Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 605
Filtrar
1.
Immunity ; 57(8): 1828-1847.e11, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002541

RESUMO

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.


Assuntos
Anafilaxia , Fibroblastos , Lisofosfolipídeos , Mastócitos , Camundongos Knockout , Comunicação Parácrina , Diester Fosfórico Hidrolases , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Animais , Mastócitos/imunologia , Mastócitos/metabolismo , Anafilaxia/imunologia , Anafilaxia/metabolismo , Camundongos , Fibroblastos/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Prostaglandina D2/metabolismo , Vesículas Extracelulares/metabolismo , Interleucina-33/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Diferenciação Celular , Camundongos Endogâmicos C57BL , Proteína 1 Semelhante a Receptor de Interleucina-1 , Lipocalinas
2.
Mol Cell ; 72(1): 48-59.e4, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220562

RESUMO

The signaling of prostaglandin D2 (PGD2) through G-protein-coupled receptor (GPCR) CRTH2 is a major pathway in type 2 inflammation. Compelling evidence suggests the therapeutic benefits of blocking CRTH2 signaling in many inflammatory disorders. Currently, a number of CRTH2 antagonists are under clinical investigation, and one compound, fevipiprant, has advanced to phase 3 clinical trials for asthma. Here, we present the crystal structures of human CRTH2 with two antagonists, fevipiprant and CAY10471. The structures, together with docking and ligand-binding data, reveal a semi-occluded pocket covered by a well-structured amino terminus and different binding modes of chemically diverse CRTH2 antagonists. Structural analysis suggests a ligand entry port and a binding process that is facilitated by opposite charge attraction for PGD2, which differs significantly from the binding pose and binding environment of lysophospholipids and endocannabinoids, revealing a new mechanism for lipid recognition by GPCRs.


Assuntos
Prostaglandina D2/química , Receptores Acoplados a Proteínas G/química , Receptores Imunológicos/química , Receptores de Prostaglandina/química , Carbazóis/química , Humanos , Ácidos Indolacéticos/química , Ligantes , Simulação de Acoplamento Molecular , Prostaglandina D2/genética , Ligação Proteica , Piridinas/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/genética , Transdução de Sinais , Sulfonamidas/química
3.
EMBO J ; 40(16): e107403, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34223653

RESUMO

Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.


Assuntos
Autoantígenos/metabolismo , Colágeno/antagonistas & inibidores , Cirrose Hepática/prevenção & controle , Fibrose Pulmonar/prevenção & controle , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Bleomicina , Tetracloreto de Carbono , Células Cultivadas , Colágeno/biossíntese , Colágeno/genética , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Isoproterenol , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Ligação Proteica , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Receptores Imunológicos/genética , Receptores de Prostaglandina/genética , Antígeno SS-B
4.
Nat Immunol ; 14(6): 554-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624557

RESUMO

Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell-deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS-ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3-L-PGDS-DP1 loop that drives mast cell maturation.


Assuntos
Fosfolipases A2 do Grupo III/imunologia , Mastócitos/imunologia , Comunicação Parácrina/imunologia , Prostaglandina D2/imunologia , Receptores de Prostaglandina/imunologia , Animais , Western Blotting , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Fosfolipases A2 do Grupo III/genética , Fosfolipases A2 do Grupo III/metabolismo , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/imunologia , Lipocalinas/metabolismo , Mastócitos/metabolismo , Mastócitos/ultraestrutura , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Comunicação Parácrina/genética , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Int Arch Allergy Immunol ; 185(8): 752-760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599205

RESUMO

INTRODUCTION: Prostaglandin D2 (PGD2), which is produced mainly by Th2 cells and mast cells, promotes a type-2 immune response by activating Th2 cells, mast cells, eosinophils, and group 2 innate lymphoid cells (ILC2s) via its receptor, chemoattractant receptor-homologous molecules on Th2 cells (CRTH2). However, the role of CRTH2 in models of airway inflammation induced by sensitization without adjuvants, in which both IgE and mast cells may play major roles, remain unclear. METHODS: Wild-type (WT) and CRTH2-knockout (KO) mice were sensitized with ovalbumin (OVA) without an adjuvant and then challenged intranasally with OVA. Airway inflammation was assessed based on airway hyperresponsiveness (AHR), lung histology, number of leukocytes, and levels of type-2 cytokines in the bronchoalveolar lavage fluid (BALF). RESULTS: AHR was significantly reduced after OVA challenge in CRTH2 KO mice compared to WT mice. The number of eosinophils, levels of type-2 cytokines (IL-4, IL-5, and IL-13) in BALF, and IgE concentration in serum were decreased in CRTH2 KO mice compared to WT mice. However, lung histological changes were comparable between WT and CRTH2 KO mice. CONCLUSION: CRTH2 is responsible for the development of asthma responses in a mouse model of airway inflammation that features prominent involvement of both IgE and mast cells.


Assuntos
Citocinas , Camundongos Knockout , Ovalbumina , Receptores Imunológicos , Receptores de Prostaglandina , Animais , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Camundongos , Ovalbumina/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Pulmão/patologia , Pulmão/imunologia , Asma/imunologia , Asma/patologia , Asma/metabolismo , Células Th2/imunologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Eosinófilos/imunologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/etiologia , Mastócitos/imunologia , Mastócitos/metabolismo , Inflamação/imunologia , Camundongos Endogâmicos C57BL
6.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341104

RESUMO

Prostaglandin D2 (PGD2) signals through the G protein-coupled receptor (GPCR) CRTH2 to mediate various inflammatory responses. CRTH2 is the only member of the prostanoid receptor family that is phylogenetically distant from others, implying a nonconserved mechanism of lipid action on CRTH2. Here, we report a crystal structure of human CRTH2 bound to a PGD2 derivative, 15R-methyl-PGD2 (15mPGD2), by serial femtosecond crystallography. The structure revealed a "polar group in"-binding mode of 15mPGD2 contrasting the "polar group out"-binding mode of PGE2 in its receptor EP3. Structural comparison analysis suggested that these two lipid-binding modes, associated with distinct charge distributions of ligand-binding pockets, may apply to other lipid GPCRs. Molecular dynamics simulations together with mutagenesis studies also identified charged residues at the ligand entry port that function to capture lipid ligands of CRTH2 from the lipid bilayer. Together, our studies suggest critical roles of charge environment in lipid recognition by GPCRs.


Assuntos
Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/química , Receptores de Prostaglandina/metabolismo , Cristalografia por Raios X/métodos , Humanos , Metabolismo dos Lipídeos , Simulação de Dinâmica Molecular , Mutação , Prostaglandina D2/química , Prostaglandina D2/metabolismo , Conformação Proteica , Receptores Imunológicos/genética , Receptores de Prostaglandina/genética
7.
Allergy ; 78(3): 767-779, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36207765

RESUMO

BACKGROUND: Type 2-high asthma is characterized by elevated levels of circulating Th2 cells and eosinophils, cells that express chemoattractant-homologous receptor expressed on Th2 cells (CRTh2). Severe asthma is more common in women than men; however, the underlying mechanism(s) remain elusive. Here we examined whether the relationship between severe asthma and type 2 inflammation differs by sex and if estrogen influences Th2 cell response to glucocorticoid (GC). METHODS: Type 2 inflammation and the proportion of blood Th2 cells (CD4+ CRTh2+ ) were assessed in whole blood from subjects with asthma (n = 66). The effects of GC and estrogen receptor alpha (ERα) agonist on in vitro differentiated Th2 cells were examined. Expression of CRTh2, type 2 cytokines and degree of apoptosis (Annexin V+ , 7-AAD) were determined by flow cytometry, qRT-PCR, western blot and ELISA. RESULTS: In severe asthma, the proportion of circulating Th2 cells and hospitalizations were higher in women than men. Women with severe asthma also had more Th2 cells and serum IL-13 than women with mild/moderate asthma. Th2 cells, eosinophils and CRTh2 mRNA correlated with clinical characteristics associated with asthma control in women but not men. In vitro, GC and ERα agonist treated Th2 cells exhibited less apoptosis, more CRTh2 as well as IL-5 and IL-13 following CRTh2 activation than Th2 cells treated with GC alone. CONCLUSION: Women with severe asthma had higher levels of circulating Th2 cells than men, which may be due to estrogen modifying the effects of GC, enhancing Th2 cell survival and type 2 cytokine production.


Assuntos
Asma , Receptores de Glucocorticoides , Humanos , Feminino , Receptores de Glucocorticoides/metabolismo , Receptor alfa de Estrogênio/metabolismo , Interleucina-13/metabolismo , Receptores Imunológicos/genética , Receptores de Prostaglandina/genética , Inflamação/metabolismo , Asma/tratamento farmacológico , Células Th2/metabolismo , Glucocorticoides/uso terapêutico , Prostaglandina D2/metabolismo
8.
FASEB J ; 36(5): e22293, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349198

RESUMO

The F prostanoid receptor (FP), which accounts for the therapeutic effect of PGF2α in uterine atony that leads to postpartum hemorrhage and maternal morbidity, could possibly mediate vasoconstrictor effect in small or resistance arteries to elevate blood pressure that limits the clinical use of the agent in patients with cardiovascular disorders. This study aimed to test the above hypothesis with genetically altered mice. Ex vivo and in vivo experiments were performed on control wild-type (WT) mice and mice with deficiencies in FP (FP-/- ) or thromboxane (Tx)-prostanoid receptor (the original receptor of TxA2 ; TP-/- ), and/or those with an additional deficiency in E prostanoid receptor-3 (one of the vasoconstrictor receptors of PGE2 ; EP3-/- ). Here, we show that PGF2α indeed evoked vasoconstrictor responses in the above-mentioned tissues of WT mice, which were however unaltered by FP-/- . Interestingly, such contractile responses were reversed into dilations by TP-/- /EP3-/- . A similar pattern of results was observed with the pressor effect of PGF2α under in vivo conditions. However, TP-/- alone (which could largely remove the contractile responses) did not result in relaxation to PGF2α . Also, either the ex vivo vasodilator effect or the in vivo depressor response of PGF2α obtained after the removal of TP and EP3-mediated actions was unaltered by FP-/- . Therefore, both the ex vivo vasoconstrictor action in small or resistance arteries and the systemic pressor effect of PGF2α can reflect vasoconstrictor activities derived from the non-FP receptors TP and EP3 outweighing a concurrently activated dilator effect, which is again independent of FP.


Assuntos
Receptores de Prostaglandina , Vasoconstritores , Animais , Feminino , Camundongos , Prostaglandinas , Prostaglandinas F , Receptores de Prostaglandina/genética , Receptores de Tromboxanos/genética , Vasoconstritores/farmacologia
9.
Bioessays ; 43(2): e2000213, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33165991

RESUMO

Prostaglandin (PG) D2 and PGE2 are positional isomers; however, they sometimes exhibit opposite physiological functions, such as in cancer development. Because DP receptors are considered to be a duplicated copy of EP2 receptors, PGD2 and PGE2 cross-react with both receptors. These prostanoids may act as biased agonists for each receptor. In reviewing this field, a hypothesis was proposed to explain the opposed effects of these prostanoids from the viewpoints of the evolution of, mutations in, and biased activities of their receptors. Previous findings showing more mutations/variations in DP receptors than EP2 receptors among individuals worldwide indicate that DP receptors are still in a rapid evolutionary stage. The opposing effects of these prostanoids on cancer development may be attributed to the biased activity of PGE2 for DP receptors, which may incidentally develop during the process of the old ligand, PGE2 gaining selectivity to newly diverged DP receptors.


Assuntos
Dinoprostona , Diagnóstico Pré-Implantação , Feminino , Humanos , Ligantes , Gravidez , Prostaglandinas E , Receptores de Prostaglandina/genética
10.
Br J Cancer ; 126(4): 586-597, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34750492

RESUMO

BACKGROUND: Despite intense research, the prognosis for patients with advanced colorectal cancer (CRC) remains poor. The prostaglandin D2 receptors DP1 and DP2 are explored here as potential therapeutic targets for advanced CRC. METHODS: A CRC cohort was analysed to determine whether DP1 and DP2 receptor expression correlates with patient survival. Four colon cancer cell lines and a zebrafish metastasis model were used to explore how DP1/DP2 receptor expression correlates with CRC progression. RESULTS: Analysis of the clinical CRC cohort revealed high DP2 expression in tumour tissue, whereas DP1 expression was low. High DP2 expression negatively correlated with overall survival. Other pathological indicators, such as TNM stage and metastasis, positively correlated with DP2 but not DP1 expression. In accordance, the in vitro results showed high DP2 expression in four CC-cell lines, but only one expressed DP1. DP2 stimulation resulted in increased proliferation, p-ERK1/2 and VEGF expression/secretion. DP2-stimulated cells exhibited increased migration in the zebrafish metastasis model. CONCLUSION: Our results support DP2 receptor expression and signalling as a therapeutic target in CRC progression based on its expression in CRC tissue correlating with poor patient survival and that it triggers proliferation, p-ERK1/2 and VEGF expression and release and increased metastatic activity in CC-cells.


Assuntos
Neoplasias Colorretais/patologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células CACO-2 , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Masculino , Metástase Neoplásica , Estadiamento de Neoplasias , Transplante de Neoplasias , Análise de Sobrevida , Peixe-Zebra
11.
Eur J Immunol ; 51(10): 2399-2416, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34396535

RESUMO

Type 2 immunity is critical for the protective and repair responses that mediate resistance to parasitic helminth infection. This immune response also drives aberrant inflammation during atopic diseases. Prostaglandins are a class of critical lipid mediators that are released during type 2 inflammation and are integral in controlling the initiation, activation, maintenance, effector functions, and resolution of Type 2 inflammation. In this review, we explore the roles of the different prostaglandin family members and the receptors they bind to during allergen- and helminth-induced Type 2 inflammation and the mechanism through which prostaglandins promote or suppress Type 2 inflammation. Furthermore, we discuss the potential role of prostaglandins produced by helminth parasites in the regulation of host-pathogen interactions, and how prostaglandins may regulate the inverse relationship between helminth infection and allergy. Finally, we discuss opportunities to capitalize on our understanding of prostaglandin pathways to develop new therapeutic options for humans experiencing Type 2 inflammatory disorders that have a significant prostaglandin-driven component including allergic rhinitis and asthma.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Inflamação/etiologia , Inflamação/metabolismo , Prostaglandinas/metabolismo , Animais , Gerenciamento Clínico , Metabolismo Energético , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/diagnóstico , Inflamação/terapia , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Transdução de Sinais
12.
J Immunol ; 204(4): 1001-1011, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900341

RESUMO

Group 2 innate lymphoid cells (ILC2s) are rare innate immune cells that accumulate in tissues during allergy and helminth infection, performing critical effector functions that drive type 2 inflammation. ILC2s express ST2, the receptor for the cytokine IL-33, and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), a receptor for the bioactive lipid prostaglandin D2 (PGD2). The IL-33-ST2 and the PGD2-CRTH2 pathways have both been implicated in promoting ILC2 accumulation during type 2 inflammation. However, whether these two pathways coordinate to regulate ILC2 population size in the tissue in vivo remains undefined. In this study, we show that ILC2 accumulation in the murine lung in response to systemic IL-33 treatment was partially dependent on CRTH2. This effect was not a result of reduced ILC2 proliferation, increased apoptosis or cell death, or differences in expression of the ST2 receptor in the absence of CRTH2. Rather, data from adoptive transfer studies suggested that defective accumulation of CRTH2-deficient ILC2s in response to IL-33 was due to altered ILC2 migration patterns. Whereas donor wild-type ILC2s preferentially accumulated in the lungs compared with CRTH2-deficient ILC2s following transfer into IL-33-treated recipients, wild-type and CRTH2-deficient ILC2s accumulated equally in the recipient mediastinal lymph node. These data suggest that CRTH2-dependent effects lie downstream of IL-33, directly affecting the migration of ILC2s into inflamed lung tissues. A better understanding of the complex interactions between the IL-33 and PGD2-CRTH2 pathways that regulate ILC2 population size will be useful in understanding how these pathways could be targeted to treat diseases associated with type 2 inflammation.


Assuntos
Movimento Celular/imunologia , Hipersensibilidade/imunologia , Interleucina-33/imunologia , Linfócitos/imunologia , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Infecções por Strongylida/imunologia , Transferência Adotiva , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Hipersensibilidade/patologia , Imunidade Inata , Interleucina-33/administração & dosagem , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Linfócitos/metabolismo , Camundongos , Camundongos Knockout , Nippostrongylus/imunologia , Cultura Primária de Células , Prostaglandina D2/imunologia , Prostaglandina D2/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Infecções por Strongylida/parasitologia , Infecções por Strongylida/patologia
13.
Circulation ; 141(8): 655-666, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31893939

RESUMO

BACKGROUND: Blood pressure often rises with aging, but exact mechanisms are still not completely understood. With aging, the level of proinflammatory cytokines increases in T lymphocytes. Prostaglandin D2, a proresolution mediator, suppresses Type 1 T helper (Th1) cytokines through D-prostanoid receptor 1 (DP1). In this study, we aimed to investigate the role of the prostaglandin D2/DP1 axis in T cells on age-related hypertension. METHODS: To clarify the physiological and pathophysiological roles of DP1 in T cells with aging, peripheral blood samples were collected from young and older male participants, and CD4+ T cells were sorted for gene expression, prostaglandin production, and Western blot assays. Mice blood pressure was quantified by invasive telemetric monitor. RESULTS: The prostaglandin D2/DP1 axis was downregulated in CD4+ T cells from older humans and aged mice. DP1 deletion in CD4+ T cells augmented age-related hypertension in aged male mice by enhancing Th1 cytokine secretion, vascular remodeling, CD4+ T cells infiltration, and superoxide production in vasculature and kidneys. Conversely, forced expression of exogenous DP1 in T cells retarded age-associated hypertension in mice by reducing Th1 cytokine secretion. Tumor necrosis factor α neutralization or interferon γ deletion ameliorated the age-related hypertension in DP1 deletion in CD4+ T cells mice. Mechanistically, DP1 inhibited Th1 activity via the PKA (protein kinase A)/p-Sp1 (phosphorylated specificity protein 1)/neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) pathway-mediated T-box-expressed-in-T-cells (T-bet) ubiquitination. T-bet deletion or forced NEDD4L expression in CD4+ T cells attenuated age-related hypertension in CD4+ T cell-specific DP1-deficient mice. DP1 receptor activation by BW245C prevented age-associated blood pressure elevation and reduced vascular/renal superoxide production in male mice. CONCLUSIONS: The prostaglandin D2/DP1 axis suppresses age-related Th1 activation and subsequent hypertensive response in male mice through increase of NEDD4L-mediated T-bet degradation by ubiquitination. Therefore, the T cell DP1 receptor may be an attractive therapeutic target for age-related hypertension.


Assuntos
Envelhecimento , Linfócitos T CD4-Positivos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Receptores de Prostaglandina/metabolismo , Proteínas com Domínio T/metabolismo , Idoso , Animais , Anti-Hipertensivos/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/metabolismo , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/agonistas , Receptores de Prostaglandina/deficiência , Receptores de Prostaglandina/genética , Transdução de Sinais , Fator de Transcrição Sp1/metabolismo , Superóxidos/metabolismo , Células Th1/metabolismo , Ubiquitinação
14.
Clin Exp Allergy ; 51(12): 1577-1591, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34514658

RESUMO

BACKGROUND: Several microRNAs (miRs) have been described as potential biomarkers in liquid biopsies and in the context of allergic asthma, while therapeutic effects on the airway expression of miRs remain elusive. In this study, we investigated epigenetic miR-associated mechanisms in the sputum of grass pollen-allergic patients with and without allergen-specific immunotherapy (AIT). METHODS: Induced sputum samples of healthy controls (HC), AIT-treated and -untreated grass pollen-allergic rhinitis patients with (AA) and without asthma (AR) were profiled using miR microarray and whole-transcriptome microarray analysis of the same samples. miR targets were predicted in silico and used to identify inverse regulation. Local PGE2  levels were measured using ELISA. RESULTS: Two hundred and fifty nine miRs were upregulated in the sputum of AA patients compared with HC, while only one was downregulated. The inverse picture was observed in induced sputum of AIT-treated patients: while 21 miRs were downregulated, only 4 miRs were upregulated in asthmatics upon AIT. Of these 4 miRs, miR-3935 stood out, as its predicted target PTGER3, the prostaglandin EP3 receptor, was downregulated in treated AA patients compared with untreated. The levels of its ligand PGE2 in the sputum supernatants of these samples were increased in allergic patients, especially asthmatics, and downregulated after AIT. Finally, local PGE2  levels correlated with ILC2 frequencies, secreted sputum IL-13 levels, inflammatory cell load, sputum eosinophils and symptom burden. CONCLUSIONS: While profiling the sputum of allergic patients for novel miR expression patterns, we uncovered an association between miR-3935 and its predicted target gene, the prostaglandin E3 receptor, which might mediate AIT effects through suppression of the PGE2 -PTGER3 axis.


Assuntos
MicroRNAs , Rinite Alérgica , Alérgenos , Dessensibilização Imunológica , Humanos , Imunidade Inata , Linfócitos , MicroRNAs/genética , Prostaglandinas , Receptores de Prostaglandina/genética , Escarro
15.
Am J Respir Crit Care Med ; 201(10): 1263-1276, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31917615

RESUMO

Rationale: Vascular remodeling, including smooth muscle cell hypertrophy and proliferation, is the key pathological feature of pulmonary arterial hypertension (PAH). Prostaglandin I2 analogs (beraprost, iloprost, and treprostinil) are effective in the treatment of PAH. Of note, the clinically favorable effects of treprostinil in severe PAH may be attributable to concomitant activation of DP1 (D prostanoid receptor subtype 1).Objectives: To study the role of DP1 in the progression of PAH and its underlying mechanism.Methods: DP1 levels were examined in pulmonary arteries of patients and animals with PAH. Multiple genetic and pharmacologic approaches were used to investigate DP1-mediated signaling in PAH.Measurements and Main Results: DP1 expression was downregulated in hypoxia-treated pulmonary artery smooth muscle cells and in pulmonary arteries from rodent PAH models and patients with idiopathic PAH. DP1 deletion exacerbated pulmonary artery remodeling in hypoxia-induced PAH, whereas pharmacological activation or forced expression of the DP1 receptor had the opposite effect in different rodent models. DP1 deficiency promoted pulmonary artery smooth muscle cell hypertrophy and proliferation in response to hypoxia via induction of mTORC1 (mammalian target of rapamycin complex 1) activity. Rapamycin, an inhibitor of mTORC1, alleviated the hypoxia-induced exacerbation of PAH in DP1-knockout mice. DP1 activation facilitated raptor dissociation from mTORC1 and suppressed mTORC1 activity through PKA (protein kinase A)-dependent phosphorylation of raptor at Ser791. Moreover, treprostinil treatment blocked the progression of hypoxia-induced PAH in mice in part by targeting the DP1 receptor.Conclusions: DP1 activation attenuates hypoxia-induced pulmonary artery remodeling and PAH through PKA-mediated dissociation of raptor from mTORC1. These results suggest that the DP1 receptor may serve as a therapeutic target for the management of PAH.


Assuntos
Hipóxia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Hipertensão Arterial Pulmonar/genética , Receptores Imunológicos/genética , Receptores de Prostaglandina/genética , Remodelação Vascular/genética , Animais , Anti-Hipertensivos/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Humanos , Hipertrofia , Imunossupressores/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar , RNA Mensageiro/metabolismo , Ratos , Sirolimo/farmacologia
16.
Mol Pharmacol ; 97(4): 267-277, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32005759

RESUMO

G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors and serve as signal mediators to transduce information from extracellular signals such as neurotransmitters, hormones, or drugs to cellular responses. They are exposed to the strong electrical field of the plasma membrane. In the last decade voltage modulation of ligand-induced GPCR activity has been reported for several GPCRs. Using Foerster resonance energy transfer-based biosensors in patch clamp experiments, we discovered a robust voltage dependence of the thromboxane receptor (TP receptor) on the receptor level as well as on downstream signaling. TP receptor activity doubled upon depolarization from -90 to +60 mV in the presence of U46619, a stable analog of prostaglandin H2 Half-maximal effective potential (V0.5) determined for TP receptor was -46 mV, which is within the physiologic range. We identified that depolarization affected the agonist affinity for the TP receptor. Depolarization enhanced responses of several structural analogs of U46619 with modifications to a similar extent all around the molecule, indicating that voltage modulates the general conformation of TP receptor. By means of site direct mutagenesis, we identified TP receptor R2957.40, which showed alteration of voltage sensitivity of TP receptor upon mutation. Voltage sensitivity was not limited to TP receptor because prostaglandin F receptor activated with U46619 and prostaglandin E2 receptor subtype 3 activated with iloprost showed a similar reaction to depolarization as TP receptor. However, prostacyclin receptor activated with iloprost showed no detectable voltage dependence. SIGNIFICANCE STATEMENT: Prostanoids mediate many of their physiological effects via transmembrane receptors expressed in the plasma membrane of excitable cells. We found that agonist-mediated activation of prostaglandin F receptors and prostaglandin E2 receptors as well as thromboxane receptors are activated upon depolarization, whereas prostacyclin receptors are not. The voltage-induced modulation of thromboxane receptor activity was observed on the level of receptor conformation and downstream signaling. The range of voltage dependence was restricted by R2957.40 in the agonist-binding pocket.


Assuntos
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Receptores de Prostaglandina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Arginina/genética , Sítios de Ligação/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Iloprosta/farmacologia , Ligantes , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Receptores de Epoprostenol/metabolismo , Receptores de Prostaglandina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
17.
Am J Physiol Endocrinol Metab ; 318(6): E981-E994, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315215

RESUMO

Chlamydia trachomatis infection is a primary cause of reproductive tract diseases including infertility. Previous studies showed that this infection alters physiological activities in mouse oviducts. Whether this occurs in the uterus and cervix has never been investigated. This study characterized the physiological activities of the uterine horn and the cervix in a Chlamydia muridarum (Cmu)-infected mouse model at three infection time points of 7, 14, and 21 days postinfection (dpi). Cmu infection significantly decreased contractile force of spontaneous contraction in the cervix (7 and 14 dpi; P < 0.001 and P < 0.05, respectively), but this effect was not observed in the uterine horn. The responses of the uterine horn and cervix to oxytocin were significantly altered by Cmu infection at 7 dpi (P < 0.0001), but such responses were attenuated at 14 and 21 dpi. Cmu infection increased contractile force to prostaglandin (PGF2α) by 53-83% in the uterine horn. This corresponded with the increased messenger ribonucleic acid (mRNA) expression of Ptgfr that encodes for its receptor. However, Cmu infection did not affect contractions of the uterine horn and cervix to PGE2 and histamine. The mRNA expression of Otr and Ptger4 was inversely correlated with the mRNA expression of Il1b, Il6 in the uterine horn of Cmu-inoculated mice (P < 0.01 to P < 0.001), suggesting that the changes in the Otr and Ptger4 mRNA expression might be linked to the changes in inflammatory cytokines. Lastly, this study also showed a novel physiological finding of the differential response to PGE2 in mouse uterine horn and cervix.


Assuntos
Infecções por Chlamydia/fisiopatologia , Chlamydia muridarum , Miométrio/fisiopatologia , Infecções do Sistema Genital/fisiopatologia , Contração Uterina/fisiologia , Útero/fisiopatologia , Animais , Colo do Útero/metabolismo , Colo do Útero/fisiopatologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/metabolismo , Citocinas/genética , Dinoprosta/farmacologia , Dinoprostona/farmacologia , Feminino , Regulação da Expressão Gênica , Histamina/farmacologia , Agonistas dos Receptores Histamínicos/farmacologia , Interleucina-1beta/genética , Interleucina-6/genética , Camundongos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiopatologia , Miométrio/efeitos dos fármacos , Miométrio/metabolismo , Oviductos/patologia , Ocitócicos/farmacologia , RNA Mensageiro/metabolismo , Receptores de Ocitocina/genética , Receptores de Prostaglandina/genética , Receptores de Prostaglandina E Subtipo EP4/genética , Infecções do Sistema Genital/genética , Infecções do Sistema Genital/imunologia , Infecções do Sistema Genital/metabolismo , Contração Uterina/efeitos dos fármacos , Útero/metabolismo
18.
J Autoimmun ; 114: 102508, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32624353

RESUMO

Priming of autoreactive T cells in lymph nodes by dendritic cells (DCs) is critical for the pathogenesis of experimental autoimmune encephalitis (EAE). DC activation reflects a balance of pro- and anti-inflammatory signals. One anti-inflammatory factor is prostaglandin D2 signaling through its cognate receptor, D-prostanoid receptor 1 (PTGDR), on myeloid cells. Loss of PTGDR signaling might be expected to enhance DC activation and EAE but here we show that PTGDR-/- mice developed only mild signs of MOG35-55 peptide immunization-induced EAE. Compared to wild type mice, PTGDR-/- mice exhibited less demyelination, decreased leukocyte infiltration and diminished microglia activation. These effects resulted from increased pro-inflammatory responses in the lymph nodes, most notably in IL-1ß production, with the unexpected consequence of increased activation-induced apoptosis of MOG35-55 peptide-specific T cells. Conditional deletion of PTGDR on DCs, and not other myeloid cells ameliorated EAE. Together, these results demonstrate the indispensable role that PGD2/PTGDR signaling on DCs has in development of pathogenic T cells in autoimmune demyelination.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Prostaglandina D2/metabolismo , Transdução de Sinais , Transferência Adotiva/métodos , Animais , Antígeno B7-H1/metabolismo , Biomarcadores , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
Allergy ; 75(4): 761-768, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31355946

RESUMO

Current research suggests that the prostaglandin D2 (PGD2 ) receptor 2 (DP2 ) is a principal regulator in the pathophysiology of asthma, because it stimulates and amplifies the inflammatory response in this condition. The DP2 receptor can be activated by both allergic and nonallergic stimuli, leading to several pro-inflammatory events, including eosinophil activation and migration, release of the type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 from T helper 2 (Th2) cells and innate lymphoid cells type 2 (ILCs), and increased airway smooth muscle mass via recruitment of mesenchymal progenitors to the airway smooth muscle bundle. Activation of the DP2 receptor pathway has potential downstream effects on asthma pathophysiology, including on airway epithelial cells, mucus hypersecretion, and airway remodelling, and consequently might impact asthma symptoms and exacerbations. Given the broad distribution of DP2 receptors on immune and structural cells involved in asthma, this receptor is being explored as a novel therapeutic target.


Assuntos
Asma , Hipersensibilidade , Receptores de Prostaglandina , Asma/imunologia , Asma/metabolismo , Humanos , Imunidade Inata , Linfócitos , Prostaglandina D2 , Receptores de Prostaglandina/genética
20.
Exp Eye Res ; 196: 108036, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376473

RESUMO

Our study aimed to investigate the differentially expressed circRNAs and their potential roles in orbital adipose/connective tissue from patients with thyroid-associated ophthalmopathy (TAO). The orbital adipose/connective tissue samples from three TAO patients and three control individuals were collected for RNA sequencing after depletion of ribosomal RNA. Differentially expressed mRNAs and up-regulated circRNAs were used for co-expression analysis. Functional and pathway enrichment analysis were conducted for the up- and down-regulated mRNAs in the circRNA-mRNA co-expression network. Meanwhile, circRNA-miRNA interaction network was established by miRanda software. The expression levels of mRNAs and circRNAs in control and TAO samples were determined by qRT-PCR. Among all the 16,329 circRNAs predicted from RNA sequencing data, 163 circRNAs (95 down-regulated and 68 up-regulated) were differentially expressed in TAO samples. Besides, 607 differentially expressed mRNAs were identified. The co-expression analysis showed circRNA_14940 was correlated with CCND1 and TNXB, while circRNA_10135 was correlated with PTGFR, and circRNA_14936 was correlated with TNFRSF19. The up-regulated CCND1 participated in Wnt signaling pathway. The down-regulated TNXB was involved in the ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathway. PTGFR participated in neuroactive ligand-receptor interaction and calcium signaling pathway. TNFRSF19 was involved in cytokine-cytokine receptor interaction. In the interaction network, circRNA_14936 could interact with hsa-miR-10392-3p, and circRNA_12367 could interact with hsa-miR-1228-3p. Moreover, the expression changes of MMP2, TNXB, PTGFR, CCND1, and TNFRSF19, as well as circRNA_14936, circRNA_14940, and circRNA_12367 were validated by qRT-PCR. In conclusion, the differentially expressed circRNAs might participate in pathogenesis of TAO, and we speculated that circRNA_14940-CCND1-Wnt signaling pathway might be an important regulatory axis.


Assuntos
Tecido Adiposo/metabolismo , Tecido Conjuntivo/metabolismo , Regulação da Expressão Gênica/fisiologia , Oftalmopatia de Graves/genética , Órbita/metabolismo , RNA Circular/genética , Biologia Computacional , Ciclina D1/genética , Perfilação da Expressão Gênica , Oftalmopatia de Graves/metabolismo , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Prostaglandina/genética , Receptores do Fator de Necrose Tumoral/genética , Análise de Sequência de RNA , Transdução de Sinais , Tenascina/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA