Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
Cell ; 174(2): 325-337.e14, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29887380

RESUMO

Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME. FCHSD2 deletion leads to decreased ligand uptake caused by slowed pit maturation. FCHSD2 is recruited to endocytic pits by the scaffold protein intersectin via an unusual SH3-SH3 interaction. Here, its flat F-BAR domain binds to the planar region of the plasma membrane surrounding the developing pit forming an annulus. When bound to the membrane, FCHSD2 activates actin polymerization by a mechanism that combines oligomerization and recruitment of N-WASP to PI(4,5)P2, thus promoting pit maturation. Our data therefore describe a molecular mechanism for linking spatiotemporally the plasma membrane to a force-generating actin platform guiding endocytic vesicle maturation.


Assuntos
Citoesqueleto de Actina/fisiologia , Proteínas de Transporte/metabolismo , Clatrina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Membrana Celular/química , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Células HeLa , Humanos , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Microscopia de Fluorescência , Modelos Moleculares , Mutagênese Sítio-Dirigida , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Domínios de Homologia de src
2.
Nature ; 609(7927): 597-604, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978196

RESUMO

A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.


Assuntos
Actomiosina , Condensados Biomoleculares , Caenorhabditis elegans , Oócitos , Citoesqueleto de Actina/metabolismo , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animais , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Emulsões/química , Emulsões/metabolismo , Oócitos/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
3.
J Biol Chem ; 300(8): 107537, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971314

RESUMO

Neurite outgrowth is a critical step in neural development, leading to the generation of neurite branches that allow individual neurons to make contacts with multiple neurons within the target region. Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein with a key role in neural development. Our recent mass spectrometric analysis showed that PQBP1 associates with neural Wiskott-Aldrich syndrome protein (N-WASP), an important actin polymerization-promoting factor involved in neurite outgrowth. Here, we report that the WW domain of PQBP1 directly interacts with the proline-rich domain of N-WASP. The disruption of this interaction leads to impaired neurite outgrowth and growth cone size. Furthermore, we demonstrate that PQBP1/N-WASP interaction is critical for the recruitment of N-WASP to the growth cone, but does not affect N-WASP protein levels or N-WASP-induced actin polymerization. Our results indicated that PQBP1 regulates neurite outgrowth by recruiting N-WASP to the growth cone, thus representing an alternative molecular mechanism via which PQBP1-mediates neurite outgrowth.


Assuntos
Crescimento Neuronal , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Humanos , Animais , Cones de Crescimento/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Actinas/metabolismo , Neuritos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Camundongos , Ligação Proteica , Ratos
4.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469048

RESUMO

During neural development, the actin filament network must be precisely regulated to form elaborate neurite structures. N-WASP tightly controls actin polymerization dynamics by activating an actin nucleator Arp2/3. However, the importance of N-WASP-Arp2/3 signaling in the assembly of neurite architecture in vivo has not been clarified. Here, we demonstrate that N-WASP-Arp2/3 signaling plays a crucial role in the maturation of cerebellar Purkinje cell (PC) dendrites in vivo in mice. N-WASP was expressed and activated in developing PCs. Inhibition of Arp2/3 and N-WASP from the beginning of dendrite formation severely disrupted the establishment of a single stem dendrite, which is a characteristic basic structure of PC dendrites. Inhibition of Arp2/3 after stem dendrite formation resulted in hypoplasia of the PC dendritic tree. Cdc42, an upstream activator of N-WASP, is required for N-WASP-Arp2/3 signaling-mediated PC dendrite maturation. In addition, overactivation of N-WASP is also detrimental to dendrite formation in PCs. These findings reveal that proper activation of N-WASP-Arp2/3 signaling is crucial for multiple steps of PC dendrite maturation in vivo.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Células de Purkinje , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Dendritos/metabolismo , Neurogênese/genética , Células de Purkinje/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
5.
Nat Rev Mol Cell Biol ; 14(1): 7-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23212475

RESUMO

The actin-related protein 2/3 (ARP2/3) complex nucleates branched actin filament networks, but requires nucleation promoting factors (NPFs) to stimulate this activity. NPFs include proteins such as Wiskott-Aldrich syndrome protein (WASP), neural WASP (NWASP), WASP family verprolin-homologous protein (WAVE; also known as SCAR) and the recently identified WASP and SCAR homologue (WASH) complex. The mechanisms underlying NPF-dependent regulation and the cellular functions of ARP2/3 are being unravelled using new chemical and genetic approaches. Of particular interest is the role of the ARP2/3 complex in vesicular trafficking and directional cell motility.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Humanos , Conformação Proteica , Transporte Proteico
6.
Exp Cell Res ; 439(1): 114059, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705228

RESUMO

Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Movimento Celular , Neoplasias Colorretais , Citoesqueleto , Pseudópodes , Fatores de Transcrição SOXC , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Movimento Celular/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Citoesqueleto/metabolismo , Pseudópodes/metabolismo , Células CACO-2 , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Células HCT116 , Citoesqueleto de Actina/metabolismo
7.
Biochem Biophys Res Commun ; 588: 15-22, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942529

RESUMO

Insulin resistance (IR) attributed by the deficiency of lipophagy, is an abnormal state of downregulation of insulin-mediated glucose uptake and use into the liver. Chromosome 9 open reading frame 72 (C9orf72) variously modulates autophagy. We investigated the role and the downstream pathway of C9orf72 in hepatic IR. We found that C9orf72 knockdown alleviated hepatic IR by lipophagy promotion in T2DM mice and in IR-challenged hepatocytes in vitro. C9orf72 interacted with and activated cell division cycle 42 (Cdc42) protein in IR-challenged hepatocytes, Which in turn, inhibits lipophagy by promoting neural Wiskott-Aldrich syndrome protein (N-WASP) expression and activation. C9orf72 inhibited lipophagy by activating the Cdc42/N-WASP axis to facilitate hepatic IR; therefore, the knockdown of C9orf72 may be potentially therapeutic for the treatment of IR.


Assuntos
Autofagia , Proteína C9orf72/metabolismo , Técnicas de Silenciamento de Genes , Resistência à Insulina , Fígado/metabolismo , Fígado/patologia , Animais , Diabetes Mellitus Tipo 2/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ligação Proteica , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
8.
PLoS Pathog ; 16(9): e1008878, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946535

RESUMO

As an obligate intracellular pathogen, host cell invasion is paramount to Chlamydia trachomatis proliferation. While the mechanistic underpinnings of this essential process remain ill-defined, it is predicted to involve delivery of prepackaged effector proteins into the host cell that trigger plasma membrane remodeling and cytoskeletal reorganization. The secreted effector proteins TmeA and TarP, have risen to prominence as putative key regulators of cellular invasion and bacterial pathogenesis. Although several studies have begun to unravel molecular details underlying the putative function of TarP, the physiological function of TmeA during host cell invasion is unknown. Here, we show that TmeA employs molecular mimicry to bind to the GTPase binding domain of N-WASP, which results in recruitment of the actin branching ARP2/3 complex to the site of chlamydial entry. Electron microscopy revealed that TmeA mutants are deficient in filopodia capture, suggesting that TmeA/N-WASP interactions ultimately modulate host cell plasma membrane remodeling events necessary for chlamydial entry. Importantly, while both TmeA and TarP are necessary for effective host cell invasion, we show that these effectors target distinct pathways that ultimately converge on activation of the ARP2/3 complex. In line with this observation, we show that a double mutant suffers from a severe entry defect nearly identical to that observed when ARP3 is chemically inhibited or knocked down. Collectively, our study highlights both TmeA and TarP as essential regulators of chlamydial invasion that modulate the ARP2/3 complex through distinct signaling platforms, resulting in plasma membrane remodeling events that are essential for pathogen uptake.


Assuntos
Proteínas de Bactérias , Membrana Celular/metabolismo , Chlamydia trachomatis , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Membrana Celular/patologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/patogenicidade , Células HeLa , Humanos , Mutação , Domínios Proteicos , Pseudópodes/genética , Pseudópodes/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética
9.
FASEB J ; 35(9): e21811, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369620

RESUMO

Actin cytoskeletal reorganization plays an important role in regulating smooth muscle contraction, which is essential for the modulation of various physiological functions including airway tone. The adapter protein Abi1 (Abelson interactor 1) participates in the control of smooth muscle contraction. The mechanisms by which Abi1 coordinates smooth muscle function are not fully understood. Here, we found that contractile stimulation elicited Abi1 acetylation in human airway smooth muscle (HASM) cells. Mutagenesis analysis identified lysine-416 (K416) as a major acetylation site. Replacement of K416 with Q (glutamine) enhanced the interaction of Abi1 with neuronal Wiskott-Aldrich syndrome protein (N-WASP), an important actin-regulatory protein. Moreover, the expression of K416Q Abi1 promoted actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19 and vimentin phosphorylation at Ser-56. Furthermore, p300 is a lysine acetyltransferase that catalyzes acetylation of histone and non-histone proteins in various cell types. Here, we discovered that a portion of p300 was localized in the cytoplasm of HASM cells. Knockdown of p300 reduced the agonist-induced Abi1 acetylation in HASM cells and in mouse airway smooth muscle tissues. Smooth muscle conditional knockout of p300 inhibited actin polymerization and the contraction of airway smooth muscle tissues without affecting myosin light chain phosphorylation and vimentin phosphorylation. Together, our results suggest that contractile stimulation induces Abi1 acetylation via p300 in smooth muscle. Acetylation at K416 promotes the coupling of Abi1 with N-WASP, which facilitates actin polymerization and smooth muscle contraction. This is a novel acetylation-dependent regulation of the actin cytoskeleton in smooth muscle.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Acetilação , Animais , Células Cultivadas , Proteína p300 Associada a E1A/metabolismo , Humanos , Lisina Acetiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
10.
J Neurosci ; 40(32): 6103-6111, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32601246

RESUMO

Oligodendrocyte myelination depends on actin cytoskeleton rearrangement. Neural Wiskott-Aldrich syndrome protein(N-Wasp) is an actin nucleation factor that promotes polymerization of branched actin filaments. N-Wasp activity is essential for myelin membrane wrapping by Schwann cells, but its role in oligodendrocytes and CNS myelination remains unknown. Here we report that oligodendrocytes-specific deletion of N-Wasp in mice of both sexes resulted in hypomyelination (i.e., reduced number of myelinated axons and thinner myelin profiles), as well as substantial focal hypermyelination reflected by the formation of remarkably long myelin outfolds. These myelin outfolds surrounded unmyelinated axons, neuronal cell bodies, and other myelin profiles. The latter configuration resulted in pseudo-multimyelin profiles that were often associated with axonal detachment and degeneration throughout the CNS, including in the optic nerve, corpus callosum, and the spinal cord. Furthermore, developmental analysis revealed that myelin abnormalities were already observed during the onset of myelination, suggesting that they are formed by aberrant and misguided elongation of the oligodendrocyte inner lip membrane. Our results demonstrate that N-Wasp is required for the formation of normal myelin in the CNS. They also reveal that N-Wasp plays a distinct role in oligodendrocytes compared with Schwann cells, highlighting a difference in the regulation of actin dynamics during CNS and PNS myelination.SIGNIFICANCE STATEMENT Myelin is critical for the normal function of the nervous system by facilitating fast conduction of action potentials. During the process of myelination in the CNS, oligodendrocytes undergo extensive morphological changes that involve cellular process extension and retraction, axonal ensheathment, and myelin membrane wrapping. Here we present evidence that N-Wasp, a protein regulating actin filament assembly through Arp2/3 complex-dependent actin nucleation, plays a critical role in CNS myelination, and its absence leads to several myelin abnormalities. Our data provide an important step into the understanding of the molecular mechanisms underlying CNS myelination.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Corpo Caloso/citologia , Corpo Caloso/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Óptico/citologia , Nervo Óptico/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética
11.
Am J Respir Cell Mol Biol ; 62(5): 645-656, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913659

RESUMO

It has been reported that actin polymerization is regulated by protein tyrosine phosphorylation in smooth muscle on contractile stimulation. The role of protein serine/threonine phosphorylation in modulating actin dynamics is underinvestigated. SLK (Ste20-like kinase) is a serine/threonine protein kinase that plays a role in apoptosis, cell cycle, proliferation, and migration. The function of SLK in smooth muscle is mostly unknown. Here, SLK knockdown (KD) inhibited acetylcholine (ACh)-induced actin polymerization and contraction without affecting myosin light chain phosphorylation at Ser-19 in human airway smooth muscle. Stimulation with ACh induced paxillin phosphorylation at Ser-272, which was reduced in SLK KD cells. However, SLK did not catalyze paxillin Ser-272 phosphorylation in vitro. But, SLK KD attenuated Plk1 (polo-like kinase 1) phosphorylation at Thr-210. Plk1 mediated paxillin phosphorylation at Ser-272 in vitro. Expression of the nonphosphorylatable paxillin mutant S272A (substitution of alanine at Ser-272) attenuated the agonist-enhanced F-actin/G-actin ratios without affecting myosin light chain phosphorylation. Because N-WASP (neuronal Wiskott-Aldrich Syndrome Protein) phosphorylation at Tyr-256 (an indication of its activation) promotes actin polymerization, we also assessed the role of paxillin phosphorylation in N-WASP activation. S272A paxillin inhibited the ACh-enhanced N-WASP phosphorylation at Tyr-256. Together, these results suggest that SLK regulates paxillin phosphorylation at Ser-272 via Plk1, which modulates N-WASP activation and actin polymerization in smooth muscle. SLK-mediated actin cytoskeletal reorganization may facilitate force transmission between the contractile units and the extracellular matrix.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Pulmão/fisiologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Polimerização , Proteínas Serina-Treonina Quinases/metabolismo , Acetilcolina/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Adulto , Biocatálise/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Feminino , Histamina/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Paxilina/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serotonina/farmacologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Quinase 1 Polo-Like
12.
PLoS Pathog ; 14(12): e1007485, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30550556

RESUMO

Enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC) are closely related extracellular pathogens that reorganize host cell actin into "pedestals" beneath the tightly adherent bacteria. This pedestal-forming activity is both a critical step in pathogenesis, and it makes EPEC and EHEC useful models for studying the actin rearrangements that underlie membrane protrusions. To generate pedestals, EPEC relies on the tyrosine phosphorylated bacterial effector protein Tir to bind host adaptor proteins that recruit N-WASP, a nucleation-promoting factor that activates the Arp2/3 complex to drive actin polymerization. In contrast, EHEC depends on the effector EspFU to multimerize N-WASP and promote Arp2/3 activation. Although these core pathways of pedestal assembly are well-characterized, the contributions of additional actin nucleation factors are unknown. We investigated potential cooperation between the Arp2/3 complex and other classes of nucleators using chemical inhibitors, siRNAs, and knockout cell lines. We found that inhibition of formins impairs actin pedestal assembly, motility, and cellular colonization for bacteria using the EPEC, but not the EHEC, pathway of actin polymerization. We also identified mDia1 as the formin contributing to EPEC pedestal assembly, as its expression level positively correlates with the efficiency of pedestal formation, and it localizes to the base of pedestals both during their initiation and once they have reached steady state. Collectively, our data suggest that mDia1 enhances EPEC pedestal biogenesis and maintenance by generating seed filaments to be used by the N-WASP-Arp2/3-dependent actin nucleation machinery and by sustaining Src-mediated phosphorylation of Tir.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Citoesqueleto de Actina , Células CACO-2 , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Forminas , Células HeLa , Humanos , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
13.
IUBMB Life ; 72(4): 544-552, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31859439

RESUMO

Besides a fundamental structural role at the plasma membrane, spectrin- and actin-based skeletons have been proposed to participate in various processes including vesicular trafficking. Neuroendocrine cells release hormones and neuropeptides through calcium-regulated exocytosis, a process that is coordinated by a fine remodeling of the actin cytoskeleton. We describe here that calcium-regulated exocytosis is impaired in chromaffin and PC12 cells with reduced αII-spectrin expression levels. Using yeast two-hybrid screening, we show that neuronal Wiskott-Aldrich Syndrome protein (N-WASP) is a partner of the αII-spectrin SH3 domain and demonstrate that secretagogue-evoked N-WASP recruitment at cell periphery is blocked in the absence of αII-spectrin. Additionally, experiments performed with ectopically expressed αII-spectrin mutant unable to bind N-WASP indicated that the interaction between SH3 domain and N-WASP is pivotal for neuroendocrine secretion. Our results extend the list of spectrin interactors and strengthen the idea that αII-spectrin is an important scaffold protein that gathers crucial actin-related players of the exocytic machinery.


Assuntos
Proteínas de Transporte/metabolismo , Células Cromafins/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células Neuroendócrinas/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Transporte/genética , Catecolaminas/metabolismo , Bovinos , Exocitose/fisiologia , Hormônio do Crescimento/metabolismo , Proteínas dos Microfilamentos/genética , Mutação , Células PC12 , Ratos , Técnicas do Sistema de Duplo-Híbrido , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Domínios de Homologia de src
14.
Am J Respir Cell Mol Biol ; 61(2): 219-231, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30811945

RESUMO

Airway smooth muscle cells require coordinated protrusion and focal adhesion dynamics to migrate properly. However, the signaling cascades that connect these two processes remain incompletely understood. Glia maturation factor (GMF)-γ has been implicated in inducing actin debranching and inhibiting nucleation. In this study, we discovered that GMFγ phosphorylation at Y104 regulates human airway smooth muscle cell migration. Using high-resolution microscopy coupled with three-dimensional object-based quantitative image analysis software, Imaris 9.2.0, phosphomimetic mutant, Y104D-GMFγ, was enriched at nascent adhesions along the leading edge where it recruited activated neural Wiskott-Aldrich syndrome protein (N-WASP; pY256) to promote actin-branch formation, which enhanced lamellipodial dynamics and limited the growth of focal adhesions. Unexpectedly, we found that nonphosphorylated mutant, Y104F-GMFγ, was enriched in growing adhesions where it promoted a linear branch organization and focal adhesion clustering, and recruited zyxin to increase maturation, thus inhibiting lamellipodial dynamics and cell migration. The localization of GMFγ between the leading edge and focal adhesions was dependent upon myosin activity. Furthermore, c-Abl tyrosine kinase regulated the GMFγ phosphorylation-dependent processes. Together, these results unveil the importance of GMFγ phosphorylation in coordinating lamellipodial and focal adhesion dynamics to regulate cell migration.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Fator de Maturação da Glia/metabolismo , Miócitos de Músculo Liso/citologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pseudópodes/metabolismo , Brônquios/metabolismo , Adesão Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Microscopia de Fluorescência , Contração Muscular , Mutação , Fosforilação , Transdução de Sinais , Software , Traqueia/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Zixina/metabolismo
15.
J Pathol ; 245(3): 337-348, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29672847

RESUMO

N-WASP (WASL) is a widely expressed cytoskeletal signalling and scaffold protein also implicated in regulation of Wnt signalling and homeostatic maintenance of skin epithelial architecture. N-WASP mediates invasion of cancer cells in vitro and its depletion reduces invasion and metastatic dissemination of breast cancer. Given this role in cancer invasion and universal expression in the gastrointestinal tract, we explored a role for N-WASP in the initiation and progression of colorectal cancer. While deletion of N-wasp is not detectably harmful in the murine intestinal tract, numbers of Paneth cells increased, indicating potential changes in the stem cell niche, and migration up the crypt-villus axis was enhanced. Loss of N-wasp promoted adenoma formation in an adenomatous polyposis coli (Apc) deletion model of intestinal tumourigenesis. Thus, we establish a tumour suppressive role of N-WASP in early intestinal carcinogenesis despite its later pro-invasive role in other cancers. Our study highlights that while the actin cytoskeletal machinery promotes invasion of cancer cells, it also maintains normal epithelial tissue function and thus may have tumour suppressive roles in pre-neoplastic tissues. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Polipose Adenomatosa do Colo/genética , Transformação Celular Neoplásica/genética , Colo/metabolismo , Genes APC , Genes Supressores de Tumor , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Idoso , Animais , Diferenciação Celular , Movimento Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colo/patologia , Reparo de Erro de Pareamento de DNA , Modelos Animais de Doenças , Progressão da Doença , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Fenótipo , Nicho de Células-Tronco , Microambiente Tumoral , Proteína Neuronal da Síndrome de Wiskott-Aldrich/deficiência
16.
Proc Natl Acad Sci U S A ; 113(38): E5552-61, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601635

RESUMO

Membrane remodeling by Fes/Cip4 homology-Bin/Amphiphysin/Rvs167 (F-BAR) proteins is regulated by autoinhibitory interactions between their SRC homology 3 (SH3) and F-BAR domains. The structural basis of autoregulation, and whether it affects interactions of SH3 domains with other cellular ligands, remain unclear. Here we used single-particle electron microscopy to determine the structure of the F-BAR protein Nervous Wreck (Nwk) in both soluble and membrane-bound states. On membrane binding, Nwk SH3 domains do not completely dissociate from the F-BAR dimer, but instead shift from its concave surface to positions on either side of the dimer. Unexpectedly, along with controlling membrane binding, these autoregulatory interactions inhibit the ability of Nwk-SH3a to activate Wiskott-Aldrich syndrome protein (WASp)/actin related protein (Arp) 2/3-dependent actin filament assembly. In Drosophila neurons, Nwk autoregulation restricts SH3a domain-dependent synaptopod formation, synaptic growth, and actin organization. Our results define structural rearrangements in Nwk that control F-BAR-membrane interactions as well as SH3 domain activities, and suggest that these two functions are tightly coordinated in vitro and in vivo.


Assuntos
Proteínas de Drosophila/química , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Neurônios/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Sequência de Aminoácidos/genética , Animais , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Domínios de Homologia de src/genética
17.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 487-497, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27965114

RESUMO

Myogenesis requires a well-coordinated withdrawal from cell cycle, morphological changes and cell fusion mediated by actin cytoskeleton. Grb2 is an adaptor protein whose central SH2 domain binds to phosphorylated tyrosine residues of activated receptors and activates intracellular signaling pathway, while its N-terminal and C-terminal SH3 domains bind to proline rich proteins such as N-WASP (Neural-Wiskott Aldrich Syndrome Protein). We found that the expression of Grb2 was increased at the beginning of differentiation and remained constant during differentiation in C2C12 myoblasts. Knocking down endogenous Grb2 expression caused a significant increase in the fusion index and expression of MyHC, a terminal differentiation marker when compared with the control. Over expression of Grb2 in C2C12 (C2C12Grb2-Myc) reduced myotube formation and expression of MyHC. Similarly over expression of Grb2P49L-Myc (N-terminal SH3 domain mutant) or Grb2R86K-Myc (SH2 domain mutant) inhibited myogenic differentiation of C2C12 cells. However, the expression of Grb2P206L-Myc (C-terminal SH3 domain mutant) did not inhibit myotube formation and expression of MyHC. This suggests that the C-terminal SH3 domain of Grb2 is critical for the inhibition of myogenic differentiation. The C2C12Grb2-Myc cells have reduced phalloidin staining at late stages of differentiation. Expression of N-WASP in C2C12Grb2-Myc cells rescued the myogenic defect and increased phalloidin staining (increased F-actin) in these cells. Thus our results suggest that Grb2 is a negative regulator of myogenesis and reduces myogenic differentiation by inhibiting actin polymerization/remodeling through its C-terminal SH3 domain.


Assuntos
Proteína Adaptadora GRB2/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Diferenciação Celular , Proteína Adaptadora GRB2/metabolismo , Regulação da Expressão Gênica , Camundongos , Fibras Musculares Esqueléticas/citologia , Mutação , Mioblastos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
18.
J Physiol ; 596(16): 3617-3635, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29746010

RESUMO

KEY POINTS: The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASp). N-WASP transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. ABSTRACT: Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase-inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We found that ROCK regulates airway smooth muscle contraction by mediating activation of p21-activated kinase (Pak), a serine-threonine kinase, to promote actin polymerization. Pak catalyses paxillin phosphorylation on Ser273 and coupling of the GIT1-ßPIX-Pak signalling module to paxillin, which activates the guanine nucleotide exchange factor (GEF) activity of ßPIX towards Cdc42. Cdc42 is required for the activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp), which transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle.


Assuntos
Actinas/metabolismo , Contração Muscular , Músculo Liso/fisiologia , Traqueia/fisiologia , Quinases Ativadas por p21/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Células Cultivadas , Cães , Feminino , Masculino , Músculo Liso/citologia , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Paxilina/metabolismo , Fosforilação , Polimerização , Transdução de Sinais , Traqueia/citologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
19.
J Biol Chem ; 292(1): 134-145, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27881679

RESUMO

Shigella flexneri is a bacterial pathogen that invades cells of the gastrointestinal tract, causing severe dysentery. Shigella mediates intracellular motility and spreading via actin comet tail formation. This process is dependent on the surface-exposed, membrane-embedded virulence factor IcsA, which recruits the host actin regulator N-WASP. Although it is clear that Shigella requires N-WASP for this process, the molecular details of this interaction and the mechanism of N-WASP activation remain poorly understood. Here, we show that co-expression of full-length IcsA and the Shigella membrane protease IcsP yields highly pure IcsA passenger domain (residues 53-758). We show that IcsA is monomeric and describe the solution structure of the passenger domain obtained by small-angle X-ray scattering (SAXS) analysis. The SAXS-derived models suggest that IcsA has an elongated shape but, unlike most other autotransporter proteins, possesses a central kink revealing a distinctly curved structure. Pull-down experiments show direct binding of the IcsA passenger domain to both the WASP homology 1 (WH1) domain and the GTPase binding domain (GBD) of N-WASP and no binding to the verprolin homology/cofilin/acidic (VCA) region. Using fluorescence polarization experiments, we demonstrate that IcsA binding to the GBD region displaces the VCA peptide and that this effect is synergistically enhanced upon IcsA binding to the WH1 region. Additionally, domain mapping of the IcsA interaction interface reveals that different regions of IcsA bind to the WH1 and GBD domains of N-WASP. Taken together, our data support a model where IcsA and N-WASP form a tight complex releasing the N-WASP VCA domain to recruit the host cell machinery for actin tail formation.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Shigella flexneri/metabolismo , Fatores de Transcrição/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Humanos , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Shigella flexneri/genética , Fatores de Transcrição/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética
20.
J Biol Chem ; 292(46): 19034-19043, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28972183

RESUMO

Defects in translocation of the glucose transporter GLUT4 are associated with peripheral insulin resistance, preclinical diabetes, and progression to type 2 diabetes. GLUT4 recruitment to the plasma membrane of skeletal muscle cells requires F-actin remodeling. Insulin signaling in muscle requires p21-activated kinase-1 (PAK1), whose downstream signaling triggers actin remodeling, which promotes GLUT4 vesicle translocation and glucose uptake into skeletal muscle cells. Actin remodeling is a cyclic process, and although PAK1 is known to initiate changes to the cortical actin-binding protein cofilin to stimulate the depolymerizing arm of the cycle, how PAK1 might trigger the polymerizing arm of the cycle remains unresolved. Toward this, we investigated whether PAK1 contributes to the mechanisms involving the actin-binding and -polymerizing proteins neural Wiskott-Aldrich syndrome protein (N-WASP), cortactin, and ARP2/3 subunits. We found that the actin-polymerizing ARP2/3 subunit p41ARC is a PAK1 substrate in skeletal muscle cells. Moreover, co-immunoprecipitation experiments revealed that insulin stimulates p41ARC phosphorylation and increases its association with N-WASP coordinately with the associations of N-WASP with cortactin and actin. Importantly, all of these associations were ablated by the PAK inhibitor IPA3, suggesting that PAK1 activation lies upstream of these actin-polymerizing complexes. Using the N-WASP inhibitor wiskostatin, we further demonstrated that N-WASP is required for localized F-actin polymerization, GLUT4 vesicle translocation, and glucose uptake. These results expand the model of insulin-stimulated glucose uptake in skeletal muscle cells by implicating p41ARC as a new component of the insulin-signaling cascade and connecting PAK1 signaling to N-WASP-cortactin-mediated actin polymerization and GLUT4 vesicle translocation.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Insulina/metabolismo , Músculo Esquelético/citologia , Subunidades Proteicas/metabolismo , Ratos , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA