Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.119
Filtrar
1.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995657

RESUMO

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Assuntos
Peptídeo Hidrolases , Prurido , Receptor PAR-1 , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Peptídeo Hidrolases/metabolismo , Prurido/microbiologia , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia
2.
Blood ; 141(22): 2675-2684, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36952648

RESUMO

The G protein-coupled receptor (GPCR) protease-activated receptor 1 (PAR1) is a therapeutic target that was originally pursued with the aim of restricting platelet activation and the burden of cardiovascular diseases. In clinical studies, the use of orthosteric PAR1 inhibitors was associated with an increased risk of hemorrhage, including intracranial hemorrhage. Because (1) PAR1 is expressed by various cell types, including endothelial cells, (2) conveys in mice a physiological indispensable function for vascular development during embryogenesis, and (3) is subject to biased signaling dependent on the activating proteases, orthosteric PAR1 inhibition may be associated with unwanted side effects. Alternatively, the protease-activated protein C (aPC) and its variants can promote valuable anti-inflammatory signaling via PAR1. Most recently, small molecule allosteric modulators of PAR1 signaling, called parmodulins, have been developed. Parmodulins inhibit coagulation and platelet activation yet maintain cytoprotective effects typically provoked by PAR1 signaling upon the activation by aPC. In this study, we review the discovery of parmodulins and their preclinical data, summarize the current knowledge about their mode of action, and compare the structural interaction of parmodulin and PAR1 with that of other intracellularly binding allosteric GPCR modulators. Thus, we highlight the pharmaceutical potential and challenges associated with the future development of parmodulins.


Assuntos
Células Endoteliais , Receptor PAR-1 , Camundongos , Animais , Células Endoteliais/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais , Anti-Inflamatórios , Coagulação Sanguínea , Peptídeo Hidrolases/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 44(3): 603-616, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38174561

RESUMO

BACKGROUND: Cleavage of the extracellular domain of PAR1 (protease-activated receptor 1) by thrombin at Arg41 and by APC (activated protein C) at Arg46 initiates paradoxical cytopathic and cytoprotective signaling in endothelial cells. In the latter case, the ligand-dependent coreceptor signaling by EPCR (endothelial protein C receptor) is required for the protective PAR1 signaling by APC. Here, we investigated the role of thrombomodulin in determining the specificity of PAR1 signaling by thrombin. METHODS: We prepared a PAR1 knockout (PAR1-/-) EA.hy926 endothelial cell line by CRISPR/Cas9 and transduced PAR1-/- cells with lentivirus vectors expressing PAR1 mutants in which either Arg41 or Arg46 was replaced with an Ala. Furthermore, human embryonic kidney 293 cells were transfected with wild-type or mutant PAR1 cleavage reporter constructs carrying N-terminal Nluc (NanoLuc luciferase) and C-terminal enhanced yellow fluorescent protein tags. RESULTS: Characterization of transfected cells in signaling and receptor cleavage assays revealed that, upon interaction with thrombomodulin, thrombin cleaves Arg46 to elicit cytoprotective effects by a ß-arrestin-2 biased signaling mechanism. Analysis of functional data and cleavage rates indicated that thrombin-thrombomodulin cleaves Arg46>10-fold faster than APC. Upon interaction with thrombin, the cytoplasmic domain of thrombomodulin recruited both ß-arrestin-1 and -2 to the plasma membrane. Thus, the thrombin cleavage of Arg41 was also cytoprotective in thrombomodulin-expressing cells by ß-arrestin-1-biased signaling. APC in the absence of EPCR cleaved Arg41 to initiate disruptive signaling responses like thrombin. CONCLUSIONS: These results suggest that coreceptor signaling by thrombomodulin and EPCR determines the PAR1 cleavage and signaling specificity of thrombin and APC, respectively.


Assuntos
Receptor PAR-1 , Trombina , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Trombina/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Trombomodulina/genética , Trombomodulina/metabolismo , Células Endoteliais/metabolismo , beta-Arrestinas/metabolismo
4.
J Biol Chem ; 299(12): 105370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865315

RESUMO

G protein-coupled receptors (GPCRs) are highly druggable and implicated in numerous diseases, including vascular inflammation. GPCR signals are transduced from the plasma membrane as well as from endosomes and controlled by posttranslational modifications. The thrombin-activated GPCR protease-activated receptor-1 is modified by ubiquitin. Ubiquitination of protease-activated receptor-1 drives recruitment of transforming growth factor-ß-activated kinase-1-binding protein 2 (TAB2) and coassociation of TAB1 on endosomes, which triggers p38 mitogen-activated protein kinase-dependent inflammatory responses in endothelial cells. Other endothelial GPCRs also induce p38 activation via a noncanonical TAB1-TAB2-dependent pathway. However, the regulatory processes that control GPCR ubiquitin-driven p38 inflammatory signaling remains poorly understood. We discovered mechanisms that turn on GPCR ubiquitin-dependent p38 signaling, however, the mechanisms that turn off the pathway are not known. We hypothesize that deubiquitination is an important step in regulating ubiquitin-driven p38 signaling. To identify specific deubiquitinating enzymes (DUBs) that control GPCR-p38 mitogen-activated protein kinase signaling, we conducted a siRNA library screen targeting 96 DUBs in endothelial cells and HeLa cells. We identified nine DUBs and validated the function two DUBs including cylindromatosis and ubiquitin-specific protease-34 that specifically regulate thrombin-induced p38 phosphorylation. Depletion of cylindromatosis expression by siRNA enhanced thrombin-stimulated p38 signaling, endothelial barrier permeability, and increased interleukin-6 cytokine expression. Conversely, siRNA knockdown of ubiquitin-specific protease-34 expression decreased thrombin-promoted interleukin-6 expression and had no effect on thrombin-induced endothelial barrier permeability. These studies suggest that specific DUBs distinctly regulate GPCR-induced p38-mediated inflammatory responses.


Assuntos
Enzima Desubiquitinante CYLD , Enzimas Desubiquitinantes , Células Endoteliais , Trombina , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Enzimas Desubiquitinantes/metabolismo , Células Endoteliais/metabolismo , Células HeLa , Interleucina-6/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor PAR-1/metabolismo , RNA Interferente Pequeno/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Linhagem Celular , Regulação Enzimológica da Expressão Gênica , Fosforilação/genética
5.
Glia ; 72(9): 1707-1724, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38864289

RESUMO

Astrocytes play an essential role in regulating synaptic transmission. This study describes a novel form of modulation of excitatory synaptic transmission in the mouse hippocampus by astrocytic G-protein-coupled receptors (GPCRs). We have previously described astrocytic glutamate release via protease-activated receptor-1 (PAR1) activation, although the regulatory mechanisms for this are complex. Through electrophysiological analysis and modeling, we discovered that PAR1 activation consistently increases the concentration and duration of glutamate in the synaptic cleft. This effect was not due to changes in the presynaptic glutamate release or alteration in glutamate transporter expression. However, blocking group II metabotropic glutamate receptors (mGluR2/3) abolished PAR1-mediated regulation of synaptic glutamate concentration, suggesting a role for this GPCR in mediating the effects of PAR1 activation on glutamate release. Furthermore, activation of mGluR2/3 causes glutamate release through the TREK-1 channel in hippocampal astrocytes. These data show that astrocytic GPCRs engage in a novel regulatory mechanism to shape the time course of synaptically-released glutamate in excitatory synapses of the hippocampus.


Assuntos
Astrócitos , Região CA1 Hipocampal , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Receptor PAR-1 , Receptores de Glutamato Metabotrópico , Sinapses , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Região CA1 Hipocampal/metabolismo , Receptor PAR-1/metabolismo , Camundongos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismo
6.
BMC Biotechnol ; 24(1): 55, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135175

RESUMO

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is a malignant tumour. Although some standard therapies have been established to improve the cure rate, they remain ineffective for specific individuals. Therefore, it is meaningful to find more novel therapeutic approaches. Macrophage polarisation is extensively involved in the process of tumour development. Recombinant hirudin (rH) affects macrophages and has been researched frequently in clinical trials lately. Our article validated the regulatory role of rH in macrophage polarisation and the mechanism of PAR-1 by collecting clinical samples and subsequently establishing a cellular model to provide a scientifically supported perspective for discovering new therapeutic approaches. METHOD: We assessed the expression of macrophage polarisation markers, cytokines and PAR-1 in clinical samples. We established a cell model by co-culture with THP-1 and OCI-Ly10 cell. We determined the degree of cell polarisation and expression of validation cytokines by flow cytometry, ELISA, and RT-qPCR to confirm the success of the cell model. Subsequently, different doses of rH were added to discover the function of rH on cell polarisation. We confirmed the mechanism of PAR-1 in macrophage polarisation by transfecting si-PAR-1 and pcDNA3.1-PAR-1. RESULTS: We found higher expression of M2 macrophage markers (CD163 + CMAF+) and PAR-1 in 32 DLBCL samples. After inducing monocyte differentiation into M0 macrophages and co-culturing with OCI-Ly10 lymphoma cells, we found a trend of these expressions in the cell model consistent with the clinical samples. Subsequently, we discovered that rH promotes the polarisation of M1 macrophages but inhibits the polarisation of M2 macrophages. We also found that PAR-1 regulates macrophage polarisation, inhibiting cell proliferation, migration, invasion and angiogenic capacity. CONCLUSION: rH inhibits macrophage polarisation towards the M2 type and PAR-1 regulates polarisation, proliferation, migration, invasion, and angiogenesis of DLBCL-associated macrophages.


Assuntos
Hirudinas , Linfoma Difuso de Grandes Células B , Macrófagos , Receptor PAR-1 , Proteínas Recombinantes , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/genética , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Hirudinas/farmacologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Polaridade Celular/efeitos dos fármacos , Feminino , Masculino , Citocinas/metabolismo , Pessoa de Meia-Idade , Células THP-1 , Idoso
7.
Mol Carcinog ; 63(7): 1288-1302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607237

RESUMO

Baicalein has been implicated in the chemotherapy overcoming triple-negative breast cancer (TNBC). However, many unanswered questions remain regarding its role in treating TNBC. Here, we sought to demonstrate the molecular pathway mediated by baicalein in TNBC. Lysine-specific demethylase 4E (KDM4E), reduced in TNBC cells, was identified as a target protein of baicalein, and baicalein enhanced the protein expression and stability of KDM4E in TNBC cells. Knockdown of KDM4E attenuated the inhibitory effect of baicalein on TNBC cell activity, as demonstrated by intensified mobility, viability, and apoptosis resistance in TNBC cells. KDM4E activated protein bicaudal D homolog 1 (BICD1) expression by reducing the deposition of histone H3 lysine 9 trimethylation (H3K9me3) in its promoter, whereas BICD1 promoted protease-activated receptor-1 (PAR1) endocytosis and blocked PAR1 signaling through physical interaction with PAR1. Knockdown of KDM4E strengthened the PAR1-dependent activity of TNBC cells in response to thrombin activation, whereas TNBC progression activated by PAR1 signaling was blocked by combined overexpression of BICD1. Taken together, our data indicate that baicalein-promoted KDM4E enhanced the expression of BICD1 and activated the inhibitory effect of BICD1 on PAR1 signaling, thereby inhibiting TNBC progression.


Assuntos
Flavanonas , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Flavanonas/farmacologia , Feminino , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Progressão da Doença , Camundongos
8.
Semin Thromb Hemost ; 50(3): 462-473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37984359

RESUMO

Thrombin, a pleiotropic enzyme involved in coagulation, plays a crucial role in both procoagulant and anticoagulant pathways. Thrombin converts fibrinogen into fibrin, initiates platelet activation, and promotes clot formation. Thrombin also activates anticoagulant pathways, indirectly inhibiting factors involved in coagulation. Tissue factor triggers thrombin generation, and the overexpression of thrombin in various cancers suggests that it is involved in tumor growth, angiogenesis, and metastasis. Increased thrombin generation has been observed in cancer patients, especially those with metastases. Thrombin exerts its effects through protease-activated receptors (PARs), particularly PAR-1 and PAR-2, which are involved in cancer progression, angiogenesis, and immunological responses. Thrombin-mediated signaling promotes angiogenesis by activating endothelial cells and platelets, thereby releasing proangiogenic factors. These functions of thrombin are well recognized and have been widely described. However, in recent years, intriguing new findings concerning the association between thrombin activity and cancer development have come to light, which justifies a review of this research. In particular, there is evidence that thrombin-mediated events interact with the immune system, and may regulate its response to tumor growth. It is also worth reevaluating the impact of thrombin on thrombocytes in conjunction with its multifaceted influence on tumor progression. Understanding the role of thrombin/PAR-mediated signaling in cancer and immunological responses is crucial, particularly in the context of developing immunotherapies. In this systematic review, we focus on the impact of the thrombin-related immune system response on cancer progression.


Assuntos
Neoplasias , Trombina , Humanos , Trombina/metabolismo , Células Endoteliais/metabolismo , Neoplasias/metabolismo , Receptor PAR-1/metabolismo , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Anticoagulantes
9.
Hepatology ; 78(4): 1209-1222, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036206

RESUMO

BACKGROUND AND AIMS: Senescent hepatocytes accumulate in parallel with fibrosis progression during NASH. The mechanisms that enable progressive expansion of nonreplicating cell populations and the significance of that process in determining NASH outcomes are unclear. Senescing cells upregulate thrombomodulin-protease-activated receptor-1 (THBD-PAR1) signaling to remain viable. Vorapaxar blocks the activity of that pathway. We used vorapaxar to determine if and how THBD-PAR1 signaling promotes fibrosis progression in NASH. APPROACH AND RESULTS: We evaluated the THBD-PAR1 pathway in liver biopsies from patients with NAFLD. Chow-fed mice were treated with viral vectors to overexpress p16 in hepatocytes and induce replicative senescence. Effects on the THBD-PAR1 axis and regenerative capacity were assessed; the transcriptome of p16-overexpressing hepatocytes was characterized, and we examined how conditioned medium from senescent but viable (dubbed "undead") hepatocytes reprograms HSCs. Mouse models of NASH caused by genetic obesity or Western diet/CCl 4 were treated with vorapaxar to determine effects on hepatocyte senescence and liver damage. Inducing senescence upregulates the THBD-PAR1 signaling axis in hepatocytes and induces their expression of fibrogenic factors, including hedgehog ligands. Hepatocyte THBD-PAR1 signaling increases in NAFLD and supports sustained hepatocyte senescence that limits effective liver regeneration and promotes maladaptive repair. Inhibiting PAR1 signaling with vorapaxar interrupts this process, reduces the burden of 'undead' senescent cells, and safely improves NASH and fibrosis despite ongoing lipotoxic stress. CONCLUSION: The THBD-PAR1 signaling axis is a novel therapeutic target for NASH because blocking this pathway prevents accumulation of senescing but viable hepatocytes that generate factors that promote maladaptive liver repair.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor PAR-1/metabolismo , Trombomodulina/metabolismo , Hepatócitos/metabolismo , Fígado/patologia , Fibrose , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
10.
Cell Biol Int ; 48(4): 440-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115179

RESUMO

Kirsten rat sarcoma virus (KRAS) gene mutation is common in colorectal cancer (CRC) and is often predictive of treatment failure and poor prognosis. To understand the mechanism, we compared the transcriptome of CRC patients with wild-type and mutant KRAS and found that KRAS mutation is associated with the overexpression of a secreted serine protease, kallikrein-related peptidase 10 (KLK10). Moreover, using in vitro and in vivo models, we found that KLK10 overexpression favors the rapid growth and liver metastasis of KRAS mutant CRC and can also impair the efficacy of KRAS inhibitors, leading to drug resistance and poor survival. Further functional assays revealed that the oncogenic role of KLK10 is mediated by protease-activated receptor 1 (PAR1). KLK10 cleaves and activates PAR1, which further activates 3-phosphoinositide-dependent kinase 1 (PDK1)-AKT oncogenic pathway. Notably, suppressing PAR1-PDK1-AKT cascade via KLK10 knockdown can effectively inhibit CRC progression and improve the sensitivity to KRAS inhibitor, providing a promising therapeutic strategy. Taken together, our study showed that KLK10 promotes the progression of KRAS mutant CRC via activating PAR1-PDK1-AKT signaling pathway. These findings expanded our knowledge of CRC development, especially in the setting of KRAS mutation, and also provided novel targets for clinical intervention.


Assuntos
Neoplasias Colorretais , Receptor PAR-1 , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Calicreínas/genética , Calicreínas/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 43(8): 1441-1454, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317855

RESUMO

BACKGROUND: Endothelial CLICs (chloride intracellular channel proteins) CLIC1 and CLIC4 are required for the GPCRs (G-protein-coupled receptors) S1PR1 (sphingosine-1-phosphate receptor 1) and S1PR3 to activate the small GTPases Rac1 (Ras-related C3 botulinum toxin substrate 1) and RhoA (Ras homolog family member A). To determine whether CLIC1 and CLIC4 function in additional endothelial GPCR pathways, we evaluated CLIC function in thrombin signaling via the thrombin-regulated PAR1 (protease-activated receptor 1) and downstream effector RhoA. METHODS: We assessed the ability of CLIC1 and CLIC4 to relocalize to cell membranes in response to thrombin in human umbilical vein endothelial cells (HUVEC). We examined CLIC1 and CLIC4 function in HUVEC by knocking down expression of each CLIC protein and compared thrombin-mediated RhoA or Rac1 activation, ERM (ezrin/radixin/moesin) phosphorylation, and endothelial barrier modulation in control and CLIC knockdown HUVEC. We generated a conditional murine allele of Clic4 and examined PAR1-mediated lung microvascular permeability and retinal angiogenesis in mice with endothelial-specific loss of Clic4. RESULTS: Thrombin promoted relocalization of CLIC4, but not CLIC1, to HUVEC membranes. Knockdown of CLIC4 in HUVEC reduced thrombin-mediated RhoA activation, ERM phosphorylation, and endothelial barrier disruption. Knockdown of CLIC1 did not reduce thrombin-mediated RhoA activity but prolonged the RhoA and endothelial barrier response to thrombin. Endothelial-specific deletion of Clic4 in mice reduced lung edema and microvascular permeability induced by PAR1 activating peptide. CONCLUSIONS: CLIC4 is a critical effector of endothelial PAR1 signaling and is required to regulate RhoA-mediated endothelial barrier disruption in cultured endothelial cells and murine lung endothelium. CLIC1 was not critical for thrombin-mediated barrier disruption but contributed to the barrier recovery phase after thrombin treatment.


Assuntos
Receptor PAR-1 , Proteína rhoA de Ligação ao GTP , Humanos , Camundongos , Animais , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Endotélio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Cultivadas , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Proteínas Mitocondriais/metabolismo
12.
J Cardiovasc Pharmacol ; 84(2): 250-260, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922586

RESUMO

ABSTRACT: Thrombin is a coagulation factor increased in pregnancy and further increased in preeclampsia (PE), a hypertensive disorder. Thrombin is also expressed in the brain and may have a nonhemostatic role. We characterized thrombin expression and vasoactivity in brain cerebral parenchymal arterioles (PAs) in rat models of pregnancy and PE. PAs were isolated and pressurized from nonpregnant (NP) and late-pregnant (LP) rats and rats with experimental preeclampsia (ePE). Reactivity to thrombin (1-50 U/mL) was measured in the absence and presence of inhibition of cyclooxygenase and nitric oxide synthase. Plasma levels of prothrombin, thrombin-antithrombin (TAT), tissue plasminogen activator, and plasminogen activator inhibitor-1 (PAI-1) and cerebrospinal fluid levels of TAT were compared using enzyme-linked immunosorbent assay. Expression of protease-activated receptor types 1 and 2 in PAs were measured by Western blot and immunohistochemistry. Neuronal thrombin expression was quantified in brains from all groups by immunohistochemistry. Prothrombin and TAT were elevated in ePE plasma compared with NP and LP. TAT was detected in cerebrospinal fluid from all groups and significantly elevated in LP (NP: 0.137 ± 0.014 ng/mL, LP: 0.241 ± 0.015 ng/mL, ePE: 0.192 ± 0.028 ng/mL; P < 0.05). Thrombin caused modest vasoconstriction in PAs from all groups regardless of cyclooxygenase or nitric oxide synthase inhibition. PAR1 and PAR2 were found in PAs from all groups colocalized to smooth muscle. Thrombin expression in central neurons was decreased in both LP and ePE groups compared with NP. These findings suggest a role for thrombin and other hemostatic changes during pregnancy and PE beyond coagulation.


Assuntos
Encéfalo , Pré-Eclâmpsia , Ratos Sprague-Dawley , Trombina , Animais , Gravidez , Feminino , Trombina/metabolismo , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Pré-Eclâmpsia/sangue , Ratos , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Modelos Animais de Doenças , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Antitrombina III/metabolismo , Receptor PAR-1/metabolismo , Microvasos/metabolismo , Microvasos/fisiopatologia , Microvasos/efeitos dos fármacos , Peptídeo Hidrolases
13.
Cell ; 137(2): 332-43, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19379698

RESUMO

Matrix metalloproteases (MMPs) play important roles in normal and pathological remodeling processes including atherothrombotic disease, inflammation, angiogenesis, and cancer. MMPs have been viewed as matrix-degrading enzymes, but recent studies have shown that they possess direct signaling capabilities. Platelets harbor several MMPs that modulate hemostatic function and platelet survival; however their mode of action remains unknown. We show that platelet MMP-1 activates protease-activated receptor-1 (PAR1) on the surface of platelets. Exposure of platelets to fibrillar collagen converts the surface-bound proMMP-1 zymogen to active MMP-1, which promotes aggregation through PAR1. Unexpectedly, MMP-1 cleaves PAR1 at a distinct site that strongly activates Rho-GTP pathways, cell shape change and motility, and MAPK signaling. Blockade of MMP1-PAR1 curtails thrombogenesis under arterial flow conditions and inhibits thrombosis in animals. These studies provide a link between matrix-dependent activation of metalloproteases and platelet-G protein signaling and identify MMP1-PAR1 as a potential target for the prevention of arterial thrombosis.


Assuntos
Receptor PAR-1/metabolismo , Trombose/metabolismo , Animais , Plaquetas/metabolismo , Colágeno/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Cobaias , Humanos , Ligantes , Metaloproteinase 1 da Matriz/metabolismo , Estrutura Terciária de Proteína , Receptor PAR-1/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Am J Respir Crit Care Med ; 207(10): 1358-1375, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36803741

RESUMO

Rationale: Chronic thromboembolic pulmonary hypertension (CTEPH) is a sequela of acute pulmonary embolism (PE) in which the PE remodels into a chronic scar in the pulmonary arteries. This results in vascular obstruction, pulmonary microvasculopathy, and pulmonary hypertension. Objectives: Our current understanding of CTEPH pathobiology is primarily derived from cell-based studies limited by the use of specific cell markers or phenotypic modulation in cell culture. Therefore, our main objective was to identify the multiple cell types that constitute CTEPH thrombusy and to study their dysfunction. Methods: Here we used single-cell RNA sequencing of tissue removed at the time of pulmonary endarterectomy surgery from five patients to identify the multiple cell types. Using in vitro assays, we analyzed differences in phenotype between CTEPH thrombus and healthy pulmonary vascular cells. We studied potential therapeutic targets in cells isolated from CTEPH thrombus. Measurements and Main Results: Single-cell RNA sequencing identified multiple cell types, including macrophages, T cells, and smooth muscle cells (SMCs), that constitute CTEPH thrombus. Notably, multiple macrophage subclusters were identified but broadly split into two categories, with the larger group characterized by an upregulation of inflammatory signaling predicted to promote pulmonary vascular remodeling. CD4+ and CD8+ T cells were identified and likely contribute to chronic inflammation in CTEPH. SMCs were a heterogeneous population, with a cluster of myofibroblasts that express markers of fibrosis and are predicted to arise from other SMC clusters based on pseudotime analysis. Additionally, cultured endothelial, smooth muscle, and myofibroblast cells isolated from CTEPH fibrothrombotic material have distinct phenotypes from control cells with regard to angiogenic potential and rates of proliferation and apoptosis. Last, our analysis identified PAR1 (protease-activated receptor 1) as a potential therapeutic target that links thrombosis to chronic PE in CTEPH, with PAR1 inhibition decreasing SMC and myofibroblast proliferation and migration. Conclusions: These findings suggest a model for CTEPH similar to atherosclerosis, with chronic inflammation promoted by macrophages and T cells driving vascular remodeling through SMC modulation, and suggest new approaches for pharmacologically targeting this disease.


Assuntos
Hipertensão Pulmonar , Embolia Pulmonar , Trombose , Humanos , Hipertensão Pulmonar/metabolismo , Remodelação Vascular , Linfócitos T CD8-Positivos/metabolismo , Receptor PAR-1/metabolismo , Embolia Pulmonar/complicações , Embolia Pulmonar/cirurgia , Artéria Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Inflamação/metabolismo , Análise de Célula Única , Doença Crônica
15.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836597

RESUMO

Thrombomodulin (TM) is a thrombin receptor on endothelial cells that is involved in promoting activation of the anticoagulant protein C pathway during blood coagulation. TM also exerts protective anti-inflammatory properties through a poorly understood mechanism. In this study, we investigated the importance of TM signaling to cellular functions by deleting it from endothelial cells by CRISPR-Cas9 technology and analyzed the resultant phenotype of TM-deficient (TM-/- ) cells. Deficiency of TM in endothelial cells resulted in increased basal permeability and hyperpermeability when stimulated by thrombin and TNF-α. The loss of the basal barrier permeability function was accompanied by increased tyrosine phosphorylation of VE-cadherin and reduced polymerization of F-actin filaments at cellular junctions. A significant increase in basal NF-κB signaling and expression of inflammatory cell adhesion molecules was observed in TM-/- cells that resulted in enhanced adhesion of leukocytes to TM-/- cells in flow chamber experiments. There was also a marked increase in expression, storage, and release of the von Willebrand factor (VWF) and decreased storage and release of angiopoietin-2 in TM-/- cells. In a flow chamber assay, isolated platelets adhered to TM-/- cells, forming characteristic VWF-platelet strings. Increased VWF levels and inflammatory foci were also observed in the lungs of tamoxifen-treated ERcre-TMf/f mice. Reexpression of the TM construct in TM-/- cells, but not treatment with soluble TM, normalized the cellular phenotype. Based on these results, we postulate cell-bound TM endows a quiescent cellular phenotype by tightly regulating expression of procoagulant, proinflammatory, and angiogenic molecules in vascular endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Trombomodulina/metabolismo , Angiopoietina-2/metabolismo , Animais , Plaquetas/citologia , Permeabilidade Capilar , Adesão Celular , Células Endoteliais/citologia , Endotélio Vascular/citologia , Humanos , Inflamação , Leucócitos/citologia , Pulmão/metabolismo , Camundongos , Receptor PAR-1/metabolismo , Trombina/metabolismo , Trombomodulina/deficiência , Trombomodulina/genética , Fator de von Willebrand/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34873055

RESUMO

Endothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses. We showed that aPC-activated PAR1 signals preferentially via ß-arrestin-2 (ß-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to promote Rac1 activation and barrier protection. However, the signaling pathways utilized by aPC/PAR1 to mediate anti-apoptotic activities are not known. aPC/PAR1 cytoprotective responses also require coreceptors; however, it is not clear how coreceptors impact different aPC/PAR1 signaling pathways to drive distinct cytoprotective responses. Here, we define a ß-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. Using human cultured endothelial cells, we found that endogenous PAR1 and S1PR1 coexist in caveolin-1 (Cav1)-rich microdomains and that S1PR1 coassociation with Cav1 is increased by aPC activation of PAR1. Our study further shows that aPC stimulates ß-arr2-dependent SphK1 activation independent of Dvl2 and is required for transactivation of S1PR1-Akt signaling and protection against cell death. While aPC/PAR1-induced, extracellular signal-regulated kinase 1/2 (ERK1/2) activation is also dependent on ß-arr2, neither SphK1 nor S1PR1 are integrated into the ERK1/2 pathway. Finally, aPC activation of PAR1-ß-arr2-mediated protection against apoptosis is dependent on Cav1, the principal structural protein of endothelial caveolae. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete, ß-arr2-driven signaling pathways in caveolae.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor PAR-1/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , beta-Arrestina 2/metabolismo , Anilidas/farmacologia , Apoptose/fisiologia , Células Endoteliais/fisiologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Lactonas/farmacologia , Metanol/farmacologia , Organofosfonatos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Inibidores da Agregação Plaquetária/farmacologia , Proteína C/genética , Proteínas Proto-Oncogênicas c-akt/genética , Piridinas/farmacologia , Pirrolidinas/farmacologia , Receptor PAR-1/genética , Receptores de Esfingosina-1-Fosfato/genética , Sulfonas/farmacologia , beta-Arrestina 2/genética
17.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279219

RESUMO

Serine proteases regulate cell functions through G protein-coupled protease-activated receptors (PARs). Cleavage of one peptide bond of the receptor amino terminus results in the formation of a new N-terminus ("tethered ligand") that can specifically interact with the second extracellular loop of the PAR receptor and activate it. Activation of PAR1 by thrombin (canonical agonist) and activated protein C (APC, noncanonical agonist) was described as a biased agonism. Here, we have supposed that synthetic peptide analogs to the PAR1 tethered ligand liberated by APC could have neuroprotective effects like APC. To verify this hypothesis, a model of the ischemic brain impairment based on glutamate (Glu) excitotoxicity in primary neuronal cultures of neonatal rats has been used. It was shown that the nanopeptide NPNDKYEPF-NH2 (AP9) effectively reduced the neuronal death induced by Glu. The influence of AP9 on cell survival was comparable to that of APC. Both APC and AP9 reduced the dysregulation of intracellular calcium homeostasis in cultured neurons induced by excitotoxic Glu (100 µM) or NMDA (200 µM) concentrations. PAR1 agonist synthetic peptides might be noncanonical PAR1 agonists and a basis for novel neuroprotective drugs for disorders related to Glu excitotoxicity such as brain ischemia, trauma and some neurodegenerative diseases.


Assuntos
Fármacos Neuroprotetores , Receptor PAR-1 , Ratos , Animais , Receptor PAR-1/metabolismo , Fármacos Neuroprotetores/farmacologia , Ligantes , Trombina/metabolismo , Peptídeos/farmacologia , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Células Cultivadas
18.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279255

RESUMO

Endothelial protein C receptor (EPCR) is a receptor for the natural anti-coagulant activated protein C (aPC). It mediates the anti-inflammatory and barrier-protective functions of aPC through the cleavage of protease-activated receptor (PAR)1/2. Allergic contact dermatitis is a common skin disease characterized by inflammation and defective skin barrier. This study investigated the effect of EPCR and 3K3A-aPC on allergic contact dermatitis using a contact hypersensitivity (CHS) model. CHS was induced using 1-Fluoro-2,4-dinitrobenzene in EPCR-deficient (KO) and matched wild-type mice and mice treated with 3K3A-aPC, a mutant form of aPC with diminished anti-coagulant activity. Changes in clinical and histological features, cytokines, and immune cells were examined. EPCRKO mice displayed more severe CHS, with increased immune cell infiltration in the skin and higher levels of inflammatory cytokines and IgE than wild-type mice. EPCR, aPC, and PAR1/2 were expressed by the skin epidermis, with EPCR presenting almost exclusively in the basal layer. EPCRKO increased the epidermal expression of aPC and PAR1, whereas in CHS, their expression was reduced compared to wild-type mice. 3K3A-aPC reduced CHS severity in wild-type and EPCRKO mice by suppressing immune cell infiltration/activation and inflammatory cytokines. In summary, EPCRKO exacerbated CHS, whereas 3K3A-aPC could reduce the severity of CHS in both EPCRKO and wild-type mice.


Assuntos
Dermatite Alérgica de Contato , Proteína C , Proteínas Recombinantes , Animais , Camundongos , Proteína C/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais , Citocinas/farmacologia , Dermatite Alérgica de Contato/tratamento farmacológico
19.
Am J Physiol Cell Physiol ; 325(1): C272-C285, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37273236

RESUMO

Proteinase-activated receptors (PARs) are G protein-coupled receptors (GPCRs) activated by limited n-terminal proteolysis. PARs are highly expressed in many cancer cells, including prostate cancer (PCa), and regulate various aspects of tumor growth and metastasis. Specific activators of PARs in different physiological and pathophysiological contexts remain poorly defined. In this study, we examined the androgen-independent human prostatic cancer cell line PC3 and find the functional expression of PAR1 and PAR2, but not PAR4. Using genetically encoded PAR cleavage biosensors, we showed that PC3 cells secrete proteolytic enzymes that cleave PARs and trigger autocrine signaling. CRISPR/Cas9 targeting of PAR1 and PAR2 combined with microarray analysis revealed genes that are regulated through this autocrine signaling mechanism. We found several genes that are known PCa prognostic factors or biomarker to be differentially expressed in the PAR1-knockout (KO) and PAR2-KO PC3 cells. We further examined PAR1 and PAR2 regulation of PCa cell proliferation and migration and found that absence of PAR1 promotes PC3 cell migration and suppresses cell proliferation, whereas PAR2 deficiency showed opposite effects. Overall, these results demonstrate that autocrine signaling through PARs is an important regulator of PCa cell function.


Assuntos
Neoplasias da Próstata , Receptor PAR-1 , Masculino , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Células PC-3 , Comunicação Autócrina , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Neoplasias da Próstata/genética
20.
J Biol Chem ; 298(4): 101801, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257745

RESUMO

Endothelial dysfunction is a hallmark of inflammation and is mediated by inflammatory factors that signal through G protein-coupled receptors including protease-activated receptor-1 (PAR1). PAR1, a receptor for thrombin, signals via the small GTPase RhoA and myosin light chain intermediates to facilitate endothelial barrier permeability. PAR1 also induces endothelial barrier disruption through a p38 mitogen-activated protein kinase-dependent pathway, which does not integrate into the RhoA/MLC pathway; however, the PAR1-p38 signaling pathways that promote endothelial dysfunction remain poorly defined. To identify effectors of this pathway, we performed a global phosphoproteome analysis of thrombin signaling regulated by p38 in human cultured endothelial cells using multiplexed quantitative mass spectrometry. We identified 5491 unique phosphopeptides and 2317 phosphoproteins, four distinct dynamic phosphoproteome profiles of thrombin-p38 signaling, and an enrichment of biological functions associated with endothelial dysfunction, including modulators of endothelial barrier disruption and a subset of kinases predicted to regulate p38-dependent thrombin signaling. Using available antibodies to detect identified phosphosites of key p38-regulated proteins, we discovered that inhibition of p38 activity and siRNA-targeted depletion of the p38α isoform increased basal phosphorylation of extracellular signal-regulated protein kinase 1/2, resulting in amplified thrombin-stimulated extracellular signal-regulated protein kinase 1/2 phosphorylation that was dependent on PAR1. We also discovered a role for p38 in the phosphorylation of α-catenin, a component of adherens junctions, suggesting that this phosphorylation may function as an important regulatory process. Taken together, these studies define a rich array of thrombin- and p38-regulated candidate proteins that may serve important roles in endothelial dysfunction.


Assuntos
Células Endoteliais , Trombina , Proteínas Quinases p38 Ativadas por Mitógeno , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteômica , Receptor PAR-1/metabolismo , Trombina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA