Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.905
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 174(6): 1465-1476.e13, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122350

RESUMO

Cell-penetrating peptides (CPPs) are short protein segments that can transport cargos into cells. Although CPPs are widely studied as potential drug delivery tools, their role in normal cell physiology is poorly understood. Early during infection, the L2 capsid protein of human papillomaviruses binds retromer, a cytoplasmic trafficking factor required for delivery of the incoming non-enveloped virus into the retrograde transport pathway. Here, we show that the C terminus of HPV L2 proteins contains a conserved cationic CPP that drives passage of a segment of the L2 protein through the endosomal membrane into the cytoplasm, where it binds retromer, thereby sorting the virus into the retrograde pathway for transport to the trans-Golgi network. These experiments define the cell-autonomous biological role of a CPP in its natural context and reveal how a luminal viral protein engages an essential cytoplasmic entry factor.


Assuntos
Proteínas do Capsídeo/metabolismo , Peptídeos Penetradores de Células/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Endossomos/metabolismo , Complexo de Golgi/virologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/fisiologia , Humanos , Mutagênese , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Ligação Viral , Internalização do Vírus
2.
Mol Cell ; 72(5): 823-835.e5, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30415951

RESUMO

High-risk human papilloma viruses (HPVs) cause cervical, anal, and oropharyngeal cancers, unlike the low-risk HPVs, which cause benign lesions. E6 oncoproteins from the high-risk strains are essential for cell proliferation and transformation in HPV-induced cancers. We report that a cellular deubiquitinase, USP46, is selectively recruited by the E6 of high-risk, but not low-risk, HPV to deubiqutinate and stabilize Cdt2/DTL. Stabilization of Cdt2, a component of the CRL4Cdt2 E3 ubiquitin ligase, limits the level of Set8, an epigenetic writer, and promotes cell proliferation. USP46 is essential for the proliferation of HPV-transformed cells, but not of cells without HPV. Cdt2 is elevated in human cervical cancers and knockdown of USP46 inhibits HPV-transformed tumor growth in xenografts. Recruitment of a cellular deubiquitinase to stabilize key cellular proteins is an important activity of oncogenic E6, and the importance of E6-USP46-Cdt2-Set8 pathway in HPV-induced cancers makes USP46 a target for the therapy of such cancers.


Assuntos
Endopeptidases/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Proteínas Nucleares/genética , Infecções por Papillomavirus/genética , Neoplasias do Colo do Útero/genética , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Feminino , Regulação da Expressão Gênica , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Interações Hospedeiro-Patógeno/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidade , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano 18/patogenicidade , Humanos , Injeções Intralesionais , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/enzimologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nucleic Acids Res ; 52(1): 316-336, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994701

RESUMO

High-risk carcinogenic human papillomaviruses (HPVs), e.g. HPV16, express the E6 and E7 oncogenes from two mRNAs that are generated in a mutually exclusive manner by splicing. The HPV16 E7 mRNA, also known as the E6*I/E7 mRNA, is produced by splicing between splice sites SD226 and SA409, while E6 mRNAs retain the intron between these splice sites. We show that splicing between HPV16 splice sites SD226 and SA409 is controlled by a splicing enhancer consisting of a perfect repeat of an adenosine-rich, 11 nucleotide sequence: AAAAGCAAAGA. Two nucleotide substitutions in both 11 nucleotide sequences specifically inhibited production of the spliced E6*I/E7 mRNA. As a result, production of E7 protein was reduced and the ability of HPV16 to immortalize human primary keratinocytes was abolished. The splicing-enhancing effect was mediated by the cellular TRAP150/THRAP3 protein that also enhanced splicing of other high-risk HPV E6*I/E7 mRNAs, but had no effect on low-risk HPV mRNAs. In summary, we have identified a novel splicing enhancer in the E6 coding region that is specific for high-risk HPVs and that is critically linked to HPV16 carcinogenic properties.


Assuntos
Papillomavirus Humano 16 , Queratinócitos , Proteínas Oncogênicas Virais , Proteínas Repressoras , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/genética , Proteínas Repressoras/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Queratinócitos/virologia
4.
Proc Natl Acad Sci U S A ; 120(42): e2307721120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37819982

RESUMO

The activity of proteins is thought to be invariably determined by their amino acid sequence or composition, but we show that a long segment of a viral protein can support infection independent of its sequence or composition. During virus entry, the papillomavirus L2 capsid protein protrudes through the endosome membrane into the cytoplasm to bind cellular factors such as retromer required for intracellular virus trafficking. Here, we show that an ~110 amino acid segment of L2 is predicted to be disordered and that large deletions in this segment abolish infectivity of HPV16 pseudoviruses by inhibiting cytoplasmic protrusion of L2, association with retromer, and proper virus trafficking. The activity of these mutants can be restored by insertion of protein segments with diverse sequences, compositions, and chemical properties, including scrambled amino acid sequences, a tandem array of a short sequence, and the intrinsically disordered region of an unrelated cellular protein. The infectivity of mutants with small in-frame deletions in this segment directly correlates with the size of the segment. These results indicate that the length of the disordered segment, not its sequence or composition, determines its activity during HPV16 pseudovirus infection. We propose that a minimal length of L2 is required for it to protrude far enough into the cytoplasm to bind cytoplasmic trafficking factors, but the sequence of this segment is largely irrelevant. Thus, protein segments can carry out complex biological functions such as Human papillomavirus pseudovirus infection in a sequence-independent manner. This finding has important implications for protein function and evolution.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Proteínas do Capsídeo/química , Papillomavirus Humano , Internalização do Vírus , Células HeLa , Capsídeo/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/química
5.
Proc Natl Acad Sci U S A ; 120(14): e2216700120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989302

RESUMO

Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Instabilidade Cromossômica , Cromossomos/metabolismo , Papillomavirus Humano 16/genética , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Genome Res ; 32(1): 55-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903527

RESUMO

Human papillomavirus (HPV) causes 5% of all cancers and frequently integrates into host chromosomes. The HPV oncoproteins E6 and E7 are necessary but insufficient for cancer formation, indicating that additional secondary genetic events are required. Here, we investigate potential oncogenic impacts of virus integration. Analysis of 105 HPV-positive oropharyngeal cancers by whole-genome sequencing detects virus integration in 77%, revealing five statistically significant sites of recurrent integration near genes that regulate epithelial stem cell maintenance (i.e., SOX2, TP63, FGFR, MYC) and immune evasion (i.e., CD274). Genomic copy number hyperamplification is enriched 16-fold near HPV integrants, and the extent of focal host genomic instability increases with their local density. The frequency of genes expressed at extreme outlier levels is increased 86-fold within ±150 kb of integrants. Across 95% of tumors with integration, host gene transcription is disrupted via intragenic integrants, chimeric transcription, outlier expression, gene breaking, and/or de novo expression of noncoding or imprinted genes. We conclude that virus integration can contribute to carcinogenesis in a large majority of HPV-positive oropharyngeal cancers by inducing extensive disruption of host genome structure and gene expression.


Assuntos
Alphapapillomavirus , Proteínas Oncogênicas Virais , Neoplasias Orofaríngeas , Alphapapillomavirus/metabolismo , Carcinogênese , Humanos , Proteínas Oncogênicas Virais/genética , Neoplasias Orofaríngeas/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Integração Viral/genética
7.
J Virol ; 98(8): e0100324, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39046232

RESUMO

Three-stranded DNA-RNA structures known as R-loops that form during papillomavirus transcription can cause transcription-replication conflicts and lead to DNA damage. We found that R-loops accumulated at the viral early promoter in human papillomavirus (HPV) episomal cells but were greatly reduced in cells with integrated HPV genomes. RNA-DNA helicases unwind R-loops and allow for transcription and replication to proceed. Depletion of the RNA-DNA helicase senataxin (SETX) using siRNAs increased the presence of R-loops at the viral early promoter in HPV-31 (CIN612) and HPV-16 (W12) episomal HPV cell lines. Depletion of SETX reduced viral transcripts in episomal HPV cell lines. The viral E2 protein, which binds with high affinity to specific palindromes near the promoter and origin, complexes with SETX, and both SETX and E2 are present at the viral p97 promoter in CIN612 and W12 cells. SETX overexpression increased E2 transcription activity on the p97 promoter. SETX depletion also significantly increased integration of viral genomes in CIN612 cells. Our results demonstrate that SETX resolves viral R-loops to proceed with HPV transcription and prevent genome integration.IMPORTANCEPapillomaviruses contain small circular genomes of approximately 8 kilobase pairs and undergo unidirectional transcription from the sense strand of the viral genome. Co-transcriptional R-loops were recently reported to be present at high levels in cells that maintain episomal HPV and were also detected at the early viral promoter. R-loops can inhibit transcription and DNA replication. The process that removes R-loops from the PV genome and the requisite enzymes are unknown. We propose a model in which the host RNA-DNA helicase senataxin assembles on the HPV genome to resolve R-loops in order to maintain the episomal status of the viral genome.


Assuntos
DNA Helicases , Enzimas Multifuncionais , Regiões Promotoras Genéticas , Estruturas R-Loop , RNA Helicases , Humanos , RNA Helicases/genética , RNA Helicases/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Estruturas R-Loop/genética , Plasmídeos/genética , Replicação Viral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Papillomaviridae/genética , Genoma Viral , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Transcrição Gênica , Linhagem Celular , DNA Viral/genética
8.
J Virol ; 98(7): e0073524, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38874360

RESUMO

Oncogenic HPV E6 proteins have a PDZ-binding motif (PBM) which plays important roles in both the viral life cycle and tumor development. The PBM confers interaction with a large number of different PDZ domain-containing substrates, one of which is Sorting Nexin 27. This protein is part of the retromer complex and plays an important role in endocytic sorting pathways. It has been shown that at least two SNX27 interacting partners, GLUT1 and TANC2, are aberrantly trafficked due to the E6 PBM-dependent interaction with SNX27. To investigate further which other components of the endocytic trafficking pathway might be affected by the SNX27-HPV E6 interaction, we analyzed the SNX27 proteome interaction profile in a previously described HeLa cell line expressing GFP-SNX27, both in the presence and absence of the HPV-18 E6 oncoprotein. In this study, we identify a novel interacting partner of SNX27, secreted glycoprotein EMILIN2, whose release is blocked by HPV18 E6 in a PBM-dependent manner. Mechanistically, E6 can block EMILIN2 interaction with the WNT1 ligand, thereby enhancing WNT1 signaling and promoting cell proliferation. IMPORTANCE: This study demonstrates that HPV E6 blocks EMILIN2 inhibition of WNT1 signaling, thereby enhancing cell proliferation in HPV-positive tumor cells. This involves a novel mechanism whereby the E6 PBM actually contributes toward enhancing the interaction between SNX27 and EMILIN2, suggesting that the mode of recognition of SNX27 by E6 and EMILIN2 is different. This is the first example of the E6 PBM altering a PDZ domain-containing protein to enhance potential substrate recognition.


Assuntos
Papillomavirus Humano 18 , Proteínas Oncogênicas Virais , Nexinas de Classificação , Via de Sinalização Wnt , Humanos , Proteínas de Ligação a DNA , Células HEK293 , Células HeLa , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano 18/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/metabolismo , Domínios PDZ , Ligação Proteica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética
9.
J Virol ; 98(2): e0172623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38226814

RESUMO

The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.IMPORTANCESince human papillomavirus (HPV) oncoprotein E7 is essential for virus replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 (CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential role in E7 ubiquitination and degradation. Here, we show that the membrane ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degradation through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 protein levels in the host cell by inducing MARCHF8, which may be critical for cell proliferation and tumorigenesis.


Assuntos
Proteínas Culina , Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Humanos , Proteínas Culina/genética , Proteínas Culina/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Papillomavirus Humano , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
PLoS Pathog ; 19(6): e1011464, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379354

RESUMO

Human papillomaviruses (HPV) cause persistent infections by modulating epithelial homeostasis in cells of the infected basal layer. Using FUCCI and cell-cell competition assays, we have identifed regulatory roles for E6AP and NHERF1, which are the primary HPV11 E6 cellular targets, as well as being targets of the high-risk E6 proteins, in processes governing epithelial homeostasis (i.e. cell density, cell cycle entry, commitment to differentiation and basal layer delamination). Depletion of E6AP, or expression of HPV11 or 16E6 increased keratinocyte cell density and cell cycle activity, and delayed the onset of differentiation; phenotypes which were conspicuously present in HPV11 and 16 infected patient tissue. In line with proposed E6 functions, in HPV11 condyloma tissue, E6AP and NHERF1 were significantly reduced when compared to uninfected epithelium. In experimental systems, loss of HPV11 E6/E6AP binding abolished 11E6's homeostasis regulatory functions, while loss of E6/NHERF1 binding reduced the cell density threshold at which differentiation was triggered. By contrast, a NHERF1-binding mutant of 16E6 was not compromised in its homeostasis functions, while E6AP appeared essential. RNA sequencing revealed similar transcriptional profiles in both 11 and 16E6-expressing cells and E6AP-/- cells, with YAP target genes induced, and keratinocyte differentiation genes being downregulated. HPV11 E6-mediated Yap activation was observed in 2D and 3D (organotypic raft) cell culture systems and HPV-infected lesions, with both NHERF1, which is a regulator of the Hippo and Wnt pathways, and E6AP, playing an important role. As the conserved binding partner of Alpha group HPV E6 proteins, the precise role of E6AP in modulating keratinocyte phenotype and associated signalling pathways has not previously been defined. Our study suggests a model in which the preserved functions of the low and high-risk Alpha E6 proteins modulate epithelial homeostasis via E6AP activity, and lead to alteration of multiple downstream pathways, including those involving NHERF1 and YAP.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Papillomavirus Humano , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Papillomaviridae/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Diferenciação Celular , Queratinócitos , Homeostase
11.
Biol Cell ; 116(4): e202300072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514439

RESUMO

BACKGROUND INFORMATION: The precise etiology of breast cancer is not completely understood, although women with BRCA1 gene mutations have a significantly increased risk of developing the disease. In addition, sporadic breast cancer is frequently associated with decreased BRCA1 gene expression. Growing evidence of Human papillomaviruses (HPVs) infections in breast tumors has raised the possibility of the involvement of HPVs in the pathogenesis of breast cancer. We investigated whether the effects of HPV oncoproteins E6 and E7 were influenced by the expression levels of BRCA1. HPV16E6E7 (prototype or E6D25E/E7N29S Asian variant type) were stably expressed in MDA-MB231 breast cancer cells, wild type for BRCA1, or with BRCA1 knocked down. RESULTS: Expression of HPV16E6E7 oncogenes did not affect BRCA1 levels and the abundance of HPV16E6E7 was not altered by BRCA1 knockdown. BRCA1 levels did not alter HPV16E6E7-dependent degradation of G1-S cell cycle proteins p53 and pRb. However, we found that the expression of G2-M cell cycle protein cyclin B1 enhanced by HPV16E6E7 was impacted by BRCA1 levels. Especially, we found the correlation between BRCA1 and cyclin B1 expression and this was also confirmed in breast cancer samples from a Thai cohort. We further demonstrated that the combination of HPV oncoproteins and low levels of BRCA1 protein appears to enhance proliferation and invasion. Transactivation activities of HPV16E6E7 on genes regulating cell proliferation and invasion (TGF-ß and vimentin) were significantly increased in BRCA1-deficient cells. CONCLUSIONS: Our results indicate that a deficiency of BRCA1 promotes the transactivation activity of HPV16E6E7 leading to increase of cell proliferation and invasion. SIGNIFICANCE: HPV infection appears to have the potential to enhance the aggressiveness of breast cancers, especially those deficient in BRCA1.


Assuntos
Neoplasias da Mama , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Feminino , Humanos , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Ciclina B1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Infecções por Papillomavirus/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo
12.
Mol Ther ; 32(7): 2340-2356, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38715363

RESUMO

Human papillomavirus (HPV) 16 and 18 infections are related to many human cancers. Despite several preventive vaccines for high-risk (hr) HPVs, there is still an urgent need to develop therapeutic HPV vaccines for targeting pre-existing hrHPV infections and lesions. In this study, we developed a lipid nanoparticle (LNP)-formulated mRNA-based HPV therapeutic vaccine (mHTV)-03E2, simultaneously targeting the E2/E6/E7 of both HPV16 and HPV18. mHTV-03E2 dramatically induced antigen-specific cellular immune responses, leading to significant CD8+ T cell infiltration and cytotoxicity in TC-1 tumors derived from primary lung epithelial cells of C57BL/6 mice expressing HPV E6/E7 antigens, mediated significant tumor regression, and prolonged animal survival, in a dose-dependent manner. We further demonstrated significant T cell immunity against HPV16/18 E6/E7 antigens for up to 4 months post-vaccination in immunological and distant tumor rechallenging experiments, suggesting robust memory T cell immunity against relapse. Finally, mHTV-03E2 synergized with immune checkpoint blockade to inhibit tumor growth and extend animal survival, indicating the potential in combination therapy. We conclude that mHTV-03E2 is an excellent candidate therapeutic mRNA vaccine for treating malignancies caused by HPV16 or HPV18 infections.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , RNA Mensageiro , Animais , Camundongos , Vacinas contra Papillomavirus/imunologia , Humanos , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/terapia , Infecções por Papillomavirus/prevenção & controle , Feminino , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Nanopartículas/química , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 16/genética , Camundongos Endogâmicos C57BL , Papillomavirus Humano 18/imunologia , Papillomavirus Humano 18/genética , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Linfócitos T CD8-Positivos/imunologia , Proteínas Repressoras/imunologia , Proteínas Repressoras/genética , Proteínas de Ligação a DNA , Lipossomos
13.
Proc Natl Acad Sci U S A ; 119(11): e2118930119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254896

RESUMO

SignificanceHigh-risk (HR) human papillomaviruses (HPV) from the genus alpha cause anogenital and oropharyngeal cancers, whereas the contribution of HPV from the genus beta to the development of cutaneous squamous cell cancer is still under debate. HR-HPV genomes display potent immortalizing activity in human keratinocytes, the natural target cell for HPV. This paper shows that immortalization of keratinocytes by the beta-HPV49 genome requires the inactivation of the viral E8^E2 repressor protein and the presence of the E6 and E7 oncoproteins but also of the E1 and E2 replication proteins. This reveals important differences in the carcinogenic properties of HR-HPV and beta-HPV but also warrants further investigations on the distribution and mutation frequencies of beta-HPV in human cancers.


Assuntos
Betapapillomavirus/fisiologia , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Queratinócitos/virologia , Infecções por Papillomavirus/virologia , Replicação Viral , Linhagem Celular Transformada , Genoma Viral , Humanos , Queratinócitos/metabolismo , Proteínas Oncogênicas Virais/genética , RNA Viral
14.
J Biol Chem ; 299(8): 104954, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354975

RESUMO

Human papillomaviruses (HPVs) are DNA tumor viruses that infect mucosal and cutaneous epithelial cells of more than 20 vertebrates. High-risk HPV causes about 5% of human cancers worldwide, and the viral proteins E6 and E7 promote carcinogenesis by interacting with tumor suppressors and interfering with many cellular pathways. As a consequence, they immortalize cells more efficiently in concert than individually. So far, the networks of E6 and E7 with their respective cellular targets have been studied extensively but independently. However, we hypothesized that E6 and E7 might also interact directly with each other in a novel interaction affecting HPV-related carcinogenesis. Here, we report a direct interaction between E6 and E7 proteins from carcinogenic HPV types 16 and 31. We demonstrated this interaction via cellular assays using two orthogonal methods: coimmunoprecipitation and flow cytometry-based FRET assays. Analytical ultracentrifugation of the recombinant proteins revealed that the stoichiometry of the E6/E7 complex involves two E7 molecules and two E6 molecules. In addition, fluorescence polarization showed that (I) E6 binds to E7 with a similar affinity for HPV16 and HPV31 (in the same micromolar range) and (II) that the binding interface involves the unstructured N-terminal region of E7. The direct interaction of these highly conserved papillomaviral oncoproteins may provide a new perspective for studying HPV-associated carcinogenesis and the overall viral life cycle.


Assuntos
Papillomavirus Humano 16 , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Animais , Humanos , Carcinogênese , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano , Neoplasias , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo
15.
BMC Genomics ; 25(1): 507, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778248

RESUMO

BACKGROUND: Alpha-papillomavirus 9 (α-9) is a member of the human papillomavirus (HPV) α genus, causing 75% invasive cervical cancers worldwide. The purpose of this study was to provide data for effective treatment of HPV-induced cervical lesions in Taizhou by analysing the genetic variation and antigenic epitopes of α-9 HPV E6 and E7. METHODS: Cervical exfoliated cells were collected for HPV genotyping. Positive samples of the α-9 HPV single type were selected for E6 and E7 gene sequencing. The obtained nucleotide sequences were translated into amino acid sequences (protein primary structure) using MEGA X, and positive selection sites of the amino acid sequences were evaluated using PAML. The secondary and tertiary structures of the E6 and E7 proteins were predicted using PSIPred, SWISS-MODEL, and PyMol. Potential T/B-cell epitopes were predicted by Industrial Engineering Database (IEDB). RESULTS: From 2012 to 2023, α-9 HPV accounted for 75.0% (7815/10423) of high-risk HPV-positive samples in Taizhou, both alone and in combination with other types. Among these, single-type-positive samples of α-9 HPV were selected, and the entire E6 and E7 genes were sequenced, including 298 HPV16, 149 HPV31, 185 HPV33, 123 HPV35, 325 HPV52, and 199 HPV58 samples. Compared with reference sequences, 34, 12, 10, 2, 17, and 17 nonsynonymous nucleotide mutations were detected in HPV16, 31, 33, 35, 52, and 58, respectively. Among all nonsynonymous nucleotide mutations, 19 positive selection sites were selected, which may have evolutionary significance in rendering α-9 HPV adaptive to its environment. Immunoinformatics predicted 57 potential linear and 59 conformational B-cell epitopes, many of which are also predicted as CTL epitopes. CONCLUSION: The present study provides almost comprehensive data on the genetic variations, phylogenetics, positive selection sites, and antigenic epitopes of α-9 HPV E6 and E7 in Taizhou, China, which will be helpful for local HPV therapeutic vaccine development.


Assuntos
Proteínas Oncogênicas Virais , Filogenia , China , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Feminino , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Alphapapillomavirus/genética , Alphapapillomavirus/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Epitopos/imunologia , Epitopos/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Infecções por Papillomavirus/virologia , Sequência de Aminoácidos
16.
Immunology ; 172(3): 375-391, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38471664

RESUMO

Persistent human papillomavirus (HPV) infection is associated with multiple malignancies. Developing therapeutic vaccines to eliminate HPV-infected and malignant cells holds significant value. In this study, we introduced a lipid nanoparticle encapsulated mRNA vaccine expressing tHA-mE7-mE6. Mutations were introduced into E6 and E7 of HPV to eliminate their tumourigenicity. A truncated influenza haemagglutinin protein (tHA), which binds to the CD209 receptor on the surface of dendritic cells (DCs), was fused with mE7-mE6 in order to allow efficient uptake of antigen by antigen presenting cells. The tHA-mE7-mE6 (mRNA) showed higher therapeutic efficacy than mE7-mE6 (mRNA) in an E6 and E7+ tumour model. The treatment resulted in complete tumour regression and prevented tumour formation. Strong CD8+ T-cell immune response was induced, contributing to preventing and curing of E6 and E7+ tumour. Antigen-specific CD8+ T were found in spleens, peripheral blood and in tumours. In addition, the tumour infiltration of DC and NK cells were increased post therapy. In conclusion, this study described a therapeutic mRNA vaccine inducing strong anti-tumour immunity in peripheral and in tumour microenvironment, holding promising potential to treat HPV-induced cancer and to prevent cancer recurrence.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de mRNA , Animais , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Proteínas E7 de Papillomavirus/imunologia , Vacinas Anticâncer/imunologia , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/genética , Vacinas contra Papillomavirus/imunologia , Células Dendríticas/imunologia , Humanos , Camundongos , Feminino , Linfócitos T CD8-Positivos/imunologia , Camundongos Endogâmicos C57BL , Nanopartículas , Células Apresentadoras de Antígenos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Células Matadoras Naturais/imunologia , Proteínas Repressoras/imunologia , Proteínas Repressoras/genética , Neoplasias/terapia , Neoplasias/imunologia , RNA Mensageiro/genética , Linhagem Celular Tumoral , Lipossomos
17.
Mol Cancer ; 23(1): 46, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459592

RESUMO

Nucleic acid vaccines have shown promising potency and efficacy for cancer treatment with robust and specific T-cell responses. Improving the immunogenicity of delivered antigens helps to extend therapeutic efficacy and reduce dose-dependent toxicity. Here, we systematically evaluated chemokine-fused HPV16 E6/E7 antigen to improve the cellular and humoral immune responses induced by nucleotide vaccines in vivo. We found that fusion with different chemokines shifted the nature of the immune response against the antigens. Although a number of chemokines were able to amplify specific CD8 + T-cell or humoral response alone or simultaneously. CCL11 was identified as the most potent chemokine in improving immunogenicity, promoting specific CD8 + T-cell stemness and generating tumor rejection. Fusing CCL11 with E6/E7 antigen as a therapeutic DNA vaccine significantly improved treatment effectiveness and caused eradication of established large tumors in 92% tumor-bearing mice (n = 25). Fusion antigens with CCL11 expanded the TCR diversity of specific T cells and induced the infiltration of activated specific T cells, neutrophils, macrophages and dendritic cells (DCs) into the tumor, which created a comprehensive immune microenvironment lethal to tumor. Combination of the DNA vaccine with anti-CTLA4 treatment further enhanced the therapeutic effect. In addition, CCL11 could also be used for mRNA vaccine design. To summarize, CCL11 might be a potent T cell enhancer against cancer.


Assuntos
Vacinas Anticâncer , Neoplasias , Proteínas Oncogênicas Virais , Vacinas contra Papillomavirus , Vacinas de DNA , Animais , Camundongos , Vacinas Baseadas em Ácido Nucleico , Vacinas de DNA/genética , Vacinas contra Papillomavirus/genética , Neoplasias/genética , Neoplasias/terapia , Linfócitos T CD8-Positivos , Proteínas E7 de Papillomavirus/genética , Proteínas Oncogênicas Virais/genética , Camundongos Endogâmicos C57BL , Microambiente Tumoral
18.
Int J Cancer ; 155(5): 816-827, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602045

RESUMO

Overexpression of HPV-oncoproteins E6 and E7 is necessary for HPV-driven cervical carcinogenesis. Hence, these oncoproteins are promising disease-specific biomarkers. We assessed the technical and operational characteristics of the 8-HPV-type OncoE6/E7 Cervical Test in different laboratories using cervical samples from HPV-positive women living with (WLWH) and without HIV. The 8-HPV-type OncoE6/E7 Test (for short: "OncoE6/E7 test") was performed in 2833 HIV-negative women and 241 WLWH attending multicentric studies in Latin America (ESTAMPA study), and in Africa (CESTA study). Oncoprotein positivity were evaluated at each testing site, according to HIV status as well as type-specific agreement with HPV-DNA results. A feedback questionnaire was given to the operators performing the oncoprotein test to evaluate their impression and acceptability regarding the test. The OncoE6/E7 test revealed a high positivity rate heterogeneity across all testing sites (I2: 95.8%, p < .01) with significant lower positivity in WLWH compared to HIV-negative women (12% vs 25%, p < .01). A similar HPV-type distribution was found between HPV DNA genotyping and oncoprotein testing except for HPV31 and 33 (moderate agreement, k = 0.57). Twenty-one laboratory technicians were trained on oncoprotein testing. Despite operators' concerns about the time-consuming procedure and perceived need for moderate laboratory experience, they reported the OncoE6/E7 test as easy to perform and user-friendly for deployment in resource-limited settings. The high positivity rate variability found across studies and subjectivity in test outcome interpretation could potentially results in oncoprotein false positive/negative, and thus the need for further refinements before implementation of the oncoprotein testing in screen-triage-and-treat approaches is warranted.


Assuntos
Detecção Precoce de Câncer , Infecções por HIV , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/diagnóstico , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/complicações , Detecção Precoce de Câncer/métodos , Infecções por HIV/virologia , Infecções por HIV/diagnóstico , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Adulto , Pessoa de Meia-Idade , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Países em Desenvolvimento , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , América Latina/epidemiologia , DNA Viral/análise , DNA Viral/genética , África/epidemiologia
19.
Cancer Sci ; 115(4): 1102-1113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287511

RESUMO

Worldwide prevalence of cervical cancer decreased significantly with the use of human papilloma virus (HPV)-targeted prophylactic vaccines. However, these multivalent antiviral vaccines are inert against established tumors, which leave patients with surgical ablative options possibly resulting in long-term reproductive complications and morbidity. In an attempt to bypass this unmet medical need, we designed a new E7 protein-based vaccine formulation using Accum™, a technology platform designed to promote endosome-to-cytosol escape as a means to enhance protein accumulation in target cells. Prophylactic vaccination of immunocompetent mice using the Accum-E7 vaccine (aE7) leads to complete protection from cervical cancer despite multiple challenges conducted with ascending C3.43 cellular doses (0.5-, 1.0-, and 2.0 × 106 cells). Moreover, the humoral response induced by aE7 was higher in magnitude compared with naked E7 protein vaccination and displayed potent inhibitory effects on C3.43 proliferation in vitro. When administered therapeutically to animals with pre-established C3.43 or Tal3 tumors, the vaccine-induced response synergized with multiple immune checkpoint blockers (anti-PD-1, anti-CTLA4, and anti-CD47) to effectively control tumor growth. Mechanistically, the observed therapeutic effect requires cross-presenting dendritic cells as well as CD8 T cells predominantly, with a non-negligible role played by both CD4+ and CD19+ lymphocytes. good laboratory practice (GLP) studies revealed that aE7 is immunogenic and well tolerated by immunocompetent mice with no observed adverse effects despite the use of a fourfold exceeding dose. In a nutshell, aE7 represents an ideal vaccine candidate for further clinical development as it uses a single engineered protein capable of exhibiting both prophylactic and therapeutic activity.


Assuntos
Vacinas Anticâncer , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Neoplasias do Colo do Útero/patologia , Proteínas E7 de Papillomavirus/metabolismo , Linfócitos T CD8-Positivos , Vacinação , Camundongos Endogâmicos C57BL , Infecções por Papillomavirus/prevenção & controle , Proteínas Oncogênicas Virais/genética
20.
BMC Biotechnol ; 24(1): 71, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350162

RESUMO

BACKGROUND: Human papillomavirus type 16 (HPV-16) infection is strongly associated with considerable parts of cervical, neck, and head cancers. Performed investigations have had moderate clinical success, so research to reach an efficient vaccine has been of great interest. In the present study, the immunization potential of a newly designed HPV-16 construct was evaluated in a mouse model. RESULTS: Initially, a construct containing HPV-16 mutant (m) E6/E7 fusion gene was designed and antigen produced in two platforms (i.e., DNA vaccine and recombinant protein). Subsequently, the immunogenicity of these platforms was investigated in five mice) C57BL/6 (groups based on several administration strategies. Three mice groups were immunized recombinant protein, DNA vaccine, and a combination of them, and two other groups were negative controls. The peripheral blood mononuclear cells (PBMCs) proliferation, Interleukin-5 (IL-5) and interferon-γ (IFN-γ) cytokines, IgG1 and IgG2a antibody levels were measured. After two weeks, TC-1 tumor cells were injected into all mice groups, and subsequently further analysis of tumor growth and metastasis and mice survival were performed according to the schedule. Overall, the results obtained from in vitro immunology and tumor cells challenging assays indicated the potential of the mE6/E7 construct as an HPV16 therapeutic vaccine candidate. The results demonstrated a significant increase in IFN-γ cytokine (P value < 0.05) in the Protein/Protein (D) and DNA/Protein (E) groups. This finding was in agreement with in vivo assays. Control groups show a 10.5-fold increase (P value < 0.001) and (C) DNA/DNA group shows a 2.5-fold increase (P value < 0.01) in tumor growth compared to D and E groups. Also, a significant increase in survival of D and E (P value < 0.001) and C (P value < 0.01) groups were observed. CONCLUSIONS: So, according to the findings, the recombinant protein could induce stronger protection compared to the DNA vaccine form. Protein/Protein and DNA/Protein are promising administration strategies for presenting this construct to develop an HPV-16 therapeutic vaccine candidate.


Assuntos
Papillomavirus Humano 16 , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Vacinas contra Papillomavirus , Proteínas Repressoras , Vacinas de DNA , Animais , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Vacinas de DNA/administração & dosagem , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/imunologia , Vacinas contra Papillomavirus/imunologia , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/administração & dosagem , Feminino , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/imunologia , Modelos Animais de Doenças , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA