntos
Analgésicos/metabolismo , Ciclobutanos/metabolismo , Ácidos Dicarboxílicos/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Modelos Moleculares , Proteínas Supressoras de Tumor/metabolismo , Analgésicos/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Ciclobutanos/química , Ciclobutanos/farmacologia , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Proteína 7 de Ligação a Ácidos Graxos/antagonistas & inibidores , Proteína 7 de Ligação a Ácidos Graxos/química , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/genética , Humanos , Ligantes , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas Recombinantes , Estereoisomerismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
17.
BMC Cancer ; 17(1): 192, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28292269

RESUMO

BACKGROUND: Renal cell carcinomas (RCCs) overexpress fatty acid binding protein 7 (FABP7). We chose to study the TUHR14TKB cell line, because it expresses higher levels of FABP7 than other cell lines derived from renal carcinomas (OS-RC-2, 786-O, 769-P, Caki-1, and ACHN). METHODS: FABP7 expression was detected using western blotting and real-time PCR. Cell proliferation was determined using an MTS assay and by directly by counting cells. The cell cycle was assayed using flow cytometry. Cell migration was assayed using wound-healing assays. An FABP7 expression vector was used to transfect RCC cell lines. RESULTS: The levels of FABP7 expressed by TUHR14TKB cells and their doubling times decreased during passage. High-passage TUHR14TKB cells comprised fewer G0/G1-phase and more S-phase cells than low-passage cells. Cell proliferation differed among subclones isolated from cultures of low-passage TUHR14TKB cells. The proliferation of TUHR14TKB cells decreased when FABP7 was overexpressed, and the cell migration property of TUHR14TKB cells were decreased when FABP7 was overexpressed. High concentrations of docosatetraenoic acid and eicosapentaenoic acid accumulated in TUHR14TKB cells that overexpressed FABP7, and docosatetraenoic acid enhanced cell proliferation. CONCLUSIONS: The TUHR14TKB cell line represents a heterogeneous population that does not express FABP7 when it rapidly proliferates. The differences in FABP7 function between RCC cell lines suggests that FABP7 affects cell proliferation depending on cell phenotype.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Ciclo Celular/genética , Divisão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia
18.
J Surg Res ; 218: 150-155, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28985842

RESUMO

BACKGROUND: Enteric glial cells are essential for normal gastrointestinal function. Abnormalities in glial structure, development, or function lead to disturbances in gastrointestinal physiology. Fatty acid-binding protein 7 (FABP7) is a marker of immature enteric glial cells, whereas S100 is expressed only by mature glial cells. Patients with Hirschsprung's disease (HSCR) often suffer from dysmotility and enterocolitis despite proper surgery. We designed this study to determine the distribution and expression of glial cells in patients with HSCR compared to normal controls. METHODS: We investigated FABP7, S100, and PGP 9.5 expressions in both the ganglionic and aganglionic bowel of patients with HSCR (n = 6) versus normal control colon (n = 6). Protein distribution was assessed by using immunofluorescence and confocal microscopy. Gene and protein expressions were quantified using quantitative real-time polymerase chain reaction (qPCR), Western blot analysis, and densitometry. RESULTS: qPCR and Western blot analysis demonstrated a significantly increased FABP7 expression in ganglionic specimens compared to control specimen (P < 0.05). Confocal microscopy revealed FABP7+ glia cells lie under the colonic epithelium and in close apposition to enteric neurons in the ganglionic bowel. CONCLUSIONS: The significantly increased number of immature enteric glial cells (EGCs) in the ganglionic bowel of HSCR patients may have adverse effect on the function of enteric neurons and intestinal barrier and thus predispose these patients to intestinal motility problems and enterocolitis.


Assuntos
Doença de Hirschsprung/patologia , Plexo Mientérico/patologia , Neuroglia/patologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Humanos , Plexo Mientérico/metabolismo , Proteínas Supressoras de Tumor/metabolismo
19.
Brain Res ; 1829: 148809, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354998

RESUMO

The sympathetic ganglia represent a final motor pathway that mediates homeostatic "fight and flight" responses in the visceral organs. Satellite glial cells (SGCs) form a thin envelope close to the neuronal cell body and synapses in the sympathetic ganglia. This unique morphological feature suggests that neurons and SGCs form functional units for regulation of sympathetic output. In the present study, we addressed whether SGC-specific markers undergo age-dependent changes in the postnatal development of rat sympathetic ganglia. We found that fatty acid-binding protein 7 (FABP7) is an early SGC marker, whereas the S100B calcium-binding protein, inwardly rectifying potassium channel, Kir4.1 and small conductance calcium-activated potassium channel, SK3 are late SGC markers in the postnatal development of sympathetic ganglia. Unlike in sensory ganglia, FABP7 + SGC was barely detectable in adult sympathetic ganglia. The expression of connexin 43, a gap junction channel gradually increased with age, although it was detected in both SGCs and neurons in sympathetic ganglia. Glutamine synthetase was expressed in sensory, but not sympathetic SGCs. Unexpectedly, the sympathetic SGCs expressed a water-selective channel, aquaporin 1 instead of aquaporin 4, a pan-glial marker. However, aquaporin 1 was not detected in the SGCs encircling large neurons. Nerve injury and inflammation induced the upregulation of glial fibrillary acidic protein, suggesting that this protein is a hall marker of glial activation in the sympathetic ganglia. In conclusion, our findings provide basic information on the in vivo profiles of specific markers for identifying sympathetic SGCs at different stages of postnatal development in both healthy and diseased states.


Assuntos
Neuroglia , Células Satélites Perineuronais , Ratos , Animais , Células Satélites Perineuronais/metabolismo , Neuroglia/metabolismo , Gânglios Simpáticos , Neurônios , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Gânglios Espinais/metabolismo
20.
Geroscience ; 46(2): 1607-1625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37688656

RESUMO

Alzheimer's disease (AD), the most common cause of dementia in the elderly, is characterized by the accumulation of intracellular neurofibrillary tangles, extracellular amyloid plaques, and neuroinflammation. In partnership with microglial cells, astrocytes are key players in the regulation of neuroinflammation. Fatty acid binding protein 7 (FABP7) belongs to a family of conserved proteins that regulate lipid metabolism, energy homeostasis, and inflammation. FABP7 expression is largely restricted to astrocytes and radial glia-like cells in the adult central nervous system. We observed that treatment of primary hippocampal astrocyte cultures with amyloid ß fragment 25-35 (Aß25-35) induces FABP7 upregulation. In addition, FABP7 expression is upregulated in the brain of APP/PS1 mice, a widely used AD mouse model. Co-immunostaining with specific astrocyte markers revealed increased FABP7 expression in astrocytes. Moreover, astrocytes surrounding amyloid plaques displayed increased FABP7 staining when compared to non-plaque-associated astrocytes. A similar result was obtained in the brain of AD patients. Whole transcriptome RNA sequencing analysis of human astrocytes differentiated from induced pluripotent stem cells (i-astrocytes) overexpressing FABP7 identified 500 transcripts with at least a 2-fold change in expression. Gene Ontology enrichment analysis identified (i) positive regulation of cytokine production and (ii) inflammatory response as the top two statistically significant overrepresented biological processes. We confirmed that wild-type FABP7 overexpression induces an NF-κB-driven inflammatory response in human i-astrocytes. On the other hand, the expression of a ligand-binding impaired mutant FABP7 did not induce NF-κB activation. Together, our results suggest that the upregulation of FABP7 in astrocytes could contribute to the neuroinflammation observed in AD.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Idoso , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias , Placa Amiloide/metabolismo , NF-kappa B/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA