Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.916
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 86: 1-19, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28125288

RESUMO

After an undergraduate degree in biology at Harvard, I started graduate school at The Rockefeller Institute for Medical Research in New York City in July 1965. I was attracted to the chemical side of biochemistry and joined Fritz Lipmann's large, hierarchical laboratory to study enzyme mechanisms. That work led to postdoctoral research with Robert Abeles at Brandeis, then a center of what, 30 years later, would be called chemical biology. I spent 15 years on the Massachusetts Institute of Technology faculty, in both the Chemistry and Biology Departments, and then 26 years on the Harvard Medical School Faculty. My research interests have been at the intersection of chemistry, biology, and medicine. One unanticipated major focus has been investigating the chemical logic and enzymatic machinery of natural product biosynthesis, including antibiotics and antitumor agents. In this postgenomic era it is now recognized that there may be from 105 to 106 biosynthetic gene clusters as yet uncharacterized for potential new therapeutic agents.


Assuntos
Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Bioquímica/história , Produtos Biológicos/metabolismo , Pesquisa Biomédica/história , Indústria Farmacêutica/história , Antibacterianos/química , Antineoplásicos/química , Bioquímica/tendências , Produtos Biológicos/química , Pesquisa Biomédica/tendências , Indústria Farmacêutica/tendências , Regulação da Expressão Gênica , História do Século XX , História do Século XXI , Humanos , Ligases/genética , Ligases/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Resistência a Vancomicina/genética , Recursos Humanos
2.
PLoS Biol ; 22(8): e3002741, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39146240

RESUMO

Clostridioides difficile is an important human pathogen, for which there are very limited treatment options, primarily the glycopeptide antibiotic vancomycin. In recent years, vancomycin resistance has emerged as a serious problem in several gram-positive pathogens, but high-level resistance has yet to be reported for C. difficile, although it is not known if this is due to constraints upon resistance evolution in this species. Here, we show that resistance to vancomycin can evolve rapidly under ramping selection but is accompanied by fitness costs and pleiotropic trade-offs, including sporulation defects that would be expected to severely impact transmission. We identified 2 distinct pathways to resistance, both of which are predicted to result in changes to the muropeptide terminal D-Ala-D-Ala that is the primary target of vancomycin. One of these pathways involves a previously uncharacterised D,D-carboxypeptidase, expression of which is controlled by a dedicated two-component signal transduction system. Our findings suggest that while C. difficile is capable of evolving high-level vancomycin resistance, this outcome may be limited clinically due to pleiotropic effects on key pathogenicity traits. Moreover, our data identify potential mutational routes to resistance that should be considered in genomic surveillance.


Assuntos
Antibacterianos , Clostridioides difficile , Resistência a Vancomicina , Vancomicina , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Resistência a Vancomicina/genética , Vancomicina/farmacologia , Antibacterianos/farmacologia , Aptidão Genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Transdução de Sinais , Mutação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/genética
3.
PLoS Pathog ; 20(8): e1012422, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39207957

RESUMO

Vancomycin has proven remarkably durable to resistance evolution by Staphylococcus aureus despite widespread treatment with vancomycin in the clinic. Only 16 cases of vancomycin-resistant S. aureus (VRSA) have been documented in the United States. It is thought that the failure of VRSA to spread is partly due to the fitness cost imposed by the vanA operon, which is the only known means of high-level resistance. Here, we show that the fitness cost of vanA-mediated resistance can be overcome through laboratory evolution of VRSA in the presence of vancomycin. Adaptation to vancomycin imposed a tradeoff such that fitness in the presence of vancomycin increased, while fitness in its absence decreased in evolved lineages. Comparing the genomes of vancomycin-exposed and vancomycin-unexposed lineages pinpointed the D-alanine:D-alanine ligase gene (ddl) as the target of loss-of-function mutations, which were associated with the observed fitness tradeoff. Vancomycin-exposed lineages exhibited vancomycin dependence and abnormal colony morphology in the absence of drug, which were associated with mutations in ddl. However, further evolution of vancomycin-exposed lineages in the absence of vancomycin enabled some evolved lineages to escape this fitness tradeoff. Many vancomycin-exposed lineages maintained resistance in the absence of vancomycin, unlike their ancestral VRSA strains. These results indicate that VRSA might be able to compensate for the fitness deficit associated with vanA-mediated resistance, which may pose a threat to the prolonged durability of vancomycin in the clinic. Our results also suggest vancomycin treatment should be immediately discontinued in patients after VRSA is identified to mitigate potential adaptations.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Staphylococcus aureus Resistente à Vancomicina , Vancomicina , Vancomicina/farmacologia , Antibacterianos/farmacologia , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus Resistente à Vancomicina/genética , Resistência a Vancomicina/genética , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação
4.
Mol Microbiol ; 121(6): 1182-1199, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38690761

RESUMO

The dipeptide D-Ala-D-Ala is an essential component of peptidoglycan and the target of vancomycin. Most Clostridioides difficile strains possess the vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The C. difficile vanG operon is regulated by a two-component system, VanRS, but is not induced sufficiently by vancomycin to confer resistance to this antibiotic. Surprisingly, in the absence of the VanS histidine kinase (HK), the vanG operon is still induced by vancomycin and also by another antibiotic, ramoplanin, in a VanR-dependent manner. This suggested the cross-regulation of VanR by another HK or kinases that are activated in the presence of certain lipid II-targeting antibiotics. We identified these HKs as CD35990 and CD22880. However, mutations in either or both HKs did not affect the regulation of the vanG operon in wild-type cells suggesting that intact VanS prevents the cross-activation of VanR by non-cognate HKs. Overproduction of VanR in the absence of VanS, CD35990, and CD22880 led to high expression of the vanG operon indicating that VanR can potentially utilize at least one more phosphate donor for its activation. Candidate targets of CD35990- and CD22880-mediated regulation in the presence of vancomycin or ramoplanin were identified by RNA-Seq.


Assuntos
Antibacterianos , Proteínas de Bactérias , Clostridioides difficile , Regulação Bacteriana da Expressão Gênica , Histidina Quinase , Óperon , Resistência a Vancomicina , Vancomicina , Óperon/genética , Clostridioides difficile/genética , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/metabolismo , Histidina Quinase/metabolismo , Histidina Quinase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vancomicina/farmacologia , Resistência a Vancomicina/genética , Antibacterianos/farmacologia , Depsipeptídeos/farmacologia , Fatores de Transcrição
5.
Nature ; 572(7771): 665-669, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31435014

RESUMO

Intestinal commensal bacteria can inhibit dense colonization of the gut by vancomycin-resistant Enterococcus faecium (VRE), a leading cause of hospital-acquired infections1,2. A four-strained consortium of commensal bacteria that contains Blautia producta BPSCSK can reverse antibiotic-induced susceptibility to VRE infection3. Here we show that BPSCSK reduces growth of VRE by secreting a lantibiotic that is similar to the nisin-A produced by Lactococcus lactis. Although the growth of VRE is inhibited by BPSCSK and L. lactis in vitro, only BPSCSK colonizes the colon and reduces VRE density in vivo. In comparison to nisin-A, the BPSCSK lantibiotic has reduced activity against intestinal commensal bacteria. In patients at high risk of VRE infection, high abundance of the lantibiotic gene is associated with reduced density of E. faecium. In germ-free mice transplanted with patient-derived faeces, resistance to VRE colonization correlates with abundance of the lantibiotic gene. Lantibiotic-producing commensal strains of the gastrointestinal tract reduce colonization by VRE and represent potential probiotic agents to re-establish resistance to VRE.


Assuntos
Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Enterococcus faecium/efeitos dos fármacos , Lactococcus lactis/metabolismo , Probióticos , Resistência a Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Animais , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/isolamento & purificação , Enterococcus faecium/crescimento & desenvolvimento , Enterococcus faecium/isolamento & purificação , Fezes/microbiologia , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Vida Livre de Germes , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Lactococcus lactis/química , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Microbiota/genética , Nisina/química , Nisina/farmacologia , Simbiose/efeitos dos fármacos , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/crescimento & desenvolvimento , Enterococos Resistentes à Vancomicina/isolamento & purificação
6.
Proc Natl Acad Sci U S A ; 119(30): e2118262119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858453

RESUMO

Human infections with methicillin-resistant Staphylococcus aureus (MRSA) are commonly treated with vancomycin, and strains with decreased susceptibility, designated as vancomycin-intermediate S. aureus (VISA), are associated with treatment failure. Here, we profiled the phenotypic, mutational, and transcriptional landscape of 10 VISA strains adapted by laboratory evolution from one common MRSA ancestor, the USA300 strain JE2. Using functional and independent component analysis, we found that: 1) despite the common genetic background and environmental conditions, the mutational landscape diverged between evolved strains and included mutations previously associated with vancomycin resistance (in vraT, graS, vraFG, walKR, and rpoBCD) as well as novel adaptive mutations (SAUSA300_RS04225, ssaA, pitAR, and sagB); 2) the first wave of mutations affected transcriptional regulators and the second affected genes involved in membrane biosynthesis; 3) expression profiles were predominantly strain-specific except for sceD and lukG, which were the only two genes significantly differentially expressed in all clones; 4) three independent virulence systems (φSa3, SaeR, and T7SS) featured as the most transcriptionally perturbed gene sets across clones; 5) there was a striking variation in oxacillin susceptibility across the evolved lineages (from a 10-fold increase to a 63-fold decrease) that also arose in clinical MRSA isolates exposed to vancomycin and correlated with susceptibility to teichoic acid inhibitors; and 6) constitutive expression of the VraR regulon explained cross-susceptibility, while mutations in walK were associated with cross-resistance. Our results show that adaptation to vancomycin involves a surprising breadth of mutational and transcriptional pathways that affect antibiotic susceptibility and possibly the clinical outcome of infections.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus , Resistência a Vancomicina , Vancomicina , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Evolução Molecular , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Oxacilina/química , Oxacilina/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Vancomicina/química , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Resistência a Vancomicina/genética , Virulência/genética
7.
Clin Infect Dis ; 79(1): 15-21, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38382090

RESUMO

BACKGROUND: Epidemiologic studies have shown decreasing vancomycin susceptibility among clinical Clostridioides difficile isolates, but the impact on patient outcomes is unknown. We hypothesized that reduced vancomycin susceptibility would be associated with decreased rates of sustained clinical response (SCR). METHODS: This multicenter cohort study included adults with C. difficile infection (CDI) treated with oral vancomycin between 2016 and 2021. Clostridioides difficile isolates underwent agar dilution vancomycin susceptibility testing, ribotyping, and Sanger sequencing of the vancomycin resistance vanR gene. Reduced susceptibility was defined as vancomycin minimum inhibitory concentration (MIC) >2 µg/mL. The primary outcome was 30-day SCR; secondary outcomes were 14-day initial cure, 30-day recurrence, and 30-day mortality. Exploratory analysis assessed the association between the VanR Thr115Ala polymorphism, susceptibility, and outcomes. RESULTS: A high proportion (34% [102/300]) of C. difficile isolates exhibited reduced vancomycin susceptibility (range, 0.5-16 µg/mL; MIC50/90 = 2/4 µg/mL). Ribotype 027 accounted for the highest proportion (77.4% [41/53]) of isolates with reduced vancomycin susceptibility. Overall, 83% (249) of patients achieved 30-day SCR. Reduced vancomycin susceptibility was associated with lower rates of 30-day SCR (76% [78/102]) than vancomycin-susceptible strains (86% [171/198]; P = .031). A significantly lower rate of 14-day initial cure was also observed among individuals infected with strains with reduced vancomycin susceptibility (89% vs 96%; P = .04). Reduced susceptibility remained an independent predictor of 30-day SCR in multivariable modeling (odds ratio, 0.52 [95% confidence interval, .28-.97]; P = .04). CONCLUSIONS: Reduced vancomycin susceptibility in C. difficile was associated with decreased odds of 30-day SCR and lower 14-day initial cure rates in the studied patient cohort.


Assuntos
Antibacterianos , Clostridioides difficile , Infecções por Clostridium , Testes de Sensibilidade Microbiana , Vancomicina , Humanos , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Vancomicina/uso terapêutico , Vancomicina/farmacologia , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Masculino , Feminino , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Pessoa de Meia-Idade , Idoso , Resistência a Vancomicina/genética , Estudos de Coortes , Resultado do Tratamento , Adulto , Ribotipagem , Idoso de 80 Anos ou mais
8.
Antimicrob Agents Chemother ; 68(5): e0115923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506549

RESUMO

Vancomycin heteroresistance is prone to missed detection and poses a risk of clinical treatment failure. We encountered one clinical Enterococcus faecium strain, SRR12, that carried a complete vanM gene cluster but was determined as susceptible to vancomycin using the broth microdilution method. However, distinct subcolonies appeared within the clear zone of inhibition in the E-test assay, one of which, named SRR12-v1, showed high-level resistance to vancomycin. SRR12 was confirmed as heteroresistant to vancomycin using population analysis profiling and displayed "revive" growth curves with a lengthy lag phase of over 13 hours when exposed to 2-32 mg/L vancomycin. The resistant subcolony SRR12-v1 was found to carry an identical vanM gene cluster to that of SRR12 but a significantly increased vanM copy number in the genome. Long-read whole genome sequencing revealed that a one-copy vanM gene cluster was located on a pELF1-like linear plasmid in SRR12. In comparison, tandem amplification of the vanM gene cluster jointed with IS1216E was seated on a linear plasmid in the genome of SRR12-v1. These amplifications of the vanM gene cluster were demonstrated as unstable and would decrease accompanied by fitness reversion after serial passaging for 50 generations under increasing vancomycin pressure or without antibiotic pressure but were relatively stable under constant vancomycin pressure. Further, vanM resistance in resistant variants was verified to be carried by conjugative plasmids with variable sizes using conjugation assays and S1-pulsed field gel electrophoresis blotting, suggesting the instability/flexibility of vanM cluster amplification in the genome and an increased risk of vanM resistance dissemination.


Assuntos
Antibacterianos , Enterococcus faecium , Testes de Sensibilidade Microbiana , Família Multigênica , Plasmídeos , Resistência a Vancomicina , Vancomicina , Enterococcus faecium/genética , Enterococcus faecium/efeitos dos fármacos , Plasmídeos/genética , Vancomicina/farmacologia , Resistência a Vancomicina/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Humanos , Sequenciamento Completo do Genoma
9.
Antimicrob Agents Chemother ; 68(5): e0143923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591854

RESUMO

Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.


Assuntos
Bacteriófagos , Enterococcus faecium , Especificidade de Hospedeiro , Enterococos Resistentes à Vancomicina , Enterococcus faecium/efeitos dos fármacos , Bacteriófagos/genética , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Terapia por Fagos/métodos , Infecções por Bactérias Gram-Positivas/microbiologia , Resistência a Vancomicina , Vancomicina/farmacologia , Humanos , Antibacterianos/farmacologia
10.
J Antimicrob Chemother ; 79(5): 997-1005, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501366

RESUMO

BACKGROUND: VRE are increasingly described worldwide. Screening of hospitalized patients at risk for VRE carriage is mandatory to control their dissemination. Here, we have developed the Bfast [VRE Panel] PCR kit, a rapid and reliable quantitative PCR assay for detection of vanA, vanB, vanD and vanM genes, from solid and liquid cultures adaptable to classical and ultrafast real-time PCR platforms. METHODS: Validation was carried out on 133 well characterized bacterial strains, including 108 enterococci of which 64 were VRE. Analytical performances were determined on the CFX96 Touch (Bio-Rad) and Chronos Dx (BforCure), an ultrafast qPCR machine. Widely used culture plates and broths for enterococci selection/growth were tested. RESULTS: All targeted van alleles (A, B, D and M) were correctly detected without cross-reactivity with other van genes (C, E, G, L and N) and no interference with the different routinely used culture media. A specificity and sensitivity of 100% and 99.7%, respectively, were determined, with limits of detection ranging from 21 to 238 cfu/reaction depending on the targets. The Bfast [VRE Panel] PCR kit worked equally well on the CFX and Chronos Dx platforms, with differences in multiplexing capacities (five and four optical channels, respectively) and in turnaround time (45 and 16 minutes, respectively). CONCLUSIONS: The Bfast [VRE Panel] PCR kit is robust, easy to use, rapid and easily implementable in clinical microbiology laboratories for ultra-rapid confirmation of the four main acquired van genes. Its features, especially on Chronos Dx, seem to be unmatched compared to other tools for screening of VRE.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Resistência a Vancomicina , Enterococos Resistentes à Vancomicina , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Resistência a Vancomicina/genética , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/isolamento & purificação , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococcus/genética , Enterococcus/efeitos dos fármacos , Enterococcus/isolamento & purificação , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/diagnóstico , Proteínas de Bactérias/genética , Fatores de Tempo , Genes Bacterianos/genética
11.
J Antimicrob Chemother ; 79(7): 1628-1636, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785365

RESUMO

BACKGROUND: The glycopeptide vancomycin is the antimicrobial agent-of-choice for the treatment of severe non-gastrointestinal infections with members of Bacillus cereus sensu lato (s.l.). Recently, sporadic detection of vancomycin-resistant phenotypes emerged, mostly for agar diffusion testing such as the disc diffusion method or gradient test (e.g. Etest®) method. RESULTS: In this work, we were able to disprove a preliminarily assumed high resistance to vancomycin in an isolate of B. cereus s.l. using broth microdilution and agar dilution. Microscopic imaging during vancomycin susceptibility testing showed spreading towards the inhibition zone, which strongly suggested sliding motility. Furthermore, transcriptomic analysis using RNA-Seq on the nanopore platform revealed several key genes of biofilm formation (e.g. calY, tasA, krsEABC) to be up-regulated in pseudo-resistant cells, substantiating that bacterial sliding is responsible for the observed mobility. Down-regulation of virulence (e.g. hblABCD, nheABC, plcR) and flagellar genes compared with swarming cells also confirmed the non-swarming phenotype of the pseudo-resistant isolate. CONCLUSIONS: The results highlight an insufficiency of agar diffusion testing for vancomycin susceptibility in the B. cereus group, and reference methods like broth microdilution are strongly recommended. As currently no guideline mentions interfering phenotypes in antimicrobial susceptibility testing of B. cereus s.l., this knowledge is essential to obtain reliable results on vancomycin susceptibility. In addition, this is the first report of sliding motility undermining accurate antimicrobial susceptibility testing in B. cereus s.l. and may serve as a basis for future studies on bacterial motility in susceptibility testing and its potential impact on treatment efficacy.


Assuntos
Antibacterianos , Bacillus cereus , Testes de Sensibilidade Microbiana , Resistência a Vancomicina , Vancomicina , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/genética , Testes de Sensibilidade Microbiana/métodos , Vancomicina/farmacologia , Antibacterianos/farmacologia , Resistência a Vancomicina/genética , Biofilmes/efeitos dos fármacos , Humanos , Perfilação da Expressão Gênica
12.
Int J Med Microbiol ; 315: 151624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838390

RESUMO

Staphylococcus aureus is a notorious pathogen responsible for various severe diseases. Due to the emergence of drug-resistant strains, the prevention and treatment of S. aureus infections have become increasingly challenging. Vancomycin is considered to be one of the last-resort drugs for treating most methicillin-resistant S. aureus (MRSA), so it is of great significance to further reveal the mechanism of vancomycin resistance. VraFG is one of the few important ABC (ATP-binding cassette) transporters in S. aureus that can form TCS (two-component systems)/ABC transporter modules. ABC transporters can couple the energy released from ATP hydrolysis to translocate solutes across the cell membrane. In this study, we obtained a strain with decreased vancomycin susceptibility after serial passaging and selection. Subsequently, whole-genome sequencing was performed on this laboratory-derived strain MWA2 and a novel single point mutation was discovered in vraF gene, leading to decreased sensitivity to vancomycin and daptomycin. Furthermore, the mutation reduces autolysis of S. aureus and downregulates the expression of lytM, isaA, and atlA. Additionally, we observed that the mutant has a less net negative surface charge than wild-type strain. We also noted an increase in the expression of the dlt operon and mprF gene, which are associated with cell surface charge and serve to hinder the binding of cationic peptides by promoting electrostatic repulsion. Moreover, this mutation has been shown to enhance hemolytic activity, expand subcutaneous abscesses, reflecting an increased virulence. This study confirms the impact of a point mutation of VraF on S. aureus antibiotic resistance and virulence, contributing to a broader understanding of ABC transporter function and providing new targets for treating S. aureus infections.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Antibacterianos , Proteínas de Bactérias , Infecções Estafilocócicas , Staphylococcus aureus , Vancomicina , Virulência/genética , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Vancomicina/farmacologia , Animais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/metabolismo , Testes de Sensibilidade Microbiana , Resistência a Vancomicina/genética , Sequenciamento Completo do Genoma , Daptomicina/farmacologia , Camundongos , Autólise , Humanos , Mutação Puntual , Mutação , Feminino
13.
BMC Microbiol ; 24(1): 353, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294587

RESUMO

BACKGROUND: Clostridium innocuum, previously considered a commensal microbe, is a spore-forming anaerobic bacterium. C. innocuum displays inherent resistance to vancomycin and is associated with extra-intestinal infections, antibiotic-associated diarrhea, and inflammatory bowel disease. This study seeks to establish a multilocus sequence typing (MLST) scheme to explore the correlation between C. innocuum genotyping and its potential pathogenic phenotypes. METHODS: Fifty-two C. innocuum isolates from Linkou Chang Gung Memorial Hospital (CGMH) in Taiwan and 60 sequence-available C. innocuum isolates from the National Center for Biotechnolgy Information Genome Database were included. The concentrated sequence of housekeeping genes in C. innocuum was determined by amplicon sequencing and used for MLST and phylogenetic analyses. The biofilm production activity of the C. innocuum isolates was determined by crystal violet staining. RESULTS: Of the 112 C. innocuum isolates, 58 sequence types were identified. Maximum likelihood estimation categorized 52 CGMH isolates into two phylogenetic clades. These isolates were found to be biofilm producers, with isolates in clade I exhibiting significantly higher biofilm production than isolates in clade II. The sub-inhibitory concentration of vancomycin seemed to minimally influence biofilm production by C. innocuum isolates. Nevertheless, C. innocuum embedded in the biofilm structure demonstrated resistance to vancomycin treatments at a concentration greater than 256 µg/mL. CONCLUSIONS: This study suggests that a specific genetic clade of C. innocuum produces a substantial amount of biofilm. Furthermore, this phenotype assists C. innocuum in resisting high concentrations of vancomycin, which may potentially play undefined roles in C. innocuum pathogenesis.


Assuntos
Antibacterianos , Biofilmes , Infecções por Clostridium , Clostridium , Variação Genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Resistência a Vancomicina , Vancomicina , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Humanos , Clostridium/genética , Clostridium/efeitos dos fármacos , Clostridium/isolamento & purificação , Clostridium/classificação , Antibacterianos/farmacologia , Vancomicina/farmacologia , Resistência a Vancomicina/genética , Infecções por Clostridium/microbiologia , Taiwan , Genótipo , Genes Essenciais
14.
Eur J Clin Microbiol Infect Dis ; 43(4): 673-682, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296911

RESUMO

PURPOSE: To investigate the occurrence of vancomycin-variable enterococci (VVE) in a hospital in central Italy. METHODS: vanA positive but vancomycin-susceptible Enterococcus faecium isolates (VVE-S) were characterized by antibiotic susceptibility tests, molecular typing (PFGE and MLST), and WGS approach. The reversion of VVE-S to a resistant phenotype was assessed by exposure to increasing vancomycin concentrations, and the revertant isolates were used in filter mating experiments. qPCR was used to analyze the plasmid copy number. RESULTS: Eleven putative VVE-S were selected. WGS revealed two categories of vanA cluster plasmid located: the first type showed the lack of vanR, the deletion of vanS, and an intact vanH/vanA/vanX cluster; the second type was devoid of both vanR and vanS and showed a deletion of 544-bp at the 5'-end of the vanH. Strains (n = 7) carrying the first type of vanA cluster were considered VVE-S and were able to regain a resistance phenotype (VVE-R) in the presence of vancomycin, due to a 44-bp deletion in the promoter region of vanH/vanA/vanX, causing its constitutive expression. VVE-R strains were not able to transfer resistance by conjugation, and the resistance phenotype was unstable: after 11 days of growth without selective pressure, the revertants were still resistant but showed a lower vancomycin MIC. A higher plasmid copy number in the revertant strains was probably related to the resistance phenotype. CONCLUSION: We highlight the importance of VVE transition to VRE under vancomycin therapy resulting in a potential failure treatment. We also report the first-time identification of VVE-S isolates pstS-null belonging to ST1478.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Humanos , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tipagem de Sequências Multilocus , Resistência a Vancomicina/genética , Testes de Sensibilidade Microbiana , Enterococcus , Proteínas de Bactérias/genética , Infecções por Bactérias Gram-Positivas/microbiologia
15.
BMC Infect Dis ; 24(1): 494, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745289

RESUMO

BACKGROUND: Brain-heart infusion agar supplemented with 4 µg/mL of vancomycin (BHI-V4) was commonly used for the detection of heterogeneous (hVISA) and vancomycin-intermediate Staphylococcus aureus (VISA). However, its diagnostic value remains unclear. This study aims to compare the diagnostic accuracy of BHI-V4 with population analysis profiling with area under the curve (PAP-AUC) in hVISA/VISA. METHODS: The protocol of this study was registered in INPLASY (INPLASY2023120069). The PubMed and Cochrane Library databases were searched from inception to October 2023. Review Manager 5.4 was used for data visualization in the quality assessment, and STATA17.0 (MP) was used for statistical analysis. RESULTS: In total, eight publications including 2153 strains were incorporated into the meta-analysis. Significant heterogeneity was evident although a threshold effect was not detected across the eight studies. The summary receiver operating characteristic (SROC) was 0.77 (95% confidence interval [CI], 0.74-0.81). The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic score and diagnostic odds ratio were 0.59 (95% CI: 0.46-0.71), 0.96 (95%CI: 0.83-0.99), 14.0 (95% CI, 3.4-57.1), 0.43 (95%CI, 0.32-0.57), 3.48(95%CI, 2.12-4.85) and 32.62 (95%CI, 8.31-128.36), respectively. CONCLUSION: Our study showed that BHI-V4 had moderate diagnostic accuracy for diagnosing hVISA/VISA. However, more high-quality studies are needed to assess the clinical utility of BHI-V4.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas , Staphylococcus aureus , Vancomicina , Humanos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/diagnóstico , Vancomicina/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Sensibilidade e Especificidade , Resistência a Vancomicina , Meios de Cultura , Área Sob a Curva
16.
Transpl Infect Dis ; 26(1): e14186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37910593

RESUMO

BACKGROUND: Infection with vancomycin-resistant Enterococcus (VRE) in liver transplant recipients (LTR) has been associated with extended hospital stays, increased readmission rates, graft failure, and death. A tailored perioperative surgical prophylaxis regimen targeting VRE may reduce postoperative infections in VRE-colonized patients. This study investigated the outcomes of perioperative daptomycin in this patient population. METHODS: This retrospective, single-center cohort study included LTR ≥ 18 years old who were VRE-colonized from June 2018 to November 2022. VRE colonization was identified by a VRE rectal swab screen or a positive VRE culture prior to transplant. Two groups were analyzed: daptomycin versus no daptomycin. All LTR received perioperative piperacillin-tazobactam for 24 h. If VRE-colonized, one dose of daptomycin (6 mg/kg) was given pre- and postoperatively. Demographics, clinical characteristics, risk factors for VRE infection, and daptomycin dose were collected. The primary outcome was VRE infection at 14 days and 90 days post-transplant. RESULTS: There were 36 VRE-colonized LTR; 19 received daptomycin and 17 did not. Baseline characteristics and risk factors for VRE infection were similar between groups. More VRE infections occurred in the no daptomycin group within 14 days post-transplant (24% vs. 0%, p = .04), but at 90 days posttransplant there was no significant difference (29% vs. 16%, p = .43). The average daptomycin dose was 7.1 mg/kg. CONCLUSION: Perioperative daptomycin reduced the rate of VRE infections in VRE-colonized LTR within 14 days posttransplant but not at 90 days. Future studies should evaluate if higher doses and/or longer duration of perioperative daptomycin can reduce VRE infections beyond 14 days post-transplant.


Assuntos
Daptomicina , Infecções por Bactérias Gram-Positivas , Transplante de Fígado , Enterococos Resistentes à Vancomicina , Humanos , Adolescente , Daptomicina/uso terapêutico , Vancomicina/uso terapêutico , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Estudos Retrospectivos , Transplante de Fígado/efeitos adversos , Estudos de Coortes , Resistência a Vancomicina , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/prevenção & controle , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Fatores de Risco
17.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39210508

RESUMO

AIMS: In Tunisia, limited research has focused on characterizing clinical vancomycin-resistant Enterococcus faecium (VREfm). This study aimed to bridge this knowledge gap by molecular characterization of antimicrobial resistance, determining the genetic elements mediating vancomycin-resistance, and whole-genome sequencing of one representative VREfm isolate. METHODS AND RESULTS: Over 6 years (2011-2016), a total of eighty VREfm isolates responsible for infection or colonization were identified from hospitalized patients, with the incidence rate increasing from 2% in 2011 to 27% in 2016. All of these strains harbored the vanA gene. The screening for antimicrobial resistance genes revealed the predominance of ermB, tetM, and aac(6')-Ie-aph(2'')-Ia genes and 81.2% of strains harbored the Tn1545. Pulsed-field gel electrophoresis identified seven clusters, with two major clusters (belonging to ST117 and ST80) persisting throughout the study period. Seven Tn1546 types were detected, with type VI (truncated transposon) being the most prevalent (57.5%). Whole-genome sequencing revealed a 3 028 373 bp chromosome and five plasmids. Mobile genetic elements and a type I CRISPR-cas locus were identified. Notably, the vanA gene was carried by the classic Tn1546 transposon with ISL3 insertion on a rep17pRUM plasmid. CONCLUSION: A concerning trend in the prevalence of VREfm essentially attributed to CC17 persistence and to horizontal transfer of multiple genetic variants of truncated vanA-Tn1546.


Assuntos
Elementos de DNA Transponíveis , Enterococcus faecium , Variação Genética , Infecções por Bactérias Gram-Positivas , Neutropenia , Enterococos Resistentes à Vancomicina , Sequenciamento Completo do Genoma , Humanos , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/efeitos dos fármacos , Tunísia , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/isolamento & purificação , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Elementos de DNA Transponíveis/genética , Neutropenia/microbiologia , Neutropenia/complicações , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , Eletroforese em Gel de Campo Pulsado , Resistência a Vancomicina/genética , Vancomicina/farmacologia
18.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39076010

RESUMO

AIMS: To investigate enterococci carrying linezolid and vancomycin resistance genes from fecal samples recovered from wild boars. METHODS AND RESULTS: Florfenicol- and vancomycin-resistant enterococci, isolated on selective agar plates, were screened by PCR for the presence of linezolid and vancomycin resistance genes. Five isolates carried optrA or poxtA linezolid resistance genes; one strain was resistant to vancomycin for the presence of vanA gene. All isolates were tested for their antibiotic susceptibility and subjected to Whole Genome Sequencing (WGS) analysis. In Enterococcus faecalis (E. faecalis) V1344 and V1676, the optrA was located on the new pV1344-optrA and pV1676-optrA plasmids, respectively, whereas in Enterococcus faecium (E. faecium) V1339 this gene was on a 22 354-bp chromosomal genetic context identical to the one detected in a human E. faecium isolate. In both E. faecium V1682 and E. durans V1343, poxtA was on the p1818-c plasmid previously found in a human E. faecium isolate. In E. faecium V1328, the vanA gene was on the Tn1546 transposon in turn located on a new pV1328-vanA plasmid. Only E. faecium V1682 successfully transferred the poxtA gene to an enterococcal recipient in filter mating assays. CONCLUSIONS: The occurrence of genetic elements carrying linezolid and vancomycin resistance genes in enterococci from wild boars is a matter of concern, moreover, the sharing of plasmids and transposons between isolates from wild animals, human, and environment indicates an exchange of genetic material between these settings.


Assuntos
Proteínas de Bactérias , Farmacorresistência Bacteriana , Enterococcus faecalis , Enterococcus faecium , Sus scrofa , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/efeitos dos fármacos , Fezes/microbiologia , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Itália , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Sus scrofa/microbiologia , Resistência a Vancomicina/genética , Sequenciamento Completo do Genoma
19.
Ann Clin Microbiol Antimicrob ; 23(1): 62, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978096

RESUMO

BACKGROUND: This study analyzed the genetic traits and fitness costs of vancomycin-resistant Enterococcus faecium (VREfm) blood isolates carrying Tn1546-type transposons harboring the vanA operon. METHODS: All E. faecium blood isolates were collected from eight general hospitals in South Korea during one-year study period. Antimicrobial susceptibility testing and vanA and vanB PCR were performed. Growth rates of E. faecium isolates were determined. The vanA-positive isolates were subjected to whole genome sequencing and conjugation experiments. RESULTS: Among 308 E. faecium isolates, 132 (42.9%) were positive for vanA. All Tn1546-type transposons harboring the vanA operon located on the plasmids, but on the chromosome in seven isolates. The plasmids harboring the vanA operon were grouped into four types; two types of circular, nonconjugative plasmids (Type A, n = 50; Type B, n = 46), and two types of putative linear, conjugative plasmids (Type C, n = 16; Type D, n = 5). Growth rates of vanA-positive E. faecium isolates were significantly lower than those of vanA-negative isolates (P < 0.001), and reduction in growth rate under vancomycin pressure was significantly larger in isolates harboring putative linear plasmids than in those harboring circular plasmids (P = 0.020). CONCLUSIONS: The possession of vanA operon was costly to bacterial hosts in antimicrobial-free environment, which provide evidence for the importance of reducing vancomycin pressure for prevention of VREfm dissemination. Fitness burden to bacterial hosts was varied by type and size of the vanA operon-harboring plasmid.


Assuntos
Antibacterianos , Proteínas de Bactérias , Carbono-Oxigênio Ligases , Elementos de DNA Transponíveis , Enterococcus faecium , Testes de Sensibilidade Microbiana , Óperon , Plasmídeos , Plasmídeos/genética , Enterococcus faecium/genética , Humanos , Proteínas de Bactérias/genética , República da Coreia , Carbono-Oxigênio Ligases/genética , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Infecções por Bactérias Gram-Positivas/microbiologia , Enterococos Resistentes à Vancomicina/genética , Resistência a Vancomicina/genética , Aptidão Genética , Vancomicina/farmacologia , Conjugação Genética
20.
Can J Microbiol ; 70(10): 426-432, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39058360

RESUMO

The rise of vancomycin-resistant enterococci (VRE) due to antibiotic overuse poses a significant threat to long-term care patients and those with impaired immune systems. Therefore, it is imperative to seek alternatives to overcome multidrug resistance. This study aimed to evaluate totarol, a natural compound derived from Podocarpus totara, for its antibacterial activity against vancomycin-resistant Enterococcus faecalis (VREF). Totarol exhibited potent antibacterial activity at a very low concentration of 0.25 µg/mL and demonstrated antibiofilm effects through biofilm inhibitory concentration and biofilm eradication concentration assays. Confocal laser scanning microscopy confirmed that totarol inhibited not only biofilm mass but also bacterial cell viability. The combinatorial use of sublethal concentrations of totarol and vancomycin showed antibacterial activity, as observed in the time-kill assay. Quantitative polymerase chain reaction assays revealed a concentration-dependent downregulation of key virulence genes (vanA, ace, asa, efaA, and esp) in VREF when exposed to totarol. In summary, totarol emerges as a promising adjuvant with vancomycin for inhibiting VREF, addressing vancomycin resistance and biofilm formation-critical challenges associated with VRE infection. Since this was an in vitro study, the role of totarol in the clinical implications of VREF treatment remains to be demonstrated.


Assuntos
Antibacterianos , Biofilmes , Enterococcus faecalis , Enterococos Resistentes à Vancomicina , Vancomicina , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Humanos , Sinergismo Farmacológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Resistência a Vancomicina , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA