Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Cell Biochem Funct ; 39(3): 413-422, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33354811

RESUMO

Ovarian cancer is one of the deadliest types of gynaecological cancers and more than half of the patients die within 5 years after diagnosis. Recurrence in advanced staged patients after chemotherapy is associated with increased chemoresistance, which results in poor prognosis. Regulator of G-protein signalling 10 (RGS10) negatively regulates cell proliferation, migration and survival by attenuating G-protein coupled-receptors mediated signalling pathways. Recent studies have shown that loss of RGS10 expression is significantly associated with proliferation and cisplatin resistance in ovarian cancer cells. SIGNIFICANCE OF THE STUDY: In this study, we analysed differential RGS10 expression levels using public microarray datasets from clinical and in vitro ovarian cancer samples. We validated that cancer progression and chemotherapy exposure change RGS10 expression. We enriched our study to evaluate the relationship between chemoresistance and differential RGS10 expression against ovarian cancer potential chemotherapeutic agent, palbociclib. Results showed that palbociclib treatment reduced cell viability, despite significantly decreased RGS10 expression in chemoresistant cells. Overall, the results confirmed that cancer progression and chemoresistance are significantly associated with the down-regulation of RGS10 while some chemotherapeutics seem to be beneficial in decreasing chemoresistance in ovarian cancer.


Assuntos
Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias Ovarianas/metabolismo , Proteínas RGS/biossíntese , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/patologia
2.
Prostate ; 80(11): 799-810, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449815

RESUMO

BACKGROUND: Regulator of G-protein signaling 2 (RGS2) is a multifaceted protein with a prognostic value in hormone-naïve prostate cancer (PC). It has previously been associated with the development of castration resistance. However, RGS2 expression in clinical specimens of castration-resistant prostate cancer (CRPC) and its clinical relevance has not been explored. In the present study, RGS2 was assessed in CRPC and in relation to the development of castration resistance. METHODS: In the present study, RGS2 expression was evaluated with immunohistochemistry in patient materials of hormone-naïve and castration-resistant primary tumors, also in matched specimens before and after 3 months of androgen deprivation therapy (ADT). Cox regression and Kaplan-Meier curves were used to evaluate the clinical significance of RGS2 expression. RGS2 expression in association to castration-resistant growth was assessed experimentally in an orthotopic xenograft mouse model of CRPC. In vitro, hormone depletion of LNCaP and enzalutamide treatment of LNCaP, 22Rv1, and VCaP was performed to evaluate the association between RGS2 and the androgen receptor (AR). Stable RGS2 knockdown was used to evaluate the impact of RGS2 in association to PC cell growth under hormone-reduced conditions. Gene and protein expression were evaluated with quantitative polymerase chain reaction and Western blot analysis, respectively. RESULTS: RGS2 expression is increased in CRPC and enriched under ADT. Furthermore, a high RGS2 level is prognostic for poor cancer-specific survival for CRPC patients and significantly reduced failure-free survival (FFS) after an initiated ADT. Additionally, the prognostic value of RGS2 outperforms prostate-specific antigen (PSA) in terms of FFS. The present study furthermore suggests that RGS2 expression is reflective of AR activity. Moreover, low RGS2-expressing cells display hampered growth under hormone-reduced conditions, in line with the poor prognosis associated with high RGS2 expression. CONCLUSIONS: High levels of RGS2 are associated with aggressive forms of castration-resistant PC. The results demonstrate that a high level of RGS2 is associated with poor prognosis in association with castration-resistant PC growth. RGS2 alone, or in association with PSA, has the potential to identify patients that require additional treatment at an early stage during ADT.


Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas RGS/biossíntese , Idoso , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/uso terapêutico , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Taxa de Sobrevida , Regulação para Cima
3.
Mol Reprod Dev ; 86(1): 88-99, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412338

RESUMO

Embryo implantation is a complicated event that relies on two critical factors: the competent blastocyst and the receptive uterus. Successful implantation results from tight coordination of these two factors. The maternal hormone environment of the uterus and molecular cross-talk between the embryo and uterine tissue play pivotal roles in implantation. Here we showed that regulator of G-protein signaling 2 (RGS2), a member of ubiquitous family of proteins that regulate G-protein activation, plays an important role in embryo implantation by interfering in the cross-talk between the embryo and uterine tissue. RGS2 expression increased during the implantation process, and was higher in the implant site than at the nonimplantation site. Meanwhile, ovariectomized (OVX) mice exhibited higher expression of RGS2 in the uterus. Exogenous 17ß-estradiol and progesterone in OVX mice downregulated the expression of RGS2. Treatment with exogenous 17ß-estradiol alone caused uterine RGS2 messenger RNA levels of OVX mice to return to those of normal female mice; when these mice were treated with progesterone or 17ß-estradiol plus progesterone, RGS2 levels rose. Downregulation of Rgs2 by small interfering RNA in an in vitro coculture system of decidualized endometrial stromal cells and blastocysts inhibited blastocyst outgrowth by restricting trophoblast spreading, suggesting a mechanism by which RGS2 regulates embryo implantation.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Endométrio/metabolismo , Estrogênios/farmacologia , Progesterona/farmacologia , Proteínas RGS/biossíntese , Trofoblastos/metabolismo , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Endométrio/citologia , Feminino , Camundongos , Ovariectomia , Gravidez , Células Estromais/citologia , Células Estromais/metabolismo , Trofoblastos/citologia
4.
Cancer Sci ; 108(12): 2366-2372, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28921827

RESUMO

Involvement of the RGS17 oncogene in the promotion of non-small-cell lung cancer (NSCLC) has been reported, but the regulation mechanism in NSCLC remains unclear. MicroRNAs (miRNAs) negatively regulate gene expression, and their dysregulation has been implicated in tumorigenesis. To understand the role of miRNAs in Regulator of G Protein Signaling 17 (RGS17)-induced NSCLC, we showed that miR-203 was downregulated during tumorigenesis, and inhibited the proliferation and invasion of lung cancer cells. We then determined whether miR-203 regulated NSCLC by targeting RGS17. To characterize the regulatory effect of miR-203 on RGS17, we used lung cancer cell lines, A549 and Calu-1, and the constructed miR-203 and RGS17 overexpression vectors. The CCK8 kit was used to determine cell proliferation, and the Transwell® assay was used to measure cell invasion and migration. RT-PCR, western blots, and immunofluorescence were used to analyze expression of miR-203 and RGS17, and the luciferase reporter assay was used to examine the interaction between miR-203 and RGS17. Nude mice were used to characterize in vivo tumor growth regulation. Expression of miR-203 inhibited proliferation, invasion, and migration of lung cancer cell lines A549 and Calu-1 by targeting RGS17. The regulatory effect of miR-203 was inhibited after overexpression of RGS17. The luciferase reporter assay showed that miR-203 downregulated RGS17 by direct integration into the 3'-UTR of RGS17 mRNA. In vivo studies showed that expression of miR-203 significantly inhibited growth of tumors. Taken together, the results suggested that expression of miR-203 inhibited tumor growth and metastasis by targeting RGS17.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteínas RGS/biossíntese , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Proteínas RGS/genética
5.
Biochem Biophys Res Commun ; 485(3): 693-697, 2017 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-28237701

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive tumor subtype lacking effective prognostic indicators or therapeutic targets. Therefore, finding a novel molecular biomarker for TNBC to achieve target therapy and predict its prognosis is crucial in preventing inappropriate treatment. Regulator of G-protein signaling (RGS) families of protein can negatively regulate signaling of heterotrimeric G proteins and are known to be upregulated in various tumors. In this study, we demonstrated that RGS20 was more highly expressed in TNBC tumor tissue than in adjacent normal tissue by analyzing the cancer genome atlas (TCGA) database. However, RGS20 expression was low in all breast cancer and luminal breast cancer patients. Validated by the TCGA cohort, RGS20 was upregulated in lymph node-positive TNBC compared with that in lymph node-negative breast cancer. High expression of RGS20 had a risk of lymph node metastasis, ki-67 > 14%, poor N stage, and poor clinical stage in the immunohistochemistry of tissue microarrays. Moreover, K-M plot analysis showed that TNBC patients with high RGS20 expression had poor relapse-free survival. In summary, the findings revealed that RGS20 was a special TNBC oncogene that promoted tumor progression and influenced TNBC prognosis. This study is the first to show that RGS20 was a special oncogene, and its high expression was significantly associated with the progression and prognosis of TNBC. RGS20 may be a novel molecular biomarker for the targeted therapy and prognosis of TNBC.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas RGS/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Metástase Linfática , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Neoplasias de Mama Triplo Negativas/patologia
6.
J Neuroinflammation ; 14(1): 209, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29078779

RESUMO

BACKGROUND: Regulators of G-protein signaling (RGS) are major physiological modulators of G-protein-coupled receptors (GPCR) signaling. Several GPCRs expressed in both neurons and astrocytes participate in the central control of pain processing, and the reduced efficacy of analgesics in neuropathic pain conditions may rely on alterations in RGS function. The expression and the regulation of RGS in astrocytes is poorly documented, and we herein hypothesized that neuroinflammation which is commonly observed in neuropathic pain could influence RGS expression in astrocytes. METHODS: In a validated model of neuropathic pain, the spared nerve injury (SNI), the regulation of RGS2, RGS3, RGS4, and RGS7 messenger RNA (mRNA) was examined up to 3 weeks after the lesion. Changes in the expression of the same RGS were also studied in cultured astrocytes exposed to defined activation protocols or to inflammatory cytokines. RESULTS: We evidenced a differential regulation of these RGS in the lumbar spinal cord of animals undergoing SNI. In particular, RGS3 appeared upregulated at early stages after the lesion whereas expression of RGS2 and RGS4 was decreased at later stages. Decrease in RGS7 expression was already observed after 3 days and outlasted until 21 days after the lesion. In cultured astrocytes, we observed that changes in the culture conditions distinctly influenced the constitutive expression of these RGS. Also, brief exposures (4 to 8 h) to either interleukin-1ß, interleukin-6, or tumor necrosis factor α caused rapid changes in the mRNA levels of the RGS, which however did not strictly recapitulate the regulations observed in the spinal cord of lesioned animals. Longer exposure (48 h) to inflammatory cytokines barely influenced RGS expression, confirming the rapid but transient regulation of these cell signaling modulators. CONCLUSION: Changes in the environment of astrocytes mimicking the inflammation observed in the model of neuropathic pain can affect RGS expression. Considering the role of astrocytes in the onset and progression of neuropathic pain, we propose that the inflammation-mediated modulation of RGS in astrocytes constitutes an adaptive mechanism in a context of neuroinflammation and may participate in the regulation of nociception.


Assuntos
Astrócitos/metabolismo , Mediadores da Inflamação/metabolismo , Neuralgia/metabolismo , Proteínas RGS/biossíntese , Animais , Astrócitos/patologia , Células Cultivadas , Feminino , Inflamação/metabolismo , Inflamação/patologia , Neuralgia/patologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
7.
Anticancer Drugs ; 28(2): 161-169, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27754994

RESUMO

The Wnt/ß-catenin signaling pathway dominates numerous cellular processes including cell proliferation, differentiation, and epithelial-mesenchymal transition, which play a crucial role in human cancer malignancies. Regulator of G-protein signaling 3 (RGS3) is a pivotal molecule involved in the Wnt/ß-catenin signaling pathway, which is worthy of intensive research as a potential target in cancer treatment. In this study, we found that RGS3 is significantly upregulated in gastric cancer (GC) tumor samples compared with normal samples from the analysis of two independent GC mRNA microarray datasets in the NCBI public database. Further immunohistochemistry assay and western-blot experiments confirmed this finding on the basis of the results of our own 102 paired GC specimens and three GC cell lines. We found that a high expression of RGS3 is associated with advanced TNM stages and more aggressive malignant behaviors. In addition, the association of overexpression of RGS3 and poor overall survival and progression-free survival outcomes suggests that RGS3 has the potential to serve as a molecular therapy target for GC. Interestingly, our pathways analysis and the follow-up dual-luciferase reporter assay showed that there is a direct 3'-untranslated region binding site between RGS3 mRNA and microRNA-126, a GC inhibitor. On the basis of all the above evidences, our findings suggest that overexpressed RGS3 regulated by microRNA-126 through the post-transcriptional modulation is associated significantly with a poor prognosis of GC patients.


Assuntos
MicroRNAs/genética , Proteínas RGS/genética , Neoplasias Gástricas/genética , Humanos , Imuno-Histoquímica , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Proteínas RGS/biossíntese , Proteínas RGS/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/metabolismo , Regulação para Cima
8.
J Pharmacol Exp Ther ; 357(2): 311-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26941169

RESUMO

Regulator of G protein signaling (RGS) proteins have emerged as novel drug targets since their discovery almost two decades ago. RGS2 has received particular interest in cardiovascular research due to its role in regulating Gqsignaling in the heart and vascular smooth muscle. RGS2(-/-)mice are hypertensive, prone to heart failure, and display accelerated kidney fibrosis. RGS2 is rapidly degraded through the proteasome, and human mutations leading to accelerated RGS2 protein degradation correlate with hypertension. Hence, stabilizing RGS2 protein expression could be a novel route in treating cardiovascular disease. We previously identified cardiotonic steroids, including digoxin, as selective stabilizers of RGS2 protein in vitro. In the current study we investigated the functional effects of digoxin-mediated RGS2 protein stabilization in vivo. Using freshly isolated myocytes from wild-type and RGS2(-/-)mice treated with vehicle or low-dose digoxin (2µg/kg/day for 7 days) we demonstrated that agonist-induced cAMP levels and cardiomyocyte contractility was inhibited by digoxin in wild-type but not in RGS2(-/-)mice. This inhibition was accompanied by an increase in RGS2 protein levels in cardiomyocytes as well as in whole heart tissue. Furthermore, digoxin had protective effects in a model of cardiac injury in wild-type mice and this protection was lost in RGS2(-/-)mice. Digoxin is the oldest known therapy for heart failure; however, beyond its activity at the Na(+)/K(+)-ATPase, the exact mechanism of action is not known. The current study adds a novel mechanism, whereby through stabilizing RGS2 protein levels digoxin could exert its protective effects in the failing heart.


Assuntos
Cardiotônicos/farmacologia , Digoxina/farmacologia , Cardiopatias/prevenção & controle , Proteínas RGS/biossíntese , Animais , AMP Cíclico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas RGS/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Protein Expr Purif ; 126: 33-41, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27164033

RESUMO

Arabidopsis thaliana Regulator of G protein Signalling 1 (AtRGS1) is a protein with a predicted N-terminal 7-transmembrane (7TM) domain and a C-terminal cytosolic RGS1 box domain. The RGS1 box domain exerts GTPase activation (GAP) activity on Gα (AtGPA1), a component of heterotrimeric G protein signaling in plants. AtRGS1 may perceive an exogenous agonist to regulate the steady-state levels of the active form of AtGPA1. It is uncertain if the full-length AtRGS1 protein exerts any atypical effects on Gα, nor has it been established exactly how AtRGS1 contributes to perception of an extracellular signal and transmits this response to a G-protein dependent signaling cascade. Further studies on full-length AtRGS1 have been inhibited due to the extreme low abundance of the endogenous AtRGS1 protein in plants and lack of a suitable heterologous system to express AtRGS1. Here, we describe methods to produce full-length AtRGS1 by cell-free synthesis into unilamellar liposomes and nanodiscs. The cell-free synthesized AtRGS1 exhibits GTPase activating activity on Gα and can be purified to a level suitable for biochemical analyses.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/isolamento & purificação , Arabidopsis/genética , Biossíntese de Proteínas , Proteínas RGS/biossíntese , Proteínas RGS/isolamento & purificação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Proteínas RGS/química , Proteínas RGS/genética
10.
Nature ; 468(7326): 933-9, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21164481

RESUMO

The adipose-derived hormone leptin maintains energy balance in part through central nervous system-mediated increases in sympathetic outflow that enhance fat burning. Triggering of ß-adrenergic receptors in adipocytes stimulates energy expenditure by cyclic AMP (cAMP)-dependent increases in lipolysis and fatty-acid oxidation. Although the mechanism is unclear, catecholamine signalling is thought to be disrupted in obesity, leading to the development of insulin resistance. Here we show that the cAMP response element binding (CREB) coactivator Crtc3 promotes obesity by attenuating ß-adrenergic receptor signalling in adipose tissue. Crtc3 was activated in response to catecholamine signals, when it reduced adenyl cyclase activity by upregulating the expression of Rgs2, a GTPase-activating protein that also inhibits adenyl cyclase activity. As a common human CRTC3 variant with increased transcriptional activity is associated with adiposity in two distinct Mexican-American cohorts, these results suggest that adipocyte CRTC3 may play a role in the development of obesity in humans.


Assuntos
Catecolaminas/metabolismo , Metabolismo Energético , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Temperatura Corporal , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gorduras na Dieta/farmacologia , Metabolismo Energético/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Resistência à Insulina , Americanos Mexicanos/genética , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Fosforilação , Proteínas RGS/biossíntese , Proteínas RGS/genética , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
11.
Differentiation ; 89(1-2): 42-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25766428

RESUMO

Mouse embryonic stem cells (ESCs) are self-renewing, pluripotent, and have the ability to differentiate into the three germ layers required to form all embryonic tissues. These properties are maintained by both intrinsic and extrinsic factors. Many studies have contributed to the understanding of the molecular signal transduction required for pluripotency and controlled differentiation. Such an understanding is important in the potential application of stem cells to cell therapy for disease, and thus there is an interest in understanding the cell cycle regulation, pluripotency, and differentiation of ESCs. The regulator of G protein signaling (RGS) family consists of over 20 members. Rgs19, one such protein, specifically interacts with Gαi to enhance its GTPase activity. Growth factor receptors use Gi proteins for signal transduction, and Rgs19 may thus be involved in the regulation of cell proliferation. In a previous gain-of-function study, Rgs19 overexpression was found to enhance proliferation in various cell types. Our data demonstrate a role for Rgs19 in the regulation of ESC differentiation. Based on the presence of Rgs19 in ESCs, the morphological and molecular properties of wild-type and Rgs19 +/- ESCs during LIF withdrawal, in vitro differentiation, and teratoma formation were compared. Our findings provide insight for the first time into the mechanisms involved in Rgs19 regulation of mouse ESC proliferation and differentiation.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Células-Tronco Embrionárias Murinas , Proteínas RGS/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas RGS/biossíntese , Transdução de Sinais
12.
Scand J Immunol ; 81(1): 23-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25366993

RESUMO

Immune cells express powerful and harmful effectors that require tight regulation. Heterotrimeric G proteins are critical mediators in translating extracellular signals into cell responses, which need a fine-tuned regulation for the control of cell activation. Regulator of G-protein signalling 16 (RGS16) has been identified as a key factor of G protein-mediated activation in lymphocytes, modulating inflammatory and survival responses of various cell types. However, data about the expression of this regulatory protein in monocytes are scarce, and it has remained unclear whether activation and migration of these cells are regulated by RGS16. In this study, the impact of RGS16 on the production of inflammatory cytokines by activated human monocytes was investigated in vitro using the human promonocytic cell line THP-1 as a model. Gain and loss of function experiments showed that RGS16 overexpression reduces the expression of pro-inflammatory cytokines IL-1ß, IL-6, IL-8 and TNFα, while RGS16 knockdown by RNAi upregulates IL-1ß, IL-6 and TNFα but not IL-8. RGS16 knockdown was also shown to enhance Pam3-mediated induction of the anti-inflammatory cytokine IL-10. Our results indicate that RGS16 restricts the activation-induced pro-inflammatory profile in myeloid cells.


Assuntos
Inflamação/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Proteínas RGS/imunologia , Animais , Células da Medula Óssea , Linhagem Celular , Humanos , Interleucina-10/biossíntese , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Lipopeptídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas RGS/biossíntese , Proteínas RGS/genética , Interferência de RNA , RNA Interferente Pequeno , Receptor 2 Toll-Like/agonistas , Fator de Necrose Tumoral alfa/biossíntese
13.
J Cell Biochem ; 115(5): 977-86, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24375609

RESUMO

Regulator of G protein signaling 3 (RGS3) is a negative regulator of G protein-mediated signaling. RGS3 has previously been shown to be expressed among various cell types within the mature heart. Basic and clinical studies have reported abnormal expressions of RGS3 in hypertrophic hearts and in the failing myocardium. However, the role of RGS3 in cardiac remodeling remains unclear. In this study, we investigated the effect of cardiac overexpression of human RGS3 on cardiac hypertrophy induced by aortic banding (AB) in RGS3 transgenic mice and wild-type littermates. The extent of cardiac hypertrophy was evaluated by echocardiography as well as pathological and molecular analyses of heart samples. RGS3 overexpression in the heart markedly reduced the extent of cardiac hypertrophy, fibrosis, and left ventricular dysfunction in response to AB. These beneficial effects were associated with the inhibition of MEK-ERK1/2 signaling. In vitro studies performed in cultured neonatal rat cardiomyocytes confirmed that RGS3 overexpression inhibits hypertrophic growth induced by angiotensin II, which was associated with the attenuation of MEK-ERK1/2 signaling. Therefore, cardiac overexpression of RGS3 inhibits maladaptive hypertrophy and fibrosis and improves cardiac function by blocking MEK-ERK1/2 signaling.


Assuntos
Cardiomegalia/genética , Regulação da Expressão Gênica/genética , Miocárdio/metabolismo , Proteínas RGS/metabolismo , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Ecocardiografia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas RGS/biossíntese , Ratos
14.
J Pharmacol Exp Ther ; 348(1): 12-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163441

RESUMO

In asthma and chronic obstructive pulmonary disease (COPD) multiple mediators act on Gαq-linked G-protein-coupled receptors (GPCRs) to cause bronchoconstriction. However, acting on the airway epithelium, such mediators may also elicit inflammatory responses. In human bronchial epithelial BEAS-2B cells (bronchial epithelium + adenovirus 12-SV40 hybrid), regulator of G-protein signaling (RGS) 2 mRNA and protein were synergistically induced in response to combinations of long-acting ß2-adrenoceptor agonist (LABA) (salmeterol, formoterol) plus glucocorticoid (dexamethasone, fluticasone propionate, budesonide). Equivalent responses occurred in primary human bronchial epithelial cells. Concentrations of glucocorticoid plus LABA required to induce RGS2 expression in BEAS-2B cells were consistent with the levels achieved therapeutically in the lungs. As RGS2 is a GTPase-activating protein that switches off Gαq, intracellular free calcium ([Ca(2+)]i) flux was used as a surrogate of responses induced by histamine, methacholine, and the thromboxane receptor agonist U46619 [(Z)-7-[(1S,4R,5R,6S)-5-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid]. This was significantly attenuated by salmeterol plus dexamethasone pretreatment, or RGS2 overexpression, and the protective effect of salmeterol plus dexamethasone was abolished by RGS2 RNA silencing. Although methacholine and U46619 induced interleukin-8 (IL-8) release and this was inhibited by RGS2 overexpression, the repression of U46619-induced IL-8 release by salmeterol plus dexamethasone was unaffected by RGS2 knockdown. Given a role for Gαq-mediated pathways in inducing IL-8 release, we propose that RGS2 acts redundantly with other effector processes to repress IL-8 expression. Thus, RGS2 expression is a novel effector mechanism in the airway epithelium that is induced by glucocorticoid/LABA combinations. This could contribute to the efficacy of glucocorticoid/LABA combinations in asthma and COPD.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Proteínas RGS/genética , Mucosa Respiratória/metabolismo , Combinação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Humanos , Proteínas RGS/biossíntese , Proteínas RGS/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Fatores de Tempo
15.
Carcinogenesis ; 34(6): 1196-207, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23354309

RESUMO

Our previous studies demonstrated that lysine-specific demethylase 1 (LSD1) and histone deacetylases (HDACs) closely interact in controlling growth of breast cancer cells. However, the underlying mechanisms are largely unknown. In this study, we showed that knockdown of LSD1 expression (LSD1-KD) by RNAi decreased mRNA levels of HDAC isozymes in triple-negative breast cancer (TNBC) cells. Small interfering RNA (siRNA)-mediated depletion of HDAC5 expression induced the most significant accumulation of H3K4me2, a specific substrate of LSD1. Combined treatment with LSD1 inhibitor, pargyline, and HDAC inhibitor, SAHA (Vorinostat), led to superior growth inhibition and apoptotic death in TNBC cells, but exhibited additive or antagonistic effect on growth inhibition in non-TNBC counterparts or non-tumorigenic breast cells. Additionally, LSD1-KD enhanced SAHA-induced reexpression of a subset of aberrantly silenced genes, such as NR4A1, PCDH1, RGS16, BIK, and E-cadherin whose reexpression may be tumor suppressive. Genome-wide microarray study in MDA-MB-231 cells identified a group of tumor suppressor genes whose expression was induced by SAHA and significantly enhanced by LSD1-KD. We also showed that concurrent depletion of RGS16 by siRNA reduced overall cytotoxicity of SAHA and blocked the reexpression of E-cadherin, CDKN1C and ING1 in LSD1-deficient MDA-MB-231 cells. Furthermore, cotreatment with RGS16 siRNA reversed the downregulation of nuclear factor-kappaB expression induced by combined inhibition of LSD1 and HDACs, suggesting a crucial role of RGS16 in controlling key pathways of cell death in response to combination therapy. Taken together, these results provide novel mechanistic insight into the breast cancer subtype-dependent role of LSD1 in mediating HDAC activity and therapeutic efficacy of HDAC inhibitor.


Assuntos
Neoplasias da Mama/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histona Desmetilases/metabolismo , Proteínas RGS/genética , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Caderinas/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Genes Supressores de Tumor/efeitos dos fármacos , Histona Desacetilases/genética , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Proteínas de Membrana/biossíntese , Metilação , Proteínas Mitocondriais , Inibidores da Monoaminoxidase/farmacologia , NF-kappa B/biossíntese , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Pargilina/farmacologia , Protocaderinas , Proteínas RGS/biossíntese , Interferência de RNA , RNA Interferente Pequeno , Vorinostat
16.
J Recept Signal Transduct Res ; 33(3): 166-71, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23464602

RESUMO

Heterotrimeric G proteins mediate myriads of cell functions including control of cancer cell proliferation and migration. The family of the Regulators of G protein Signaling (RGS) proteins, in turn, controls the activity of G proteins through the acceleration of GTPase activity of the alpha subunits of G proteins. Increasing evidence suggest that the expression of certain RGS proteins is changed dramatically in various cancers, and in some instances, the control of cancer cell proliferation or migration by RGS proteins has been demonstrated. We assessed if common trends might exist in the expression of various RGS proteins in several types of cancer by examining microarray data using the Oncomine database. We focused on the largest R4 sub-family of RGS proteins, containing RGS1, RGS2, RGS3, RGS4, RGS5, RGS8, RGS13, RGS16 and RGS18. This analysis suggests that a number (up to 6) of RGS transcripts are exclusively downregulated in certain cancers, while being exclusively upregulated in other cancer types. Furthermore, significant changes in the expression of certain RGS proteins trended toward the same direction across various cancers. To illustrate, RGS1 is largely upregulated, whereas RGS2 is downregulated in the majority of solid tumors, whereas RGS5 transcripts are greatly increased in eight subtypes of lymphoma with no reports of downregulation in hematological malignancies. Together, these data suggest that (i) RGS proteins may have a combined and cell-specific role in a control of cancer cell function, and (ii) a given RGS protein may regulate the progression of various cancers through a common mechanism.


Assuntos
Neoplasias/genética , Proteínas RGS/biossíntese , Proteínas de Ligação ao GTP/biossíntese , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Neoplasias/metabolismo , Transdução de Sinais
17.
J Biol Chem ; 286(13): 11444-55, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21278382

RESUMO

Although short-acting and long-acting inhaled ß(2)-adrenergic receptor agonists (SABA and LABA, respectively) relieve asthma symptoms, use of either agent alone without concomitant anti-inflammatory drugs (corticosteroids) may increase the risk of disease exacerbation in some patients. We found previously that pretreatment of human precision-cut lung slices (PCLS) with SABA impaired subsequent ß(2)-agonist-induced bronchodilation, which occurred independently of changes in receptor quantities. Here we provide evidence that prolonged exposure of cultured human airway smooth muscle (HuASM) cells to ß(2)-agonists directly augments procontractile signaling pathways elicited by several compounds including thrombin, bradykinin, and histamine. Such treatment did not increase surface receptor amounts or expression of G proteins and downstream effectors (phospholipase Cß and myosin light chain). In contrast, ß-agonists decreased expression of regulator of G protein signaling 5 (RGS5), which is an inhibitor of G-protein-coupled receptor (GPCR) activity. RGS5 knockdown in HuASM increased agonist-evoked intracellular calcium flux and myosin light chain (MLC) phosphorylation, which are prerequisites for contraction. PCLS from Rgs5(-/-) mice contracted more to carbachol than those from WT mice, indicating that RGS5 negatively regulates bronchial smooth muscle contraction. Repetitive ß(2)-agonist use may not only lead to reduced bronchoprotection but also to sensitization of excitation-contraction signaling pathways as a result of reduced RGS5 expression.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/metabolismo , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas RGS/biossíntese , Transdução de Sinais/efeitos dos fármacos , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas RGS/genética , Transdução de Sinais/fisiologia
18.
J Biol Chem ; 286(10): 7854-7864, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21209077

RESUMO

Regulator of G protein signaling protein 4 (RGS4) acts as a GTPase accelerating protein to modulate µ- and δ- opioid receptor (MOR and DOR, respectively) signaling. In turn, exposure to MOR agonists leads to changes in RGS4 at the mRNA and/or protein level. Here we have used human neuroblastoma SH-SY5Y cells that endogenously express MOR, DOR, and RGS4 to study opioid-mediated down-regulation of RGS4. Overnight treatment of SH-SY5Y cells with the MOR agonist DAMGO or the DOR agonist DPDPE decreased RGS4 protein by ∼60% accompanied by a profound loss of opioid receptors but with no change in RGS4 mRNA. The decrease in RGS4 protein was prevented by the pretreatment with pertussis toxin or the opioid antagonist naloxone. The agonist-induced down-regulation of RGS4 proteins was completely blocked by treatment with the proteasome inhibitors MG132 or lactacystin or high concentrations of leupeptin, indicating involvement of ubiquitin-proteasome and lysosomal degradation. Polyubiquitinated RGS4 protein was observed in the presence of MG132 or the specific proteasome inhibitor lactacystin and promoted by opioid agonist. The loss of opioid receptors was not prevented by MG132, demonstrating a different degradation pathway. RGS4 is a GTPase accelerating protein for both Gα(i/o) and Gα(q) proteins. After overnight treatment with DAMGO to reduce RGS4 protein, signaling at the Gα(i/o)-coupled DOR and the Gα(q)-coupled M(3) muscarinic receptor (M(3)R) was increased but not signaling of the α(2) adrenergic receptor or bradykinin BK(2) receptor, suggesting the development of cross-talk between the DOR and M(3)R involving RGS4.


Assuntos
Analgésicos Opioides/farmacologia , Regulação para Baixo/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , D-Penicilina (2,5)-Encefalina/farmacologia , Proteínas RGS/biossíntese , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Ubiquitinação/efeitos dos fármacos , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Linhagem Celular Tumoral , Inibidores de Cisteína Proteinase/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Leupeptinas/farmacologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Toxina Pertussis/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Receptor Muscarínico M3/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores da Bradicinina/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
19.
J Biol Chem ; 286(52): 44646-58, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22057271

RESUMO

Mice deficient in regulator of G-protein signaling-2 (RGS2) have severe hypertension, and RGS2 genetic variations occur in hypertensive humans. A potentially important negative feedback loop in blood pressure homeostasis is that angiotensin II (Ang II) increases vascular smooth muscle cell (VSMC) RGS2 expression. We reported that Group VIA phospholipase A(2) (iPLA(2)ß) is required for this response (Xie, Z., Gong, M. C., Su, W., Turk, J., and Guo, Z. (2007) J. Biol. Chem. 282, 25278-25289), but the specific molecular causes and consequences of iPLA(2)ß activation are not known. Here we demonstrate that both protein kinases C (PKC) and A (PKA) participate in Ang II-induced VSMC RGS2 mRNA up-regulation, and that actions of PKC and PKA precede and follow iPLA(2)ß activation, respectively. Moreover, we identified a conserved cAMP-response element (CRE) in the murine RGS2 promoter that is critical for cAMP-response element-binding protein (CREB) binding and RGS2 promoter activation. Forskolin-stimulated RGS2 mRNA up-regulation is inhibited by CREB sequestration or specific disruption of the CREB-RGS2 promoter interaction, and Ang II-induced CREB phosphorylation and nuclear localization are blocked by iPLA(2)ß pharmacologic inhibition or genetic ablation. Ang II-induced intracellular cyclic AMP accumulation precedes CREB phosphorylation and is diminished by inhibiting iPLA(2), cyclooxygenase, or lipoxygenase. Moreover, three single nucleotide polymorphisms identified in hypertensive patients are located in the human RGS2 promoter CREB binding site. Point mutations corresponding to these single nucleotide polymorphisms interfere with stimulation of human RGS2 promoter activity by forskolin. Our studies thus delineate a negative feedback loop to attenuate Ang II signaling in VSMC with potential importance in blood pressure homeostasis and the pathogenesis of human essential hypertension.


Assuntos
Angiotensina II/metabolismo , Núcleo Celular/metabolismo , Reguladores de Proteínas de Ligação ao GTP/biossíntese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas RGS/biossíntese , Elementos de Resposta/fisiologia , Transcrição Gênica/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Angiotensina II/farmacologia , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Núcleo Celular/genética , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Reguladores de Proteínas de Ligação ao GTP/genética , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/metabolismo , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Polimorfismo de Nucleotídeo Único , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas RGS/genética , Coelhos , Ratos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Vasoconstritores/metabolismo , Vasoconstritores/farmacologia
20.
Am J Physiol Heart Circ Physiol ; 303(1): H19-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22542620

RESUMO

Regulators of G-protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for various Gα subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate the magnitude and duration of G-protein-coupled receptor signaling and are often referred to as fine tuners of G-protein signaling. Increasing evidence suggests that RGS proteins themselves are regulated through multiple mechanisms, which may provide an even finer tuning of G-protein signaling and crosstalk between G-protein-coupled receptors and other signaling pathways. This review summarizes the current data on the control of RGS function through regulated expression, intracellular localization, and covalent modification of RGS proteins, as related to cell function and the pathogenesis of diseases.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Proteínas RGS/fisiologia , Animais , Arginina/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas RGS/biossíntese , Proteínas RGS/genética , Receptor Cross-Talk/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico , Sumoilação/fisiologia , Ubiquitinação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA