Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.154
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 681-707, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33441034

RESUMO

Located at the inner leaflet of the plasma membrane (PM), phosphatidyl-inositol 4,5-bisphosphate [PI(4,5)P2] composes only 1-2 mol% of total PM lipids. With its synthesis and turnover both spatially and temporally regulated, PI(4,5)P2 recruits and interacts with hundreds of cellular proteins to support a broad spectrum of cellular functions. Several factors contribute to the versatile and dynamic distribution of PI(4,5)P2 in membranes. Physiological multivalent cations such as Ca2+ and Mg2+ can bridge between PI(4,5)P2 headgroups, forming nanoscopic PI(4,5)P2-cation clusters. The distinct lipid environment surrounding PI(4,5)P2 affects the degree of PI(4,5)P2 clustering. In addition, diverse cellular proteins interacting with PI(4,5)P2 can further regulate PI(4,5)P2 lateral distribution and accessibility. This review summarizes the current understanding of PI(4,5)P2 behavior in both cells and model membranes, with emphasis on both multivalent cation- and protein-induced PI(4,5)P2 clustering. Understanding the nature of spatially separated pools of PI(4,5)P2 is fundamental to cell biology.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Replicação Viral/fisiologia , Animais , Membrana Celular/metabolismo , Humanos , Micelas , Fosfatidilinositol 4,5-Difosfato/química , Proteínas Virais/metabolismo
2.
Cell ; 184(14): 3774-3793.e25, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34115982

RESUMO

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.


Assuntos
Citomegalovirus/fisiologia , Macrófagos Alveolares/virologia , Animais , Apresentação de Antígeno , Efeito Espectador , Ciclo Celular , Linhagem Celular Transformada , Reprogramação Celular , Citomegalovirus/patogenicidade , Citomegalovirus/ultraestrutura , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Proteínas de Fluorescência Verde/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Células-Tronco/patologia , Replicação Viral/fisiologia , Via de Sinalização Wnt
3.
Cell ; 184(13): 3410-3425.e17, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34062120

RESUMO

To control viral infection, vertebrates rely on both inducible interferon responses and less well-characterized cell-intrinsic responses composed of "at the ready" antiviral effector proteins. Here, we show that E3 ubiquitin ligase TRIM7 is a cell-intrinsic antiviral effector that restricts multiple human enteroviruses by targeting viral 2BC, a membrane remodeling protein, for ubiquitination and proteasome-dependent degradation. Selective pressure exerted by TRIM7 results in emergence of a TRIM7-resistant coxsackievirus with a single point mutation in the viral 2C ATPase/helicase. In cultured cells, the mutation helps the virus evade TRIM7 but impairs optimal viral replication, and this correlates with a hyperactive and structurally plastic 2C ATPase. Unexpectedly, the TRIM7-resistant virus has a replication advantage in mice and causes lethal pancreatitis. These findings reveal a unique mechanism for targeting enterovirus replication and provide molecular insight into the benefits and trade-offs of viral evolution imposed by a host restriction factor.


Assuntos
Enterovirus/fisiologia , Enterovirus/patogenicidade , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Mutação/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , RNA Viral/metabolismo , Ubiquitina/metabolismo , Proteínas Virais/genética
4.
Cell ; 184(3): 643-654.e13, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482082

RESUMO

Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.


Assuntos
Ciclo Celular , Reagentes de Ligações Cruzadas/química , DNA Viral/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Plasmídeos/metabolismo , Origem de Replicação , Replicação Viral/fisiologia , Sequência de Aminoácidos , Linfócitos B/metabolismo , Linhagem Celular , Adutos de DNA/metabolismo , Replicação do DNA , Endonucleases/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/genética , Humanos , Mutação/genética , Ligação Proteica , Recombinação Genética/genética , Tirosina/metabolismo
5.
Cell ; 183(7): 1930-1945.e23, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33188777

RESUMO

RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.


Assuntos
Biossíntese de Proteínas , Vírus de RNA/fisiologia , Replicação Viral/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Transporte de RNA , RNA Viral/genética , Reprodutibilidade dos Testes , Imagem Individual de Molécula , Fatores de Tempo
6.
Nat Rev Mol Cell Biol ; 23(1): 21-39, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34824452

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to cause massive global upheaval. Coronaviruses are positive-strand RNA viruses with an unusually large genome of ~30 kb. They express an RNA-dependent RNA polymerase and a cohort of other replication enzymes and supporting factors to transcribe and replicate their genomes. The proteins performing these essential processes are prime antiviral drug targets, but drug discovery is hindered by our incomplete understanding of coronavirus RNA synthesis and processing. In infected cells, the RNA-dependent RNA polymerase must coordinate with other viral and host factors to produce both viral mRNAs and new genomes. Recent research aiming to decipher and contextualize the structures, functions and interplay of the subunits of the SARS-CoV-2 replication and transcription complex proteins has burgeoned. In this Review, we discuss recent advancements in our understanding of the molecular basis and complexity of the coronavirus RNA-synthesizing machinery. Specifically, we outline the mechanisms and regulation of RNA translation, replication and transcription. We also discuss the composition of the replication and transcription complexes and their suitability as targets for antiviral therapy.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Transcrição Gênica , Replicação Viral/fisiologia , Animais , Humanos , RNA Viral/metabolismo , Transcrição Gênica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
Cell ; 176(1-2): 281-294.e19, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30503209

RESUMO

Influenza viruses inhabit a wide range of host environments using a limited repertoire of protein components. Unlike viruses with stereotyped shapes, influenza produces virions with significant morphological variability even within clonal populations. Whether this tendency to form pleiomorphic virions is coupled to compositional heterogeneity and whether it affects replicative fitness remains unclear. Here, we address these questions by developing a strain of influenza A virus amenable to rapid compositional characterization through quantitative, site-specific labeling of viral proteins. Using this strain, we find that influenza A produces virions with broad variations in size and composition from even single infected cells. This phenotypic variability contributes to virus survival during environmental challenges, including exposure to antivirals. Complementing genetic adaptations that act over larger populations and longer times, this "low-fidelity" assembly of influenza A virus allows small populations to survive environments that fluctuate over individual replication cycles.


Assuntos
Vírus da Influenza A/metabolismo , Montagem de Vírus/fisiologia , Linhagem Celular , Células Cultivadas , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Proteínas Virais , Vírion , Replicação Viral/fisiologia
8.
Annu Rev Biochem ; 87: 809-837, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29596003

RESUMO

To maintain an asymmetric distribution of ions across membranes, protein pumps displace ions against their concentration gradient by using chemical energy. Here, we describe a functionally analogous but topologically opposite process that applies to the lipid transfer protein (LTP) oxysterol-binding protein (OSBP). This multidomain protein exchanges cholesterol for the phosphoinositide phosphatidylinositol 4-phosphate [PI(4)P] between two apposed membranes. Because of the subsequent hydrolysis of PI(4)P, this counterexchange is irreversible and contributes to the establishment of a cholesterol gradient along organelles of the secretory pathway. The facts that some natural anti-cancer molecules block OSBP and that many viruses hijack the OSBP cycle for the formation of intracellular replication organelles highlight the importance and potency of OSBP-mediated lipid exchange. The architecture of some LTPs is similar to that of OSBP, suggesting that the principles of the OSBP cycle-burning PI(4)P for the vectorial transfer of another lipid-might be general.


Assuntos
Colesterol/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/metabolismo , Transporte Biológico Ativo , Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Humanos , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Oxisteróis/metabolismo , Domínios e Motivos de Interação entre Proteínas , Receptores de Esteroides/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação Viral/fisiologia
9.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550789

RESUMO

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Assuntos
Proteínas de Transporte , Proteínas de Ligação a DNA , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/metabolismo , Fatores de Transcrição , Proteínas Virais , Replicação Viral/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/patologia , Humanos , Mapeamento de Interação de Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
Nat Rev Mol Cell Biol ; 21(1): 25-42, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705132

RESUMO

Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The 'classical' budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Neurônios/citologia , Membrana Nuclear/metabolismo , Replicação Viral/fisiologia , Animais , Citocinese , Endossomos/metabolismo , Exossomos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Neurônios/metabolismo , Fagossomos/metabolismo , Transporte Proteico , Espastina/metabolismo
11.
Mol Cell ; 84(2): 202-220.e15, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38103559

RESUMO

Compounds binding to the bromodomains of bromodomain and extra-terminal (BET) family proteins, particularly BRD4, are promising anticancer agents. Nevertheless, side effects and drug resistance pose significant obstacles in BET-based therapeutics development. Using high-throughput screening of a 200,000-compound library, we identified small molecules targeting a phosphorylated intrinsically disordered region (IDR) of BRD4 that inhibit phospho-BRD4 (pBRD4)-dependent human papillomavirus (HPV) genome replication in HPV-containing keratinocytes. Proteomic profiling identified two DNA damage response factors-53BP1 and BARD1-crucial for differentiation-associated HPV genome amplification. pBRD4-mediated recruitment of 53BP1 and BARD1 to the HPV origin of replication occurs in a spatiotemporal and BRD4 long (BRD4-L) and short (BRD4-S) isoform-specific manner. This recruitment is disrupted by phospho-IDR-targeting compounds with little perturbation of the global transcriptome and BRD4 chromatin landscape. The discovery of these protein-protein interaction inhibitors (PPIi) not only demonstrates the feasibility of developing PPIi against phospho-IDRs but also uncovers antiviral agents targeting an epigenetic regulator essential for virus-host interaction and cancer development.


Assuntos
Infecções por Papillomavirus , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Papillomavirus Humano , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/genética , Proteômica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Papillomaviridae/genética , Papillomaviridae/metabolismo , Proteínas Virais/genética , Replicação Viral/fisiologia , Reparo do DNA , Proteínas que Contêm Bromodomínio
12.
Mol Cell ; 81(13): 2851-2867.e7, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118193

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.


Assuntos
COVID-19/metabolismo , Proteoma/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Células A549 , COVID-19/genética , Humanos , Proteoma/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas Virais/genética
13.
Mol Cell ; 80(6): 1067-1077.e5, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33259809

RESUMO

The Coronaviridae is a family of positive-strand RNA viruses that includes SARS-CoV-2, the etiologic agent of the COVID-19 pandemic. Bearing the largest single-stranded RNA genomes in nature, coronaviruses are critically dependent on long-distance RNA-RNA interactions to regulate the viral transcription and replication pathways. Here we experimentally mapped the in vivo RNA-RNA interactome of the full-length SARS-CoV-2 genome and subgenomic mRNAs. We uncovered a network of RNA-RNA interactions spanning tens of thousands of nucleotides. These interactions reveal that the viral genome and subgenomes adopt alternative topologies inside cells and engage in different interactions with host RNAs. Notably, we discovered a long-range RNA-RNA interaction, the FSE-arch, that encircles the programmed ribosomal frameshifting element. The FSE-arch is conserved in the related MERS-CoV and is under purifying selection. Our findings illuminate RNA structure-based mechanisms governing replication, discontinuous transcription, and translation of coronaviruses and will aid future efforts to develop antiviral strategies.


Assuntos
COVID-19/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico , Genoma Viral/fisiologia , RNA Viral/biossíntese , SARS-CoV-2/fisiologia , Replicação Viral/fisiologia , Animais , COVID-19/genética , Chlorocebus aethiops , Humanos , Biossíntese de Proteínas , RNA Viral/genética , Transcrição Gênica , Células Vero
15.
Proc Natl Acad Sci U S A ; 121(31): e2320303121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39008691

RESUMO

Influenza viruses pose a significant burden on global human health. Influenza has a broad cellular tropism in the airway, but how infection of different epithelial cell types impacts replication kinetics and burden in the airways is not fully understood. Using primary human airway cultures, which recapitulate the diverse epithelial cell landscape of the human airways, we investigated the impact of cell type composition on virus tropism and replication kinetics. Cultures were highly diverse across multiple donors and 30 independent differentiation conditions and supported a range of influenza replication. Although many cell types were susceptible to influenza, ciliated and secretory cells were predominantly infected. Despite the strong tropism preference for secretory and ciliated cells, which consistently make up 75% or more of infected cells, only ciliated cells were associated with increased virus production. Surprisingly, infected secretory cells were associated with overall reduced virus output. The disparate response and contribution to influenza virus production could be due to different pro- and antiviral interferon-stimulated gene signatures between ciliated and secretory populations, which were interrogated with single-cell RNA sequencing. These data highlight the heterogeneous outcomes of influenza virus infections in the complex cellular environment of the human airway and the disparate impacts of infected cell identity on multiround burst size, even among preferentially infected cell types.


Assuntos
Células Epiteliais , Influenza Humana , Tropismo Viral , Replicação Viral , Humanos , Influenza Humana/virologia , Replicação Viral/fisiologia , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Cílios/virologia , Cílios/metabolismo , Células Cultivadas , Mucosa Respiratória/virologia , Mucosa Respiratória/citologia
16.
Proc Natl Acad Sci U S A ; 121(40): e2407990121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39320912

RESUMO

We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.


Assuntos
Vírus dos Macacos de Mason-Pfizer , RNA Viral , Montagem de Vírus , Animais , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/virologia , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Genoma Viral , Células HEK293 , Vírus dos Macacos de Mason-Pfizer/genética , Vírus dos Macacos de Mason-Pfizer/metabolismo , Vírus dos Macacos de Mason-Pfizer/fisiologia , RNA Helicases/metabolismo , RNA Helicases/genética , RNA Viral/metabolismo , RNA Viral/genética , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia
17.
J Cell Sci ; 137(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39254430

RESUMO

Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.


Assuntos
Organelas , Vírus de RNA de Cadeia Positiva , Replicação Viral , Humanos , Replicação Viral/fisiologia , Organelas/metabolismo , Organelas/virologia , Vírus de RNA de Cadeia Positiva/metabolismo , Animais , Interações Hospedeiro-Patógeno , Compartimentos de Replicação Viral/metabolismo
18.
PLoS Pathog ; 20(8): e1012423, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093901

RESUMO

The extent and origin of variation in the replication dynamics of complex DNA viruses is not well-defined. Here, we investigate the vaccinia virus (VACV) infection cycle at the single-cell level, quantifying the temporal dynamics of early and post(dna)-replicative phase gene expression across thousands of infections. We found that viral factors determine the initiation time of these phases, and this is influenced by the multiplicity of infection (MOI). In contrast, virus production dynamics are largely constrained by the host cell. Additionally, between-cell variability in infection start time and virus production rate were strongly influenced by MOI, providing evidence for cooperativity between infecting virions. Blocking programmed cell death by pan-caspase inhibition increased infection frequency but not virus production at the population level due to a concurrent attenuation of per-cell virus yield, suggesting a dual role for caspase signaling in VACV infection. Our findings provide key insights into the pivotal factors influencing heterogeneity in the infection cycle of a large DNA virus at the single-cell level.


Assuntos
Análise de Célula Única , Vaccinia virus , Vacínia , Replicação Viral , Vaccinia virus/fisiologia , Análise de Célula Única/métodos , Replicação Viral/fisiologia , Humanos , Vacínia/virologia , Interações Hospedeiro-Patógeno
19.
PLoS Pathog ; 20(5): e1012010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753575

RESUMO

Arboviruses are a diverse group of insect-transmitted pathogens that pose global public health challenges. Identifying evolutionarily conserved host factors that combat arbovirus replication in disparate eukaryotic hosts is important as they may tip the balance between productive and abortive viral replication, and thus determine virus host range. Here, we exploit naturally abortive arbovirus infections that we identified in lepidopteran cells and use bacterial effector proteins to uncover host factors restricting arbovirus replication. Bacterial effectors are proteins secreted by pathogenic bacteria into eukaryotic hosts cells that can inhibit antimicrobial defenses. Since bacteria and viruses can encounter common host defenses, we hypothesized that some bacterial effectors may inhibit host factors that restrict arbovirus replication in lepidopteran cells. Thus, we used bacterial effectors as molecular tools to identify host factors that restrict four distinct arboviruses in lepidopteran cells. By screening 210 effectors encoded by seven different bacterial pathogens, we identify several effectors that individually rescue the replication of all four arboviruses. We show that these effectors encode diverse enzymatic activities that are required to break arbovirus restriction. We further characterize Shigella flexneri-encoded IpaH4 as an E3 ubiquitin ligase that directly ubiquitinates two evolutionarily conserved proteins, SHOC2 and PSMC1, promoting their degradation in insect and human cells. We show that depletion of either SHOC2 or PSMC1 in insect or human cells promotes arbovirus replication, indicating that these are ancient virus restriction factors conserved across invertebrate and vertebrate hosts. Collectively, our study reveals a novel pathogen-guided approach to identify conserved antimicrobial machinery, new effector functions, and conserved roles for SHOC2 and PSMC1 in virus restriction.


Assuntos
Proteínas de Bactérias , Interações Hospedeiro-Patógeno , Replicação Viral , Animais , Replicação Viral/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Arbovírus , Shigella flexneri/patogenicidade , Infecções por Arbovirus/virologia , Linhagem Celular
20.
PLoS Pathog ; 20(3): e1012085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484009

RESUMO

Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.


Assuntos
Tombusvirus , Tombusvirus/fisiologia , Saccharomyces cerevisiae/genética , Membranas Intracelulares/metabolismo , Replicação Viral/fisiologia , Fosfolipídeos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Autofagia , Organelas/metabolismo , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA