Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proteins ; 92(1): 37-43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37497763

RESUMO

Capping protein (CP) binds to the barbed end of an actin-filament and inhibits its elongation. CARMIL binds CP and dissociates it from the barbed end of the actin-filament. The binding of CARMIL peptide alters the flexibility of CP, which is considered to facilitate the dissociation. Twinfilin also binds to CP through its C-terminal tail. The complex structures of the CP/twinfilin-tail (TW-tail) peptide indicate that the binding sites of CARMIL and TW-tail overlap. However, TW-tail binding does not facilitate the dissociation of CP from the barbed end. We extensively investigated the flexibilities of CP in the CP/TW-tail or CP/CARMIL complexes using an elastic network model and concluded that TW-tail binding does not alter the flexibility of CP. Our extensive analysis also highlighted that the strong contacts of peptides with the two domains of CP, that is, the CP-L and CP-S domains, are key to changing the flexibilities of CP. CARMIL peptides can interact strongly with both of the domains, while TW-tail peptides exclusively interact with the CP-S domain because the binding site of TW-tail on CP relatively shifts to the CP-S domain compared with that of CP/CARMIL. This result supports our hypothesis that the dissociation of CP from the barbed end is regulated by the flexibility of CP.


Assuntos
Proteínas de Capeamento de Actina , Proteínas dos Microfilamentos , Proteínas dos Microfilamentos/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Ligação Proteica , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Peptídeos/química
2.
PLoS Biol ; 18(9): e3000848, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898131

RESUMO

Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments. Together with previous structural and biochemical data, we now propose a molecular mechanism of actin polymerization at the pointed end in the presence of bound leiomodin. In the proposed model, the N-terminal actin-binding site of leiomodin can act as a "swinging gate" allowing limited actin polymerization, thus making leiomodin a leaky pointed-end cap. Results presented in this work answer long-standing questions about the role of leiomodin in thin filament length regulation and maintenance.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Miocárdio/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Sarcômeros/metabolismo
3.
Cell Mol Life Sci ; 79(2): 125, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132495

RESUMO

Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the ß-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a ß-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.


Assuntos
Proteínas de Capeamento de Actina , Antígenos de Protozoários , Malária/parasitologia , Plasmodium/metabolismo , Proteínas de Protozoários , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
4.
Biochem Biophys Res Commun ; 525(3): 681-686, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32139121

RESUMO

Actin capping proteins belong to the core set of proteins minimally required for actin-based motility and are present in virtually all eukaryotic cells. They bind to the fast-growing barbed end of an actin filament, preventing addition and loss of monomers, thus restricting growth to the slow-growing pointed end. Actin capping proteins are usually heterodimers of two subunits. The Plasmodium orthologs are an exception, as their α subunits are able to form homodimers. We show here that, while the ß subunit alone is unstable, the α subunit of the Plasmodium actin capping protein forms functional homo- and heterodimers. This implies independent functions for the αα homo- and αß heterodimers in certain stages of the parasite life cycle. Structurally, the homodimers resemble canonical αß heterodimers, although certain rearrangements at the interface must be required. Both homo- and heterodimers bind to actin filaments in a roughly equimolar ratio, indicating they may also bind other sites than barbed ends.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Malária/parasitologia , Parasitos/metabolismo , Multimerização Proteica , Proteínas de Protozoários/metabolismo , Proteínas de Capeamento de Actina/química , Citoesqueleto de Actina/metabolismo , Animais , Plasmodium/metabolismo , Ligação Proteica , Dobramento de Proteína , Soluções , Temperatura
5.
J Biol Chem ; 292(33): 13566-13583, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28642367

RESUMO

Disheveled-associated activator of morphogenesis (DAAM) is a diaphanous-related formin protein essential for the regulation of actin cytoskeleton dynamics in diverse biological processes. The conserved formin homology 1 and 2 (FH1-FH2) domains of DAAM catalyze actin nucleation and processively mediate filament elongation. These activities are indirectly regulated by the N- and C-terminal regions flanking the FH1-FH2 domains. Recently, the C-terminal diaphanous-autoregulatory domain (DAD) and the C terminus (CT) of formins have also been shown to regulate actin assembly by directly interacting with actin. Here, to better understand the biological activities of DAAM, we studied the role of DAD-CT regions of Drosophila DAAM in its interaction with actin with in vitro biochemical and in vivo genetic approaches. We found that the DAD-CT region binds actin in vitro and that its main actin-binding element is the CT region, which does not influence actin dynamics on its own. However, we also found that it can tune the nucleating activity and the filament end-interaction properties of DAAM in an FH2 domain-dependent manner. We also demonstrate that DAD-CT makes the FH2 domain more efficient in antagonizing with capping protein. Consistently, in vivo data suggested that the CT region contributes to DAAM-mediated filopodia formation and dynamics in primary neurons. In conclusion, our results demonstrate that the CT region of DAAM plays an important role in actin assembly regulation in a biological context.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Pseudópodes/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Animais , Células Cultivadas , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Embrião não Mamífero/citologia , Deleção de Genes , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia Estrutural de Proteína
6.
Proteins ; 84(7): 948-56, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27028786

RESUMO

The actin capping protein (CP) binds to actin filaments to block further elongation. The capping activity is inhibited by proteins V-1 and CARMIL interacting with CP via steric and allosteric mechanisms, respectively. The crystal structures of free CP, CP/V-1, and CP/CARMIL complexes suggest that the binding of CARMIL alters the flexibility of CP rather than the overall structure of CP, and this is an allosteric inhibition mechanism. Here, we performed molecular dynamics (MD) simulations of CP in the free form, and in complex with CARMIL or V-1. The resulting trajectories were analyzed exhaustively using Motion Tree, which identifies various rigid-body motions ranging from small local motions to large domain motions. After enumerating all the motions, CP flexibilities with different ligands were characterized by a list of frequencies for 20 dominant rigid-body motions, some of which were not identified in previous studies. The comparative analysis highlights the influence of the binding of the CARMIL peptide to CP flexibility. In free CP and the CP/V-1 complex, domain motions around a large crevice between the N-stalk and the CP-S domain occur frequently. The CARMIL peptide binds the crevice and suppresses the motions effectively. In addition, the binding of the CARMIL peptide enhances and alters local motions around the pocket that participates in V-1 binding. These newly identified motions are likely to suppress the binding of V-1 to CP. The observed changes in CP motion provide insights that describe the mechanism of allosteric regulation by CARMIL through modulating CP flexibility. Proteins 2016; 84:948-956. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Regulação Alostérica , Animais , Proteína de Capeamento de Actina CapZ/química , Proteína de Capeamento de Actina CapZ/metabolismo , Galinhas , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas
7.
Biophys J ; 106(3): 526-34, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24507593

RESUMO

The actin cortex has a well-documented ability to rapidly remodel and flow while maintaining long-range connectivity, but how this is achieved remains poorly understood. Here, we use computer simulations to explore how stress relaxation in cross-linked actin networks subjected to extensional stress depends on the interplay between network architecture and turnover. We characterize a regime in which a network response is nonaffine and stress relaxation is governed by the continuous dissipation of elastic energy via cyclic formation, elongation, and turnover of tension-bearing elements. Within this regime, for a wide range of network parameters, we observe a constant deformation (creep) rate that is linearly proportional to the rate of filament turnover, leading to a constant effective viscosity that is inversely proportional to turnover rate. Significantly, we observe a biphasic dependence of the creep rate on applied stress: below a critical stress threshold, the creep rate increases linearly with applied stress; above that threshold, the creep rate becomes independent of applied stress. We show that this biphasic stress dependence can be understood in terms of the nonlinear force-extension behavior of individual force-transmitting network elements. These results have important implications for understanding the origins and control of viscous flows both in the cortex of living cells and in other polymer networks.


Assuntos
Proteínas de Capeamento de Actina/química , Citoesqueleto de Actina/química , Actinas/química , Simulação de Dinâmica Molecular , Polimerização , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Elasticidade , Humanos , Viscosidade
8.
J Biol Chem ; 287(19): 15251-62, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22411988

RESUMO

Capping protein (CP) controls the polymerization of actin filaments by capping their barbed ends. In lamellipodia, CP dissociates from the actin cytoskeleton rapidly, suggesting the possible existence of an uncapping factor, for which the protein CARMIL (capping protein, Arp2/3 and myosin-I linker) is a candidate. CARMIL binds to CP via two motifs. One, the CP interaction (CPI) motif, is found in a number of unrelated proteins; the other motif is unique to CARMILs, the CARMIL-specific interaction motif. A 115-aa CARMIL fragment of CARMIL with both motifs, termed the CP-binding region (CBR), binds to CP with high affinity, inhibits capping, and causes uncapping. We wanted to understand the structural basis for this function. We used a collection of mutants affecting the actin-binding surface of CP to test the possibility of a steric-blocking model, which remained open because a region of CBR was not resolved in the CBR/CP co-crystal structure. The CP actin-binding mutants bound CBR normally. In addition, a CBR mutant with all residues of the unresolved region changed showed nearly normal binding to CP. Having ruled out a steric blocking model, we tested an allosteric model with molecular dynamics. We found that CBR binding induces changes in the conformation of the actin-binding surface of CP. In addition, ∼30-aa truncations on the actin-binding surface of CP decreased the affinity of CBR for CP. Thus, CARMIL promotes uncapping by binding to a freely accessible site on CP bound to a filament barbed end and inducing a change in the conformation of the actin-binding surface of CP.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/genética , Citoesqueleto de Actina/química , Actinas/química , Actinas/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Proteínas dos Microfilamentos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
9.
PLoS Biol ; 8(7): e1000416, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20625546

RESUMO

The actin capping protein (CP) tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity). Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1). V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a structural basis for the regulation of the barbed end elongation in cells.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Proteínas de Capeamento de Actina/química , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Galinhas , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Células PC12 , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos
10.
PLoS Comput Biol ; 8(11): e1002765, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133367

RESUMO

The actin cytoskeleton is a dynamic structure that coordinates numerous fundamental processes in eukaryotic cells. Dozens of actin-binding proteins are known to be involved in the regulation of actin filament organization or turnover and many of these are stimulus-response regulators of phospholipid signaling. One of these proteins is the heterodimeric actin-capping protein (CP) which binds the barbed end of actin filaments with high affinity and inhibits both addition and loss of actin monomers at this end. The ability of CP to bind filaments is regulated by signaling phospholipids, which inhibit the activity of CP; however, the exact mechanism of this regulation and the residues on CP responsible for lipid interactions is not fully resolved. Here, we focus on the interaction of CP with two signaling phospholipids, phosphatidic acid (PA) and phosphatidylinositol (4,5)-bisphosphate (PIP(2)). Using different methods of computational biology such as homology modeling, molecular docking and coarse-grained molecular dynamics, we uncovered specific modes of high affinity interaction between membranes containing PA/phosphatidylcholine (PC) and plant CP, as well as between PIP(2)/PC and animal CP. In particular, we identified differences in the binding of membrane lipids by animal and plant CP, explaining previously published experimental results. Furthermore, we pinpoint the critical importance of the C-terminal part of plant CPα subunit for CP-membrane interactions. We prepared a GST-fusion protein for the C-terminal domain of plant α subunit and verified this hypothesis with lipid-binding assays in vitro.


Assuntos
Proteínas de Capeamento de Actina/antagonistas & inibidores , Proteínas de Capeamento de Actina/química , Ácidos Fosfatídicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Capeamento de Actina/genética , Proteínas de Capeamento de Actina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Aviárias/antagonistas & inibidores , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas , Biologia Computacional , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ácidos Fosfatídicos/química , Fosfatos de Fosfatidilinositol/química , Filogenia , Ligação Proteica , Alinhamento de Sequência , Relação Estrutura-Atividade
11.
J Mol Biol ; 435(24): 168342, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924863

RESUMO

Actin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands. In the absence of ligand, both single-molecule FRET and MD revealed two distinct conformations of CP in solution; previous crystallographic studies revealed only one. Interaction with CPI-motif peptides induced conformations within CP that bring the cap and stalk closer, while interaction with V-1 moves them away from one another. Comparing CPI-motif peptides from different proteins, we identified variations in CP conformations and dynamics that are specific to each CPI motif. MD simulations for CP alone and in complex with a CPI motif and V-1 reveal atomistic details of the conformational changes. Analysis of the interaction of CP with wild-type (wt) and chimeric CPI-motif peptides using single-molecule FRET, isothermal calorimetry (ITC) and MD simulation indicated that conformational and affinity differences are intrinsic to the C-terminal portion of the CPI motif. We conclude that allosteric regulation of CP involves changes in conformation that disseminate across the protein to link distinct binding-site functions. Our results provide novel insights into the biophysical mechanism of the allosteric regulation of CP.


Assuntos
Proteínas de Capeamento de Actina , Actinas , Proteínas de Capeamento de Actina/química , Ligação Proteica , Regulação Alostérica , Actinas/metabolismo , Peptídeos/química
12.
Proteins ; 80(4): 1066-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22253039

RESUMO

Capping protein (CP) is important for the regulation of actin polymerization. CP binds to the barbed end of the actin filament and prevents actin polymerization. This interaction is modulated through competitive binding by regulatory proteins such as myotrophin (V-1) and the capping protein interacting (CPI) motif from CARMIL. The binding site of myotrophin overlaps with the region of CP that binds to the barbed end of actin filament, whereas CPI binds at a distant site. The binding of CPI to the myotrophin-CP complex dissociates myotrophin from CP. Detailed multicopy molecular dynamics simulations suggest that the binding of CPI shifts the conformational equilibria of CP away from states that favor myotrophin binding. This shift is underpinned by allosteric effects where CPI inhibits CP through suppression of flexibility and disruption of concerted motions that appear to mediate myotrophin binding. Accompanying these effects are changes in electrostatic interactions, notably those involving residue K142ß, which appears to play a critical role in regulating flexibility. In addition, accessibility of the site on CP for binding the key hydrophobic residue W8 of myotrophin is modulated by CPI. These results provide insights into the modulation of CP by CPI and myotrophin and indicate the mechanism by which CPI drives the dissociation of the myotrophin-CP complex.


Assuntos
Proteínas de Capeamento de Actina/química , Citoesqueleto de Actina/química , Simulação por Computador , Peptídeos e Proteínas de Sinalização Intercelular/química , Regulação Alostérica , Sítios de Ligação , Sequência Conservada , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Polimerização , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Eletricidade Estática , Especificidade por Substrato
13.
BMC Struct Biol ; 12: 12, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22657106

RESUMO

BACKGROUND: Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in Dictyostelium discoideum, plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an α- and ß-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a "cap" by blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of skeletal muscles. RESULTS: To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we have solved the atomic structure of Cap32/34 (32=ß- and 34=α-subunit) from the cellular slime mold Dictyostelium at 2.2 Å resolution and compared it to that of chicken muscle CapZ. The two homologs display a similar overall arrangement including the attached α-subunit C-terminus (α-tentacle) and the flexible ß-tentacle. Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the α-subunit. In the α-subunit we observed a bending motion of the ß-sheet region located opposite to the position of the C-terminal ß-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two domain twisting attributed mainly to the ß-subunit has been reported. At the hinge of these two domains Cap32/34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to sarcomeric CP (CapZ). CONCLUSIONS: The structure of Cap32/34 from Dictyostelium discoideum allowed a detailed analysis and comparison between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found within the α-subunit, a loop region in the ß-subunit, and the surface of the α-globule where the amino acid differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin filaments, a feature, which might have arisen from adaptation to different environments.


Assuntos
Proteínas de Capeamento de Actina/química , Sequência Conservada , Citoplasma/metabolismo , Dictyostelium/química , Proteínas dos Microfilamentos/química , Músculos/metabolismo , Proteínas de Protozoários/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína de Capeamento de Actina CapZ/química , Galinhas , Cristalografia por Raios X , Lipídeos , Modelos Moleculares , Dados de Sequência Molecular , Especificidade de Órgãos , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Alinhamento de Sequência
14.
J Biol Chem ; 285(33): 25767-81, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20538588

RESUMO

Capping protein (CP) is a ubiquitously expressed, heterodimeric 62-kDa protein that binds the barbed end of the actin filament with high affinity to block further filament elongation. Myotrophin (V-1) is a 13-kDa ankyrin repeat-containing protein that binds CP tightly, sequestering it in a totally inactive complex in vitro. Here, we elucidate the molecular interaction between CP and V-1 by NMR. Specifically, chemical shift mapping and intermolecular paramagnetic relaxation enhancement experiments reveal that the ankyrin loops of V-1, which are essential for V-1/CP interaction, bind the basic patch near the joint of the alpha tentacle of CP shown previously to drive most of the association of CP with and affinity for the barbed end. Consistently, site-directed mutagenesis of CP shows that V-1 and the strong electrostatic binding site for CP on the barbed end compete for this basic patch on CP. These results can explain how V-1 inactivates barbed end capping by CP and why V-1 is incapable of uncapping CP-capped actin filaments, the two signature biochemical activities of V-1.


Assuntos
Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Capeamento de Actina/genética , Animais , Galinhas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Espectroscopia de Ressonância Magnética , Camundongos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos
15.
J Biol Chem ; 285(37): 29014-26, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20630878

RESUMO

Capping protein (CP) is a ubiquitously expressed, 62-kDa heterodimer that binds the barbed end of the actin filament with approximately 0.1 nm affinity to prevent further monomer addition. CARMIL is a multidomain protein, present from protozoa to mammals, that binds CP and is important for normal actin dynamics in vivo. The CARMIL CP binding site resides in its CAH3 domain (CARMIL homology domain 3) located at or near the protein's C terminus. CAH3 binds CP with approximately 1 nm affinity, resulting in a complex with weak capping activity (30-200 nm). Solution assays and single-molecule imaging show that CAH3 binds CP already present on the barbed end, causing a 300-fold increase in the dissociation rate of CP from the end (i.e. uncapping). Here we used nuclear magnetic resonance (NMR) to define the molecular interaction between the minimal CAH3 domain (CAH3a/b) of mouse CARMIL-1 and CP. Specifically, we show that the highly basic CAH3a subdomain is required for the high affinity interaction of CAH3 with a complementary "acidic groove" on CP opposite its actin-binding surface. This CAH3a-CP interaction orients the CAH3b subdomain, which we show is also required for potent anti-CP activity, directly adjacent to the basic patch of CP, shown previously to be required for CP association to and high affinity interaction with the barbed end. The importance of specific residue interactions between CP and CAH3a/b was confirmed by site-directed mutagenesis of both proteins. Together, these results offer a mechanistic explanation for the barbed end uncapping activity of CARMIL, and they identify the basic patch on CP as a crucial regulatory site.


Assuntos
Proteínas de Capeamento de Actina/química , Proteínas de Transporte/química , Proteínas de Capeamento de Actina/genética , Proteínas de Capeamento de Actina/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Camundongos , Proteínas dos Microfilamentos , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície
16.
J Biol Chem ; 285(30): 23420-32, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20484056

RESUMO

The focal adhesion protein vinculin is an actin-binding protein involved in the mechanical coupling between the actin cytoskeleton and the extracellular matrix. An autoinhibitory interaction between the N-terminal head (Vh) and the C-terminal tail (Vt) of vinculin masks an actin filament side-binding domain in Vt. The binding of several proteins to Vh disrupts this intramolecular interaction and exposes the actin filament side-binding domain. Here, by combining kinetic assays and microscopy observations, we show that Vt inhibits actin polymerization by blocking the barbed ends of actin filaments. In low salt conditions, Vt nucleates actin filaments capped at their barbed ends. We determined that the interaction between vinculin and the barbed end is characterized by slow association and dissociation rate constants. This barbed end capping activity requires C-terminal amino acids of Vt that are dispensable for actin filament side binding. Like the side-binding domain, the capping domain of vinculin is masked by an autoinhibitory interaction between Vh and Vt. In contrast to the side-binding domain, the capping domain is not unmasked by the binding of a talin domain to Vh and requires the dissociation of an additional autoinhibitory interaction. Finally, we show that vinculin and the formin mDia1, which is involved in the processive elongation of actin filaments in focal adhesions, compete for actin filament barbed ends.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Vinculina/metabolismo , Proteínas de Capeamento de Actina/química , Citoesqueleto de Actina/efeitos dos fármacos , Actinas/química , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Relação Dose-Resposta a Droga , Cinética , Microscopia de Fluorescência , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Sais/farmacologia , Vinculina/química
17.
Phys Biol ; 8(3): 035005, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21572169

RESUMO

The actin capping protein (CP) tightly binds to the barbed end of actin filaments to block further elongation. The ß-tentacle in CP is an important region that ensures stable interaction with actin filaments. CARMIL inhibits the interaction of CP with actin filaments via the C-terminal portion containing the CP-binding motif, located in an intrinsically disordered region. We have proposed an allosteric inhibition model in which CARMIL suppresses CP by the population shift mechanism. Here, we solved a crystal structure of CP in complex with a CARMIL-derived peptide, CA32. The new structure clearly represents the α-helical form of the ß-tentacle that was invisible in other CP/CARMIL peptide complex structures. In addition, we exhaustively performed a normal mode analysis with the elastic network model on all available crystal structures of the CP/CARMIL peptide complexes, including the new structure. We concluded that the CP-binding motif is necessary and sufficient for altering the fluctuation of CP, which is essential for attenuating the barbed-end-capping activity along the population shift mechanism. The roles and functions of the ß-tentacle and the CP-binding motif are discussed in terms of their intrinsically disordered nature.


Assuntos
Proteínas de Capeamento de Actina/antagonistas & inibidores , Proteínas de Capeamento de Actina/química , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Capeamento de Actina/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica
18.
J Mol Biol ; 433(9): 166891, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33639213

RESUMO

Twinfilin is a conserved actin regulator that interacts with actin capping protein (CP) via C terminus residues (TWtail) that exhibits sequence similarity with the CP interaction (CPI) motif of CARMIL. Here we report the crystal structure of TWtail in complex with CP. Our structure showed that although TWtail and CARMIL CPI bind CP to an overlapping surface via their middle regions, they exhibit different CP-binding modes at both termini. Consequently, TWtail and CARMIL CPI restrict the CP in distinct conformations of open and closed forms, respectively. Interestingly, V-1, which targets CP away from the TWtail binding site, also favors the open-form CP. Consistently, TWtail forms a stable ternary complex with CP and V-1, a striking contrast to CARMIL CPI, which rapidly dissociates V-1 from CP. Our results demonstrate that TWtail is a unique CP-binding motif that regulates CP in a manner distinct from CARMIL CPI.


Assuntos
Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Galinhas , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína
19.
Nat Commun ; 12(1): 5329, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504078

RESUMO

Heterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP potentiates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we combine structural biology with in vitro reconstitution to demonstrate that CP not only terminates filament elongation, but indirectly stimulates the activity of Arp2/3 activating nucleation promoting factors (NPFs) by preventing their association to filament barbed ends. Key to this function is one of CP's C-terminal "tentacle" extensions, which sterically masks the main interaction site of the terminal actin protomer. Deletion of the ß tentacle only modestly impairs capping. However, in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes-capping and nucleation-in branched actin network assembly.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Melanócitos/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/química , Actinas/genética , Animais , Sítios de Ligação , Bovinos , Citoesqueleto/ultraestrutura , Gelsolina/química , Gelsolina/genética , Gelsolina/metabolismo , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cinética , Melanócitos/citologia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Modelos Moleculares , Profilinas/química , Profilinas/genética , Profilinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Timo/citologia , Timo/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
20.
Biochemistry ; 49(20): 4349-60, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20392036

RESUMO

Caenorhabditis elegans gelsolin-like protein-1 (GSNL-1) is a new member of the gelsolin family of actin regulatory proteins [Klaavuniemi, T., Yamashiro, S., and Ono, S. (2008) J. Biol. Chem. 283, 26071-26080]. It is an unconventional gelsolin-related protein with four gelsolin-like (G) domains (G1-G4), unlike typical gelsolin-related proteins with three or six G domains. GSNL-1 severs actin filaments and caps the barbed end in a calcium-dependent manner similar to that of gelsolin. In contrast, GSNL-1 has properties different from those of gelsolin in that it remains bound to F-actin and does not nucleate actin polymerization. To understand the mechanism by which GSNL-1 regulates actin dynamics, we investigated the domain-function relationship of GSNL-1 by analyzing activities of truncated forms of GSNL-1. G1 and the linker between G1 and G2 were sufficient for actin filament severing, whereas G1 and G2 were required for barbed end capping. The actin severing activity of GSNL-1 was inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), and a PIP2-sensitive domain was mapped to G1 and G2. At least two actin-binding sites were detected: a calcium-dependent G-actin-binding site in G1 and a calcium-independent G- and F-actin-binding site in G3 and G4. These results reveal both conserved and different utilization of G domains between C. elegans GSNL-1 and mammalian gelsolin for actin regulatory functions.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Sensoras de Cálcio Intracelular/química , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/fisiologia , Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/fisiologia , Actinas/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Gelsolina/química , Gelsolina/metabolismo , Gelsolina/fisiologia , Proteínas Sensoras de Cálcio Intracelular/genética , Proteínas Sensoras de Cálcio Intracelular/fisiologia , Modelos Biológicos , Peso Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica/fisiologia , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA