Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.387
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 297(3): 101066, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34384781

RESUMO

The superfamily of massively large AAA+ protein molecular machines functions to convert the chemical energy of cytosolic ATP into physicomechanical form and use it to perform an extraordinary number of physical operations on proteins, nucleic acids, and membrane systems. Cryo-EM studies now reveal some aspects of substrate handling at high resolution, but the broader interpretation of AAA+ functional properties is still opaque. This paper integrates recent hydrogen exchange results for the typical AAA+ protein Hsp104 with prior information on several near and distantly related others. The analysis points to a widely conserved functional strategy. Hsp104 cycles through a long-lived loosely-structured energy-input "open" state that releases spent ADP and rebinds cytosolic ATP. ATP-binding energy is transduced by allosteric structure change to poise the protein at a high energy level in a more tightly structured "closed" state. The briefly occupied energy-output closed state binds substrate strongly and is catalytically active. ATP hydrolysis permits energetically downhill structural relaxation, which is coupled to drive energy-requiring substrate processing. Other AAA+ proteins appear to cycle through states that are analogous functionally if not in structural detail. These results revise the current model for AAA+ function, explain the structural basis of single-molecule optical tweezer kinetic phases, identify the separate energetic roles of ATP binding and hydrolysis, and specify a sequence of structural and energetic events that carry AAA+ proteins unidirectionally around a functional cycle to propel their diverse physical tasks.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares/fisiologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/fisiologia , Dineínas/metabolismo , Proteínas de Choque Térmico/fisiologia , Hidrólise , Cinesinas/metabolismo , Cinética , Modelos Moleculares , Miosinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Relação Estrutura-Atividade
2.
J Biol Chem ; 296: 100460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639171

RESUMO

Bacterial survival during lethal heat stress relies on the cellular ability to reactivate aggregated proteins. This activity is typically executed by the canonical 70-kDa heat shock protein (Hsp70)-ClpB bichaperone disaggregase, which is most widespread in bacteria. The ClpB disaggregase is a member of the ATPase associated with diverse cellular activities protein family and exhibits an ATP-driven threading activity. Substrate binding and stimulation of ATP hydrolysis depends on the Hsp70 partner, which initiates the disaggregation reaction. Recently elevated heat resistance in gamma-proteobacterial species was shown to be mediated by the ATPase associated with diverse cellular activities protein ClpG as an alternative disaggregase. Pseudomonas aeruginosa ClpG functions autonomously and does not cooperate with Hsp70 for substrate binding, enhanced ATPase activity, and disaggregation. With the underlying molecular basis largely unknown, the fundamental differences in ClpG- and ClpB-dependent disaggregation are reflected by the presence of sequence alterations and additional ClpG-specific domains. By analyzing the effects of mutants lacking ClpG-specific domains and harboring mutations in conserved motifs implicated in ATP hydrolysis and substrate threading, we show that the N-terminal, ClpG-specific N1 domain generally mediates protein aggregate binding as the molecular basis of autonomous disaggregation activity. Peptide substrate binding strongly stimulates ClpG ATPase activity by overriding repression by the N-terminal N1 and N2 domains. High ATPase activity requires two functional nucleotide binding domains and drives substrate threading which ultimately extracts polypeptides from the aggregate. ClpG ATPase and disaggregation activity is thereby directly controlled by substrate availability.


Assuntos
Antígenos de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Antígenos de Bactérias/fisiologia , Endopeptidase Clp/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/fisiologia , Agregados Proteicos , Ligação Proteica , Domínios Proteicos/genética
3.
Blood ; 136(6): 749-754, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32548640

RESUMO

Several studies demonstrate that hemolysis and free heme in circulation cause endothelial barrier dysfunction and are associated with severe pathological conditions such as acute respiratory distress syndrome, acute chest syndrome, and sepsis. However, the precise molecular mechanisms involved in the pathology of heme-induced barrier disruption remain to be elucidated. In this study, we investigated the role of free heme in the endothelial barrier integrity and mechanisms of heme-mediated intracellular signaling of human lung microvascular endothelial cells (HLMVECs). Heme, in a dose-dependent manner, induced a rapid drop in the endothelial barrier integrity of HLMVECs. An investigation into barrier proteins revealed that heme primarily affected the tight junction proteins zona occludens-1, claudin-1, and claudin-5, which were significantly reduced after heme exposure. The p38MAPK/HSP27 pathway, involved in the regulation of endothelial cytoskeleton remodeling, was also significantly altered after heme treatment, both in HLMVECs and mice. By using a knockout (KO) mouse for MKK3, a key regulator of the p38MAPK pathway, we showed that this KO effectively decreased heme-induced endothelial barrier dysfunction. Taken together, our results indicate that targeting the p38MAPK pathway may represent a crucial treatment strategy in alleviating hemolytic diseases.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Heme/farmacologia , MAP Quinase Quinase 3/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Antígenos CD/análise , Caderinas/análise , Permeabilidade Capilar/fisiologia , Células Cultivadas , Claudinas/análise , Células Endoteliais/fisiologia , Proteínas de Choque Térmico HSP27/fisiologia , Proteínas de Choque Térmico/fisiologia , Hemólise , Humanos , Pulmão/irrigação sanguínea , MAP Quinase Quinase 3/deficiência , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Microvasos/citologia , Chaperonas Moleculares/fisiologia , Junções Íntimas/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/análise , Proteínas Quinases p38 Ativadas por Mitógeno
4.
FASEB J ; 35(5): e21594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33908654

RESUMO

Protein misfolding is a central feature of most neurodegenerative diseases. Molecular chaperones can modulate the toxicity associated with protein misfolding, but it remains elusive which molecular chaperones and co-chaperones interact with specific misfolded proteins. TDP-43 misfolding and inclusion formation are a hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Using yeast and mammalian neuronal cells we find that Hsp90 and its co-chaperone Sti1 have the capacity to alter TDP-43 misfolding, inclusion formation, aggregation, and cellular toxicity. Our data also demonstrate that impaired Hsp90 function sensitizes cells to TDP-43 toxicity and that Sti1 specifically interacts with and strongly modulates TDP-43 toxicity in a dose-dependent manner. Our study thus uncovers a previously unrecognized tie between Hsp90, Sti1, TDP-43 misfolding, and cellular toxicity.


Assuntos
Apoptose , Proteínas de Ligação a DNA/química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/fisiologia , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Proteinopatias TDP-43/patologia , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Proteínas de Choque Térmico HSP90/genética , Células HeLa , Humanos , Corpos de Inclusão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteinopatias TDP-43/etiologia
5.
Nat Rev Mol Cell Biol ; 11(11): 777-88, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20944667

RESUMO

The aggregation of misfolded proteins is associated with the perturbation of cellular function, ageing and various human disorders. Mounting evidence suggests that protein aggregation is often part of the cellular response to an imbalanced protein homeostasis rather than an unspecific and uncontrolled dead-end pathway. It is a regulated process in cells from bacteria to humans, leading to the deposition of aggregates at specific sites. The sequestration of misfolded proteins in such a way is protective for cell function as it allows for their efficient solubilization and refolding or degradation by components of the protein quality-control network. The organized aggregation of misfolded proteins might also allow their asymmetric distribution to daughter cells during cell division.


Assuntos
Fenômenos Fisiológicos Celulares/fisiologia , Dobramento de Proteína , Proteínas/química , Proteínas/fisiologia , Animais , Autofagia/fisiologia , Proteínas de Choque Térmico/fisiologia , Humanos , Modelos Biológicos , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
Curr Genet ; 67(5): 723-727, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33839884

RESUMO

In this mini-review, we summarize the known and novel regulation mechanisms of small heat shock proteins (sHsps). sHsps belong to a well-conserved family of ATP-independent oligomeric chaperones that protect denatured proteins from forming irreversible aggregates by co-aggregation. The functions of sHsps as a first line of defense against acute stresses require the high abundance of sHsps on demand. The heat stress-induced expression of IbpA, one of the sHsps in Escherichia coli, is regulated by σ32, an RNA polymerase subunit, and the thermoresponsive mRNA structures in the 5' untranslated region, called RNA thermometers. In addition to the known mechanisms, a recent study has revealed unexpected processes by which the oligomeric IbpA self-represses the ibpA translation via the direct binding of IbpA to its own mRNA, and mediates the mRNA degradation. In summary, the role of IbpA as an aggregation-sensor, combined with other mechanisms, tightly regulates the expression level of IbpA, thus enabling the sHsp to function as a "sequestrase" upon acute aggregation stress, and provides new insights into the mechanisms of other sHsps in both bacteria and eukaryotes.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico Pequenas/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico/fisiologia , Proteínas de Choque Térmico Pequenas/genética , Fator sigma/fisiologia
7.
IUBMB Life ; 73(6): 843-854, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960608

RESUMO

The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.


Assuntos
Doenças Autoimunes do Sistema Nervoso/imunologia , COVID-19/transmissão , Proteínas de Choque Térmico/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/fisiologia , Receptores Virais/fisiologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Autoanticorpos/imunologia , Autoantígenos/imunologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Sobrevivência Celular , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Exossomos , Proteínas Ligadas por GPI/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/imunologia , Humanos , Ligantes , Invasividade Neoplásica , Proteínas de Neoplasias/imunologia , Proteínas do Tecido Nervoso/imunologia , Domínios Proteicos , Transporte Proteico , Transdução de Sinais , Microambiente Tumoral , Resposta a Proteínas não Dobradas/fisiologia , Internalização do Vírus
8.
Hepatology ; 71(1): 76-92, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31215672

RESUMO

Sestrin 3 (Sesn3) belongs to the three-member sestrin protein family. Sestrins have been implicated in antioxidative stress, adenosine monophosphate-activated protein kinase and mammalian target of rapamycin signal transduction, and metabolic homeostasis. However, the role of Sesn3 in the development of nonalcoholic steatohepatitis (NASH) has not been previously studied. In this work, we generated Sesn3 whole-body knockout and liver-specific transgenic mice to investigate the hepatic function of Sesn3 in diet-induced NASH. With only 4 weeks of dietary treatment, Sesn3 knockout mice developed severe NASH phenotype as characterized by hepatic steatosis, inflammation, and fibrosis. Strikingly, after 8-week feeding with a NASH-inducing diet, Sesn3 transgenic mice were largely protected against NASH development. Transcriptomic analysis revealed that multiple extracellular matrix-related processes were up-regulated, including transforming growth factor ß (TGF-ß) signaling and collagen production. Further biochemical and cell biological analyses have illustrated a critical control of the TGF-ß-mothers against decapentaplegic homolog (Smad) pathway by Sesn3 at the TGF-ß receptor and Smad3 levels. First, Sesn3 inhibits the TGF-ß receptor through an interaction with Smad7; second, Sesn3 directly inhibits the Smad3 function through protein-protein interaction and cytosolic retention. Conclusion: Sesn3 is a critical regulator of the extracellular matrix and hepatic fibrosis by suppression of TGF-ß-Smad3 signaling.


Assuntos
Dieta/efeitos adversos , Proteínas de Choque Térmico/fisiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos
9.
Immunity ; 36(6): 947-58, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22658522

RESUMO

The adaptor protein Bcl10 is a critically important mediator of T cell receptor (TCR)-to-NF-κB signaling. Bcl10 degradation is a poorly understood biological phenomenon suggested to reduce TCR activation of NF-κB. Here we have shown that TCR engagement triggers the degradation of Bcl10 in primary effector T cells but not in naive T cells. TCR engagement promoted K63 polyubiquitination of Bcl10, causing Bcl10 association with the autophagy adaptor p62. Paradoxically, p62 binding was required for both Bcl10 signaling to NF-κB and gradual degradation of Bcl10 by autophagy. Bcl10 autophagy was highly selective, as shown by the fact that it spared Malt1, a direct Bcl10 binding partner. Blockade of Bcl10 autophagy enhanced TCR activation of NF-κB. Together, these data demonstrate that selective autophagy of Bcl10 is a pathway-intrinsic homeostatic mechanism that modulates TCR signaling to NF-κB in effector T cells. This homeostatic process may protect T cells from adverse consequences of unrestrained NF-κB activation, such as cellular senescence.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Autofagia/fisiologia , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Relacionadas à Autofagia , Proteína 10 de Linfoma CCL de Células B , Caspases/fisiologia , Diferenciação Celular , Citosol/imunologia , Citosol/ultraestrutura , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Homeostase , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Proteínas de Neoplasias/fisiologia , Fagossomos/fisiologia , Fagossomos/ultraestrutura , Mapeamento de Interação de Proteínas , Proteína Sequestossoma-1 , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/ultraestrutura , Células Th2/imunologia , Células Th2/ultraestrutura , Enzimas de Conjugação de Ubiquitina/fisiologia
10.
Microbiol Immunol ; 65(5): 189-203, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33491806

RESUMO

Viruses utilize cellular proteins to mediate their life cycle. However, the hepatitis B virus (HBV) life cycle is still mysterious and remains to be elucidated. Here, GRP78/BiP/HSPA5, a 78 kDa glucose-regulated protein, was identified as a preS2 interacting protein. Pulldown assay showed the interaction of glucose-regulated protein 78 (GRP78) with both the preS2 domain-containing large S and middle S proteins expressed in a human hepatocellular cell line. The immunofluorescence studies revealed that the preS2 colocalized with GRP78. Interestingly, it was found that preS2 specifically bound to the ATPase domain of GRP78. To understand how GRP78 plays a role in HBV infection, stably GRP78-expressing cells were established, which promoted HBV infectivity and replication. In contrast, knockdown of GRP78 changed the HBV antigen secretion but not the viral DNA amplification. Taken together, these results suggest that GRP78 should interact with preS2 via the ATPase domain and modulate both the HBV infectivity and HBV antigen secretion.


Assuntos
Proteínas de Choque Térmico/fisiologia , Antígenos da Hepatite B , Vírus da Hepatite B , Hepatite B , Linhagem Celular , DNA Viral , Chaperona BiP do Retículo Endoplasmático , Vírus da Hepatite B/patogenicidade , Humanos
11.
Mol Cell ; 49(1): 145-57, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23201126

RESUMO

The production of pigment by melanocytes tans the skin and protects against skin cancers. UV-exposed keratinocytes secrete α-MSH, which then activates melanin formation in melanocytes by inducing the microphthalmia-associated transcription factor (MITF). We show that PPAR-γ coactivator (PGC)-1α and PGC-1ß are critical components of this melanogenic system in melanocytes. α-MSH signaling strongly induces PGC-1α expression and stabilizes both PGC-1α and PGC-1ß proteins. The PGC-1s in turn activate the MITF promoter, and their expression correlates strongly with that of MITF in human melanoma cell lines and biopsy specimens. Inhibition of PGC-1α and PGC-1ß blocks the α-MSH-mediated induction of MITF and melanogenic genes. Conversely, overexpression of PGC-1α induces pigment formation in cell culture and transgenic animals. Finally, polymorphism studies reveal expression quantitative trait loci in the PGC-1ß gene that correlate with tanning ability and protection from melanoma in humans. These data identify PGC-1 coactivators as regulators of human tanning.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Choque Térmico/fisiologia , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Neoplasias Cutâneas/metabolismo , Bronzeado/genética , Fatores de Transcrição/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Melaninas/biossíntese , Melanócitos/enzimologia , Melanócitos/metabolismo , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição Associado à Microftalmia/genética , Monofenol Mono-Oxigenase/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Estabilidade Proteica , Proteínas de Ligação a RNA , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , alfa-MSH/metabolismo , alfa-MSH/fisiologia
12.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070174

RESUMO

This review focuses on the molecular chaperone ClpB that belongs to the Hsp100/Clp subfamily of the AAA+ ATPases and its biological function in selected bacterial pathogens, causing a variety of human infectious diseases, including zoonoses. It has been established that ClpB disaggregates and reactivates aggregated cellular proteins. It has been postulated that ClpB's protein disaggregation activity supports the survival of pathogenic bacteria under host-induced stresses (e.g., high temperature and oxidative stress), which allows them to rapidly adapt to the human host and establish infection. Interestingly, ClpB may also perform other functions in pathogenic bacteria, which are required for their virulence. Since ClpB is not found in human cells, this chaperone emerges as an attractive target for novel antimicrobial therapies in combating bacterial infections.


Assuntos
Endopeptidase Clp/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , ATPases Associadas a Diversas Atividades Celulares/fisiologia , Animais , Bactérias/patogenicidade , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/etiologia , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/fisiologia , Zoonoses Bacterianas/etiologia , Endopeptidase Clp/química , Proteínas de Choque Térmico/fisiologia , Humanos , Modelos Moleculares , Conformação Proteica , Virulência/fisiologia
13.
J Biol Chem ; 294(37): 13527-13529, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31371450

RESUMO

The chaperonin GroEL and its co-chaperonin GroES form both GroEL-GroES bullet-shaped and GroEL-GroES2 football-shaped complexes. The residence time of protein substrates in the cavities of these complexes is about 10 and 1 s, respectively. There has been much controversy regarding which of these complexes is the main functional form. Here, we show using computational analysis that GroEL protein substrates have a bimodal distribution of folding times, which matches these residence times, thereby suggesting that both bullet-shaped and football-shaped complexes are functional. More generally, co-existing complexes with different stoichiometries are not mutually exclusive with respect to having a functional role and can complement each other.


Assuntos
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonina 10/fisiologia , Chaperonina 60/fisiologia , Chaperoninas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Choque Térmico/fisiologia , Ligação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade
14.
BMC Plant Biol ; 20(1): 248, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493420

RESUMO

BACKGROUND: Abiotic stresses (e.g., heat or limited water and nutrient availability) limit crop production worldwide. With the progression of climate change, the severity and variation of these stresses are expected to increase. Exogenous silicon (Si) has shown beneficial effects on plant growth; however, its role in combating the negative effects of heat stress and their underlying molecular dynamics are not fully understood. RESULTS: Exogenous Si significantly mitigated the adverse impact of heat stress by improving tomato plant biomass, photosynthetic pigments, and relative water content. Si induced stress tolerance by decreasing the concentrations of superoxide anions and malondialdehyde, as well as mitigating oxidative stress by increasing the gene expression for antioxidant enzymes (peroxidases, catalases, ascorbate peroxidases, superoxide dismutases, and glutathione reductases) under stress conditions. This was attributed to increased Si uptake in the shoots via the upregulation of low silicon (SlLsi1 and SlLsi2) gene expression under heat stress. Interestingly, Si stimulated the expression and transcript accumulation of heat shock proteins by upregulating heat transcription factors (Hsfs) such as SlHsfA1a-b, SlHsfA2-A3, and SlHsfA7 in tomato plants under heat stress. On the other hand, defense and stress signaling-related endogenous phytohormones (salicylic acid [SA]/abscisic acid [ABA]) exhibited a decrease in their concentration and biosynthesis following Si application. Additionally, the mRNA and gene expression levels for SA (SlR1b1, SlPR-P2, SlICS, and SlPAL) and ABA (SlNCEDI) were downregulated after exposure to stress conditions. CONCLUSION: Si treatment resulted in greater tolerance to abiotic stress conditions, exhibiting higher plant growth dynamics and molecular physiology by regulating the antioxidant defense system, SA/ABA signaling, and Hsfs during heat stress.


Assuntos
Antioxidantes/fisiologia , Proteínas de Choque Térmico/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Silício/farmacologia , Solanum lycopersicum/metabolismo , Termotolerância/efeitos dos fármacos , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Proteínas de Choque Térmico/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
FASEB J ; 33(2): 2982-2994, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30332300

RESUMO

Loss of sacsin, a large 520 kDa multidomain protein, causes autosomal recessive spastic ataxia of the Charlevoix-Saguenay, one of the most common childhood-onset recessive ataxias. A prominent feature is abnormal bundling of neurofilaments in many neuronal populations. This study shows the direct involvement of sacsin domains in regulating intermediate filament assembly and dynamics and identifies important domains for alleviating neurofilament bundles in neurons lacking sacsin. Peptides encoding sacsin internal repeat (SIRPT) 1, J-domains, and ubiquitin-like domain modified neurofilament assembly in vivo. The domains with chaperone homology, the SIRPT and the J-domain, had opposite effects, promoting and preventing filament assembly, respectively. In cultured Sacs-/- motor neurons, both the SIRPT1 and J-domain resolved preexisting neurofilament bundles. Increasing expression of heat shock proteins also resolved neurofilament bundles, indicating that this endogenous chaperone system can compensate to some extent for sacsin deficiency.-Gentil, B. J., Lai, G.-T., Menade, M., Larivière, R., Minotti, S., Gehring, K., Chapple, J.-P., Brais, B., Durham, H. D. Sacsin, mutated in the ataxia ARSACS, regulates intermediate filament assembly and dynamics.


Assuntos
Fibroblastos/patologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/fisiologia , Filamentos Intermediários/patologia , Neurônios Motores/patologia , Espasticidade Muscular/patologia , Mutação , Ataxias Espinocerebelares/congênito , Animais , Células Cultivadas , Fibroblastos/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Filamentos Intermediários/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/metabolismo , Espasticidade Muscular/metabolismo , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia
16.
Cell Biol Int ; 44(10): 2075-2085, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32652867

RESUMO

DNA-binding protein A (dbpA) is reported to be upregulated in many cancers and associated with tumor progress. The present study aimed to investigate the role of dbpA in 5-fluorouracil (5-FU)-resistant and oxaliplatin (L-OHP)-resistant colorectal cancer (CRC) cells. We found that 5-FU and L-OPH treatment promoted the expression of dbpA. Enhanced dbpA promoted the drug resistance of SW620 cells to 5-FU and L-OHP. DbpA knockdown inhibited cell proliferation, induced cell apoptosis, and cell cycle arrested in SW620/5-FU and SW620/L-OHP cells. Besides, dbpA short hairpin RNA (shRNA) enhanced the cytotoxicity of 5-FU and L-OHP to SW620/5-FU and SW620/L-OHP cells. Meanwhile, dbpA shRNA inhibited the activation of the Wnt/ß-catenin pathway that induced by 5-FU stimulation in SW620/5-FU cells. Activation of the Wnt/ß-catenin pathway or overexpression of checkpoint kinase 1 (Chk1) abrogated the promoting effect of dbpA downregulation on 5-FU sensitivity of CRC cells. Importantly, downregulation of dbpA suppressed tumor growth and promoted CRC cells sensitivity to 5-FU in vivo. Our study indicated that the knockdown of dbpA enhanced the sensitivity of CRC cells to 5-FU via Wnt/ß-catenin/Chk1 pathway, and DbpA may be a potential therapeutic target to sensitize drug resistance CRC to 5-FU and L-OHP.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/fisiologia , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Via de Sinalização Wnt/efeitos dos fármacos
17.
J Biochem Mol Toxicol ; 34(4): e22454, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31981282

RESUMO

Dysfunction of trophoblast metastasis into the endometrium is the main cause of pre-eclampsia (PE); however, the factors affecting this process are still unclear. In this study, we found that endoplasmic reticulum protein 29 (ERp29), one molecular chaperone of the endoplasmic reticulum, was aberrantly upregulated in the placenta of pre-eclamptic patients compared with healthy controls. Then, an in vitro study using human extravillous trophoblast HTR-8/SVneo cells showed that ERp29 upregulation could inhibit the migratory and invasive ability of HTR-8/SVneo cells, while ERp29 downregulation had the opposite effect. Mechanical experiments confirmed that ERp29 blocked trophoblast metastasis via inhibiting the process of epithelial-mesenchymal transition and affecting the Wnt/ß-catenin signaling pathway. In conclusion, this study revealed the important role of ERp29 in trophoblast metastasis and improved the mechanical understanding of PE occurrence.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Choque Térmico/fisiologia , Pré-Eclâmpsia/etiologia , Trofoblastos/metabolismo , Adulto , Linhagem Celular , Feminino , Proteínas de Choque Térmico/biossíntese , Humanos , Metaloproteinases da Matriz/metabolismo , Placenta/metabolismo , Placenta/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Trofoblastos/transplante , Regulação para Cima , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Adulto Jovem , beta Catenina/metabolismo
18.
J Bacteriol ; 201(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31548273

RESUMO

Bacteria have remarkable mechanisms to survive severe external stresses, and one of the most enigmatic is the nonreplicative persistent (NRP) state. Practically, NRP bacteria are difficult to treat, and so inhibiting the proteins underlying this survival state may render such bacteria more susceptible to external stresses, including antibiotics. Unfortunately, we know little about the proteins and mechanisms conferring survival through the NRP state. Here, we report that a universal stress protein (Usp) is a primary regulator of bacterial survival through the NRP state in Micrococcus luteus NCTC 2665, a biosafety level 1 (BSL1) mycobacterial relative. Usps are widely conserved, and bacteria, including Mycobacterium tuberculosis, Mycobacterium smegmatis, and Escherichia coli, have multiple paralogs with overlapping functions that have obscured their functional roles. A kanamycin resistance cassette inserted into the M. luteus universal stress protein A 616 gene (ΔuspA616::kanM. luteus) ablates the UspA616 protein and drastically impairs M. luteus survival under even short-term starvation (survival, 83% wild type versus 32% ΔuspA616::kanM. luteus) and hypoxia (survival, 96% wild type versus 48% ΔuspA616::kanM. luteus). We observed no detrimental UspA616 knockout phenotype in logarithmic growth. Proteomics demonstrated statistically significant log-phase upregulation of glyoxylate pathway enzymes isocitrate lyase and malate synthase in ΔuspA616::kanM. luteus We note that these enzymes and the M. tuberculosis UspA616 homolog (Rv2623) are important in M. tuberculosis virulence and chronic infection, suggesting that Usps are important stress proteins across diverse bacterial species. We propose that UspA616 is a metabolic switch that controls survival by regulating the glyoxylate shunt.IMPORTANCE Bacteria tolerate severe external stresses, including antibiotics, through a nonreplicative persistent (NRP) survival state, yet the proteins regulating this survival state are largely unknown. We show a specific universal stress protein (UspA616) controls the NRP state in Micrococcus luteus Usps are widely conserved across bacteria, but their biological function(s) has remained elusive. UspA616 inactivation renders M. luteus susceptible to stress: bacteria die instead of adapting through the NRP state. UspA616 regulates malate synthase and isocitrate lyase, glyoxylate pathway enzymes important for chronic Mycobacterium tuberculosis infection. These data show that UspA616 regulates NRP stress survival in M. luteus and suggest a function for homologous proteins in other bacteria. Importantly, inhibitors of UspA616 and homologs may render NRP bacteria more susceptible to stresses, including current antibiotics.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Choque Térmico/fisiologia , Micrococcus luteus/fisiologia , Estresse Fisiológico/fisiologia , Proteínas de Bactérias/genética , Ciclo do Ácido Cítrico , Glioxilatos/metabolismo , Proteínas de Choque Térmico/genética , Micrococcus luteus/efeitos dos fármacos , Micrococcus luteus/patogenicidade
19.
Plant J ; 95(3): 401-413, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752744

RESUMO

Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants.


Assuntos
Cromatina/fisiologia , Proteínas de Choque Térmico/fisiologia , Ativação Transcricional , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Cromatina/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Ativação Transcricional/genética , Ativação Transcricional/fisiologia , Transcriptoma , Regulação para Cima
20.
EMBO J ; 34(6): 778-97, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25672362

RESUMO

Disruption of the functional protein balance in living cells activates protective quality control systems to repair damaged proteins or sequester potentially cytotoxic misfolded proteins into aggregates. The established model based on Saccharomyces cerevisiae indicates that aggregating proteins in the cytosol of eukaryotic cells partition between cytosolic juxtanuclear (JUNQ) and peripheral deposits. Substrate ubiquitination acts as the sorting principle determining JUNQ deposition and subsequent degradation. Here, we show that JUNQ unexpectedly resides inside the nucleus, defining a new intranuclear quality control compartment, INQ, for the deposition of both nuclear and cytosolic misfolded proteins, irrespective of ubiquitination. Deposition of misfolded cytosolic proteins at INQ involves chaperone-assisted nuclear import via nuclear pores. The compartment-specific aggregases, Btn2 (nuclear) and Hsp42 (cytosolic), direct protein deposition to nuclear INQ and cytosolic (CytoQ) sites, respectively. Intriguingly, Btn2 is transiently induced by both protein folding stress and DNA replication stress, with DNA surveillance proteins accumulating at INQ. Our data therefore reveal a bipartite, inter-compartmental protein quality control system linked to DNA surveillance via INQ and Btn2.


Assuntos
Sistemas de Transporte de Aminoácidos/fisiologia , Compartimento Celular/fisiologia , Citosol/metabolismo , Proteínas de Choque Térmico/fisiologia , Agregados Proteicos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Sistemas de Transporte de Aminoácidos/metabolismo , Western Blotting , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Modelos Biológicos , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem com Lapso de Tempo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA