Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Prep Biochem Biotechnol ; 54(7): 882-895, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38170207

RESUMO

In growing plant population, effect of stress is a perturb issue affecting its physiological, biochemical, yield loss and developmental growth. Protein-L-isoaspartate-O-methyltransferase (PIMT) is a broadly distributed protein repair enzyme which actuate under stressful environment or aging. Stress can mediate damage converting protein bound aspartate (Asp) residues to isoaspartate (iso-Asp). This spontaneous and deleterious conversion occurs at an elevated state of stress and aging. Iso-Asp formation is associated with protein inactivation and compromised cellular survival. PIMT can convert iso-Asp back to Asp, thus repairing and contributing to cellular survival. The present work describes the isolation, cloning, sequencing and expression of PIMT genes of Carica papaya (Cp pimt) and Ricinus communis (Rc pimt) Using gene specific primers, both the pimts were amplified from their respective cDNAs and subsequently cloned in prokaryotic expression vector pProEXHTa. BL21(DE3) strain of E. coli cells were used as expression host. The expression kinetics of both the PIMTs were studied with various concentrations of IPTG and at different time points. Finally, the PIMT supplemented BL21(DE3) cells were evaluated against different stresses in comparison to their counterparts with the empty vector control.


Assuntos
Carica , Proteínas de Plantas , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Ricinus , Carica/genética , Carica/enzimologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimologia , Ricinus/genética , Estresse Fisiológico
2.
Plant J ; 105(1): 182-196, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107656

RESUMO

Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied. In this work, the functions of lecithin:cholesterol acyltransferase-like PLAs (LCAT-PLAs) in HFA biosynthesis were characterized. The LCAT-PLAs were shown to exhibit homology to LCAT and mammalian lysosomal PLA2 , and to contain a conserved and functional Ser/His/Asp catalytic triad. In vitro assays revealed that LCAT-PLAs from the HFA-accumulating plant species Physaria fendleri (PfLCAT-PLA) and castor (RcLCAT-PLA) could cleave acyl chains at both the sn-1 and sn-2 positions of PC, and displayed substrate selectivity towards sn-2-ricinoleoyl-PC over sn-2-oleoyl-PC. Furthermore, co-expression of RcFAH12 with PfLCAT-PLA or RcLCAT-PLA, but not Arabidopsis AtLCAT-PLA, resulted in increased occupation of HFA at the sn-1/3 positions of TAG as well as small but insignificant increases in HFA levels in Arabidopsis seeds compared with RcFAH12 expression alone. Therefore, PfLCAT-PLA and RcLCAT-PLA may contribute to HFA turnover on PC, and represent potential candidates for engineering the production of unusual fatty acids in crops.


Assuntos
Brassicaceae/enzimologia , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Plantas/metabolismo , Ricinus/enzimologia , Arabidopsis/metabolismo , Brassicaceae/genética , Ácidos Graxos/metabolismo , Lisofosfolipídeos , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Ricinus/genética , Sementes/metabolismo , Especificidade por Substrato
3.
Plant Physiol ; 182(2): 730-738, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31806737

RESUMO

In previous work, we identified a triple mutant of the castor (Ricinus communis) stearoyl-Acyl Carrier Protein desaturase (T117R/G188L/D280K) that, in addition to introducing a double bond into stearate to produce oleate, performed an additional round of oxidation to convert oleate to a trans allylic alcohol acid. To determine the contributions of each mutation, in this work we generated individual castor desaturase mutants carrying residue changes corresponding to those in the triple mutant and investigated their catalytic activities. We observed that T117R, and to a lesser extent D280K, accumulated a novel product, namely erythro-9,10-dihydroxystearate, that we identified via its methyl ester through gas chromatography-mass spectrometry and comparison with authentic standards. The use of 18O2 labeling showed that the oxygens of both hydroxyl moieties originate from molecular oxygen rather than water. Incubation with an equimolar mixture of 18O2 and 16O2 demonstrated that both hydroxyl oxygens originate from a single molecule of O2, proving the product is the result of dioxygenase catalysis. Using prolonged incubation, we discovered that wild-type castor desaturase is also capable of forming erythro-9,10-dihydroxystearate, which presents a likely explanation for its accumulation to ∼0.7% in castor oil, the biosynthetic origin of which had remained enigmatic for decades. In summary, the findings presented here expand the documented constellation of di-iron enzyme catalysis to include a dioxygenase reactivity in which an unactivated alkene is converted to a vicinal diol.


Assuntos
Dioxigenases/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ricinus/enzimologia , Ácidos Esteáricos/metabolismo , Óleo de Rícino/química , Catálise , Dioxigenases/química , Cromatografia Gasosa-Espectrometria de Massas , Oxigenases de Função Mista/química , Mutação , Ácido Oleico/química , Ácido Oleico/metabolismo , Oxirredução , Oxigênio/metabolismo , Propanóis/metabolismo , Ricinus/genética , Ricinus/metabolismo , Ácidos Esteáricos/química
4.
Planta ; 252(6): 100, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33170407

RESUMO

MAIN CONCLUSION: The biochemical characterization of glycolate oxidase in Ricinus communis hints to different physiological functions of the enzyme depending on the organ in which it is active. Enzymatic activities of the photorespiratory pathway are not restricted to green tissues but are present also in heterotrophic organs. High glycolate oxidase (GOX) activity was detected in the endosperm of Ricinus communis. Phylogenetic analysis of the Ricinus L-2-hydroxy acid oxidase (Rc(L)-2-HAOX) family indicated that Rc(L)-2-HAOX1 to Rc(L)-2-HAOX3 cluster with the group containing streptophyte long-chain 2-hydroxy acid oxidases, whereas Rc(L)-2-HAOX4 clusters with the group containing streptophyte GOX. Rc(L)-2-HAOX4 is the closest relative to the photorespiratory GOX genes of Arabidopsis. We obtained Rc(L)-2-HAOX4 as a recombinant protein and analyze its kinetic properties in comparison to the Arabidopsis photorespiratory GOX. We also analyzed the expression of all Rc(L)-2-HAOXs and conducted metabolite profiling of different Ricinus organs. Phylogenetic analysis indicates that Rc(L)-2-HAOX4 is the only GOX encoded in the Ricinus genome (RcGOX). RcGOX has properties resembling those of the photorespiratory GOX of Arabidopsis. We found that glycolate, the substrate of GOX, is highly abundant in non-green tissues, such as roots, embryo of germinating seeds and dry seeds. We propose that RcGOX fulfills different physiological functions depending on the organ in which it is active. In autotrophic organs it oxidizes glycolate into glyoxylate as part of the photorespiratory pathway. In fast growing heterotrophic organs, it is most probably involved in the production of serine to feed the folate pathway for special demands of those tissues.


Assuntos
Oxirredutases do Álcool , Genoma de Planta , Fotossíntese , Ricinus , Oxirredutases do Álcool/genética , Genoma de Planta/genética , Fotossíntese/genética , Filogenia , Ricinus/classificação , Ricinus/enzimologia , Ricinus/genética
5.
Plant Physiol ; 174(2): 1012-1027, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28363991

RESUMO

Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds (Ricinus communis) a novel, allosterically desensitized 910-kD Class-2 PEPC hetero-octameric complex, arises from a tight interaction between 107-kD plant-type PEPC and 118-kD bacterial-type (BTPC) subunits. The native Ca2+-dependent protein kinase (CDPK) responsible for in vivo inhibitory phosphorylation of Class-2 PEPC's BTPC subunit's at Ser-451 was highly purified from COS and identified as RcCDPK1 (XP_002526815) by mass spectrometry. Heterologously expressed RcCDPK1 catalyzed Ca2+-dependent, inhibitory phosphorylation of BTPC at Ser-451 while exhibiting: (i) a pair of Ca2+ binding sites with identical dissociation constants of 5.03 µM, (ii) a Ca2+-dependent electrophoretic mobility shift, and (iii) a marked Ca2+-independent hydrophobicity. Pull-down experiments established the Ca2+-dependent interaction of N-terminal GST-tagged RcCDPK1 with BTPC. RcCDPK1-Cherry localized to the cytosol and nucleus of tobacco bright yellow-2 cells, but colocalized with mitochondrial-surface associated BTPC-enhanced yellow fluorescent protein when both fusion proteins were coexpressed. Deletion analyses demonstrated that although its N-terminal variable domain plays an essential role in optimizing Ca2+-dependent RcCDPK1 autophosphorylation and BTPC transphosphorylation activity, it is not critical for in vitro or in vivo target recognition. Arabidopsis (Arabidopsis thaliana) CPK4 and soybean (Glycine max) CDPKß are RcCDPK1 orthologs that effectively phosphorylated castor BTPC at Ser-451. Overall, the results highlight a potential link between cytosolic Ca2+ signaling and the posttranslational control of respiratory CO2 refixation and anaplerotic photosynthate partitioning in support of storage oil and protein biosynthesis in developing COS.


Assuntos
Óleo de Rícino/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas Quinases/metabolismo , Ricinus/enzimologia , Sementes/metabolismo , Sequência de Aminoácidos , Formação de Anticorpos , Sítios de Ligação , Biocatálise , Fenômenos Biofísicos , Cálcio/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Fosfosserina/metabolismo , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/química , Ricinus/embriologia , Ricinus/genética , Alinhamento de Sequência , Especificidade por Substrato
6.
Biotechnol Bioeng ; 115(2): 444-452, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28976546

RESUMO

Microbial conversion of renewable carbon sources to free fatty acids has attracted significant attention in recent years. Accumulation of free fatty acids in Escherichia coli by overexpression of an acyl-ACP thioesterase which can break the fatty acid elongation has been well established. Various efforts have been made to increase fatty acid production in E. coli by enhancing the enzymes involved in the fatty acid synthesis cycle or host strain manipulations. The current study focused on the effect of NADPH availability on free fatty acids (FFAs) productivity. There are two reduction steps in the fatty acid elongation cycle which are catalyzed by beta keto-ACP reductase (FabG) and enoyl-ACP reductase (FabI), respectively. It is reported that FabI can use either NADH or NADPH as cofactor, while FabG only uses NADPH in E. coli. Fatty acid production dropped dramatically in the glucose-6-phosphate dehydrogenase (encoded by the zwf gene) deficient strain. Similarly, the pntB (which encodes one of the subunit of proton-translocating membrane bounded transhydrogenase PntAB) and udhA (which encodes the energy dependent cytoplasmic transhydrogenase UdhA) double mutant strain also showed an 88.8% decrease in free fatty acid production. Overexpression of PntAB and NadK restored the fatty acid production capability of these two mutant strains. These results indicated that the availability of NADPH played a very important role in fatty acid production.


Assuntos
Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/metabolismo , NADP/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Ácidos Graxos não Esterificados/análise , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimologia , Ricinus/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
7.
Biotechnol Bioeng ; 112(12): 2618-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26084339

RESUMO

The native yeast type I fatty acid synthase (FAS) is a complex, rigid enzyme, and challenging to engineer for the production of medium- or short-chain fatty acids. Introduction of a type II FAS is a promising alternative as it allows expression control for each discrete enzyme and the addition of heterologous thioesterases. In this study, the native Saccharomyces cerevisiae FAS was functionally replaced by the Escherichia coli type II FAS (eFAS) system. The E. coli acpS + acpP (together), fabB, fabD, fabG, fabH, fabI, fabZ, and tesA were expressed in individual S. cerevisiae strains, and enzyme activity was confirmed by in vitro activity assays. Eight genes were then integrated into the yeast genome, while tesA or an alternate thioesterase gene, fatB from Ricinus communis or TEII from Rattus novergicus, was expressed from a multi-copy plasmid. Native FAS activity was eliminated by knocking out the yeast FAS2 gene. The strains expressing only the eFAS as de novo fatty acid source grew without fatty acid supplementation demonstrating that this type II FAS is able to functionally replace the native yeast FAS. The engineered strain expressing the R. communis fatB thioesterase increased total fatty acid titer 1.7-fold and shifted the fatty acid profile towards C14 production, increasing it from <1% in the native strain to more than 30% of total fatty acids, and reducing C18 production from 39% to 8%.


Assuntos
Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Animais , Proteínas de Escherichia coli/genética , Ácido Graxo Sintases/genética , Deleção de Genes , Expressão Gênica , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimologia , Ricinus/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
8.
Biotechnol Bioeng ; 111(11): 2209-19, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24889416

RESUMO

Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and ß-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Meios de Cultura/química , Propionatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimologia , Ricinus/genética , Salmonella enterica/enzimologia , Salmonella enterica/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Umbellularia/enzimologia , Umbellularia/genética
9.
Appl Microbiol Biotechnol ; 98(1): 251-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24136468

RESUMO

Although there are numerous oleochemical applications for ricinoleic acid (RA) and its derivatives, their production is limited and subject to various safety legislations. In an effort to produce RA from alternative sources, we constructed a genetically modified strain of the oleaginous yeast Yarrowia lipolytica. This strain is unable to perform ß-oxidation and is invalidated for the native triacylglycerol (TAG) acyltransferases (Dga1p, Dga2p, and Lro1p) and the ∆12 desaturase (Fad2p). We also expressed the Ricinus communis ∆12 hydroxylase (RcFAH12) under the control of the TEF constitutive promoter in this strain. However, RA constituted only 7% of the total lipids produced by this modified strain. By contrast, expression of the Claviceps purpurea hydroxylase CpFAH12 in this background resulted in a strain able to accumulate RA to 29% of total lipids, and expression of an additional copy of CpFAH12 drove RA accumulation up to 35% of total lipids. The co-expression of the C. purpurea or R. communis type II diacylglycerol acyltransferase (RcDGAT2 or CpDGAT2) had negative effects on RA accumulation in this yeast, with RA levels dropping to below 14% of total lipids. Overexpression of the native Y. lipolytica PDAT acyltransferase (Lro1p) restored both TAG accumulation and RA levels. Thus, we describe the consequences of rerouting lipid metabolism in this yeast so as to develop a cell factory for RA production. The engineered strain is capable of accumulating RA to 43% of its total lipids and over 60 mg/g of cell dry weight; this is the most efficient production of RA described to date.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas/genética , Ácidos Ricinoleicos/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Claviceps/enzimologia , Claviceps/genética , Deleção de Genes , Expressão Gênica , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimologia , Ricinus/genética , Análise de Sequência de DNA
10.
Plant Physiol ; 158(4): 1944-54, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22371508

RESUMO

We previously identified an enzyme, phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), that plays an important role in directing fatty acyl fluxes during triacylglycerol (TAG) biosynthesis. The PDCT mediates a symmetrical interconversion between phosphatidylcholine (PC) and diacylglycerol (DAG), thus enriching PC-modified fatty acids in the DAG pool prior to forming TAG. We show here that PDCT is required for the efficient metabolism of engineered hydroxy fatty acids in Arabidopsis (Arabidopsis thaliana) seeds. When a fatty acid hydroxylase (FAH12) from castor (Ricinus communis) was expressed in Arabidopsis seeds, the PDCT-deficient mutant accumulated only about half the amount of hydroxy fatty acids compared with that in the wild-type seeds. We also isolated a PDCT from castor encoded by the RcROD1 (Reduced Oleate Desaturation1) gene. Seed-specific coexpression of this enzyme significantly increased hydroxy fatty acid accumulation in wild type-FAH12 and in a previously produced transgenic Arabidopsis line coexpressing a castor diacylglycerol acyltransferase 2. Analyzing the TAG molecular species and regiochemistry, along with analysis of fatty acid composition in TAG and PC during seed development, indicate that PDCT acts in planta to enhance the fluxes of fatty acids through PC and enrich the hydroxy fatty acids in DAG, and thus in TAG. In addition, PDCT partially restores the oil content that is decreased in FAH12-expressing seeds. Our results add a new gene in the genetic toolbox for efficiently engineering unusual fatty acids in transgenic oilseeds.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Ácidos Graxos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Arabidopsis/crescimento & desenvolvimento , Hidroxilação , Fosfatidilcolinas/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ricinus/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Estereoisomerismo , Transformação Genética , Triglicerídeos/química , Triglicerídeos/metabolismo
11.
Metab Eng ; 14(4): 380-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22480945

RESUMO

Microbial biosynthesis of fatty acid like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Wild type E. coli strains produce fatty acids mainly for the biosynthesis of lipids and cell membranes and do not accumulate free fatty acids as intermediates in lipid biosynthesis. However, free fatty acids can be produced by breaking the fatty acid elongation through the overexpression of an acyl-ACP thioesterase. Since acetyl-CoA might be an important factor for fatty acid synthesis (acetate formation pathways are the main competitive pathways in consuming acetyl-CoA or pyruvate, a precursor of acetyl-CoA), and the long chain fatty acid CoA-ligase (FadD) plays a pivotal role in the transport and activation of exogenous fatty acids prior to their subsequent degradation, we examined the composition and the secretion of the free fatty acids in four different strains including the wild type MG1655, a mutant strain with inactivation of the fatty acid beta-oxidation pathway (fadD mutant (ML103)), and mutant strains with inactivation of the two major acetate production pathways (an ack-pta (acetate kinase/phosphotransacetylase), poxB (pyruvate oxidase) double mutant (ML112)) and a fadD, ack-pta, poxB triple mutant (ML115). The engineered E. coli cells expressing acyl-ACP thioesterase with glucose yield is higher than 40% of theoretical yield. Compared to MG1655(pXZ18) and ML103(pXZ18), acetate forming pathway deletion strains such as ML112(pXZ18) and ML115(pXZ18) produced similar quantity of total free fatty acids, which indicated that acetyl-CoA availability does not appear to be limiting factor for fatty acid production in these strains. However, these strains did show significant differences in the composition of free fatty acids. Different from MG1655(pXZ18) and ML103(pXZ18), acetate formation pathway deletion strains such as ML112(pXZ18) and ML115(pXZ18) produced similar level of C14, C16:1 and C16 free fatty acids, and the free fatty acid compositions of both strains did not change significantly with time. In addition, the strains bearing the fadD mutation showed significant differences in the quantities of free fatty acids found in the broth. Finally, we examined two potential screening methods for selecting and isolating high free fatty acids producing cells.


Assuntos
Acetatos/metabolismo , Coenzima A Ligases/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/biossíntese , Palmitoil-CoA Hidrolase/biossíntese , Ricinus/enzimologia , Acetato Quinase/genética , Acetato Quinase/metabolismo , Escherichia coli/genética , Ácidos Graxos não Esterificados/genética , Ácidos Graxos não Esterificados/metabolismo , Mutação , Palmitoil-CoA Hidrolase/genética , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Ricinus/genética
12.
Analyst ; 137(9): 2077-85, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22416271

RESUMO

The investigation of crimes involving chemical or biological agents is infrequent, but presents unique analytical challenges. The protein toxin ricin is encountered more frequently than other agents and is found in the seeds of Ricinus communis, commonly known as the castor plant. Typically, the toxin is extracted from castor seeds utilizing a variety of different recipes that result in varying purity of the toxin. Moreover, these various purification steps can also leave or differentially remove a variety of exogenous and endogenous residual components with the toxin that may indicate the type and number of purification steps involved. We have applied three gas chromatography-mass spectrometry (GC-MS) based analytical methods to measure the variation in seed carbohydrates and castor oil ricinoleic acid, as well as the presence of solvents used for purification. These methods were applied to the same samples prepared using four previously identified toxin preparation methods, starting from four varieties of castor seeds. The individual data sets for seed carbohydrate profiles, ricinoleic acid, or acetone amount each provided information capable of differentiating different types of toxin preparations across seed types. However, the integration of the data sets using multivariate factor analysis provided a clear distinction of all samples based on the preparation method, independent of the seed source. In particular, the abundance of mannose, arabinose, fucose, ricinoleic acid, and acetone were shown to be important differentiating factors. These complementary tools provide a more confident determination of the method of toxin preparation than would be possible using a single analytical method.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ricina/análise , Integração de Sistemas , Acetona/análise , Acetona/química , Concentração de Íons de Hidrogênio , Monossacarídeos/análise , Monossacarídeos/química , Análise Multivariada , Ricina/química , Ricina/isolamento & purificação , Ácidos Ricinoleicos/análise , Ácidos Ricinoleicos/química , Ricinus/química , Ricinus/enzimologia , Sementes/química , Sementes/enzimologia
13.
Physiol Plant ; 145(1): 103-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22268582

RESUMO

Programmed cell death (PCD) in plants is a prerequisite for development as well as seed and fruit production. It also plays a significant role in pathogen defense. A unique group of papain-type cysteine endopeptidases, characterized by a C-terminal endoplasmic reticulum (ER) retention signal (KDEL CysEP), is involved in plant PCD. Genes for these endopeptidases have been sequenced and analyzed from 25 angiosperms and gymnosperms. They have no structural relationship to caspases involved in mammalian PCD and homologs to this group of plant cysteine endopeptidases have not been found in mammals or yeast. In castor beans (Ricinus communis), the CysEP is synthesized as pre-pro-enzyme. The pro-enzyme is transported to the cytosol of cells undergoing PCD in ER-derived vesicles called ricinosomes. These vesicles release the mature CysEP in the final stages of organelle disintegration triggered by acidification of the cytoplasm resulting from the disruption of the vacuole. Mature CysEP digests the hydroxyproline (Hyp)-rich proteins (extensins) that form the basic scaffold of the plant cell wall. The KDEL CysEPs accept a wide variety of amino acids at the active site, including the glycosylated Hyp residues of the extensins. In Arabidopsis, three KDEL CysEPs (AtCEP1, AtCEP2 and AtCEP3) are expressed in tissues undergoing PCD. In transgenic Arabidopsis plants expressing ß-glucuronidase under the control of the promoters for these three genes, cell- and tissue-specific activities were mapped during seedling, flower and seed development. KDEL CysEPs participate in the collapse of tissues in the final stage of PCD and in tissue re-modeling such as lateral root formation.


Assuntos
Arabidopsis/citologia , Arabidopsis/enzimologia , Morte Celular , Cisteína Endopeptidases/metabolismo , Ricinus/citologia , Ricinus/enzimologia , Ácidos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Parede Celular/metabolismo , Retículo Endoplasmático/enzimologia , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Glicoproteínas/metabolismo , Células Vegetais/enzimologia , Proteínas de Plantas/metabolismo , Proteólise , Ricinus/crescimento & desenvolvimento , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Especificidade por Substrato , Vacúolos/metabolismo
14.
Inorg Chem ; 51(5): 2806-20, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22332845

RESUMO

Large-scale quantum and molecular mechanical methods (QM/MM) and QM calculations were carried out on the soluble Δ(9) desaturase (Δ(9)D) to investigate various structural models of the spectroscopically defined peroxodiferric (P) intermediate. This allowed us to formulate a consistent mechanistic picture for the initial stages of the reaction mechanism of Δ(9)D, an important diferrous nonheme iron enzyme that cleaves the C-H bonds in alkane chains resulting in the highly specific insertion of double bonds. The methods (density functional theory (DFT), time-dependent DFT (TD-DFT), QM(DFT)/MM, and TD-DFT with electrostatic embedding) were benchmarked by demonstrating that the known spectroscopic effects and structural perturbation caused by substrate binding to diferrous Δ(9)D can be qualitatively reproduced. We show that structural models whose spectroscopic (absorption, circular dichroism (CD), vibrational and Mössbauer) characteristics correlate best with experimental data for the P intermediate correspond to the µ-1,2-O(2)(2-) binding mode. Coordination of Glu196 to one of the iron centers (Fe(B)) is demonstrated to be flexible, with the monodentate binding providing better agreement with spectroscopic data, and the bidentate structure being slightly favored energetically (1-10 kJ mol(-1)). Further possible structures, containing an additional proton or water molecule are also evaluated in connection with the possible activation of the P intermediate. Specifically, we suggest that protonation of the peroxide moiety, possibly preceded by water binding in the Fe(A) coordination sphere, could be responsible for the conversion of the P intermediate in Δ(9)D into a form capable of hydrogen abstraction. Finally, results are compared with recent findings on the related ribonucleotide reductase and toluene/methane monooxygenase enzymes.


Assuntos
Ácidos Graxos Dessaturases/química , Ricinus/enzimologia , Domínio Catalítico , Ácidos Graxos Dessaturases/metabolismo , Isomerismo , Modelos Moleculares , Peróxidos/metabolismo , Teoria Quântica , Ricinus/química , Espectroscopia de Mossbauer , Água/química
15.
Plant Cell Physiol ; 52(6): 983-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21659329

RESUMO

Ricinoleic acid (12-hydroxy-octadeca-9-enoic acid) is a major unusual fatty acid in castor oil. This hydroxy fatty acid is useful in industrial materials. This unusual fatty acid accumulates in triacylglycerol (TAG) in the seeds of the castor bean (Ricinus communis L.), even though it is synthesized in phospholipids, which indicates that the castor plant has an editing enzyme, which functions as a phospholipid:diacylglycerol acyltransferase (PDAT) that is specific to ricinoleic acid. Transgenic plants containing fatty acid Δ12-hydroxylase encoded by the castor bean FAH12 gene produce a limited amount of hydroxy fatty acid, a maximum of around 17% of TAGs present in Arabidopsis seeds, and this unusual fatty acid remains in phospholipids of cell membranes in seeds. Identification of ricinoleate-specific PDAT from castor bean and manipulation of the phospholipid editing system in transgenic plants will enhance accumulation of the hydroxy fatty acid in transgenic seeds. The castor plant has three PDAT genes; PDAT1-1 and PDAT2 are homologs of PDAT, which are commonly found in plants; however, PDAT1-2 is newly grouped as a castor bean-specific gene. PDAT1-2 is expressed in developing seeds and localized in the endoplasmic reticulum, similar to FAH12, indicating its involvement in conversion of ricinoleic acid into TAG. PDAT1-2 significantly enhances accumulation of total hydroxy fatty acid up to 25%, with a significant increase in castor-like oil, 2-OH TAG, in seeds of transgenic Arabidopsis, which is an identification of the key gene for oilseed engineering in production of unusual fatty acids.


Assuntos
Aciltransferases/genética , Arabidopsis/enzimologia , Proteínas de Plantas/metabolismo , Ácidos Ricinoleicos/metabolismo , Ricinus/enzimologia , Sementes/enzimologia , Aciltransferases/metabolismo , Arabidopsis/genética , Clonagem Molecular , Retículo Endoplasmático/genética , Genes de Plantas , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fosfolipídeos/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Ricinus/genética , Sementes/genética , Triglicerídeos/metabolismo
16.
J Exp Bot ; 62(15): 5485-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21841182

RESUMO

This study employs transcript profiling together with immunoblotting and co-immunopurification to assess the tissue-specific expression, protein:protein interactions, and post-translational modifications (PTMs) of plant- and bacterial-type phosphoenolpyruvate carboxylase (PEPC) isozymes (PTPC and BTPC, respectively) in the castor plant, Ricinus communis. Previous studies established that the Class-1 PEPC (PTPC homotetramer) of castor oil seeds (COS) is activated by phosphorylation at Ser-11 and inhibited by monoubiquitination at Lys-628 during endosperm development and germination, respectively. Elimination of photosynthate supply to developing COS by depodding caused the PTPC of the endosperm and cotyledon to be dephosphorylated, and then subsequently monoubiquitinated in vivo. PTPC monoubiquitination rather than phosphorylation is widespread throughout the castor plant and appears to be the predominant PTM of Class-1 PEPC that occurs in planta. The distinctive developmental patterns of PTPC phosphorylation versus monoubiquitination indicates that these two PTMs are mutually exclusive. By contrast, the BTPC: (i) is abundant in the inner integument, cotyledon, and endosperm of developing COS, but occurs at low levels in roots and cotyledons of germinated COS, (ii) shows a unique developmental pattern in leaves such that it is present in leaf buds and young expanding leaves, but undetectable in fully expanded leaves, and (iii) tightly interacts with co-expressed PTPC to form the novel and allosterically-desensitized Class-2 PEPC heteromeric complex. BTPC and thus Class-2 PEPC up-regulation appears to be a distinctive feature of rapidly growing and/or biosynthetically active tissues that require a large anaplerotic flux from phosphoenolpyruvate to replenish tricarboxylic acid cycle C-skeletons being withdrawn for anabolism.


Assuntos
Isoenzimas/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Plantas/metabolismo , Ricinus/enzimologia , Isoenzimas/genética , Fosfoenolpiruvato Carboxilase/genética , Fosforilação , Proteínas de Plantas/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Ricinus/genética , Ricinus/metabolismo
17.
Proc Natl Acad Sci U S A ; 105(38): 14738-43, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18796606

RESUMO

It is estimated that plants contain thousands of fatty acid structures, many of which arise by the action of membrane-bound desaturases and desaturase-like enzymes. The details of "unusual" e.g., hydroxyl or conjugated, fatty acid formation remain elusive, because these enzymes await structural characterization. However, soluble plant acyl-ACP (acyl carrier protein) desaturases have been studied in far greater detail but typically only catalyze desaturation (dehydrogenation) reactions. We describe a mutant of the castor acyl-ACP desaturase (T117R/G188L/D280K) that converts stearoyl-ACP into the allylic alcohol trans-isomer (E)-10-18:1-9-OH via a cis isomer (Z)-9-18:1 intermediate. The use of regiospecifically deuterated substrates shows that the conversion of (Z)-9-18:1 substrate to (E)-10-18:1-9-OH product proceeds via hydrogen abstraction at C-11 and highly regioselective hydroxylation (>97%) at C-9. (18)O-labeling studies show that the hydroxyl oxygen in the reaction product is exclusively derived from molecular oxygen. The mutant enzyme converts (E)-9-18:1-ACP into two major products, (Z)-10-18:1-9-OH and the conjugated linolenic acid isomer, (E)-9-(Z)-11-18:2. The observed product profiles can be rationalized by differences in substrate binding as dictated by the curvature of substrate channel at the active site. That three amino acid substitutions, remote from the diiron active site, expand the range of reaction outcomes to mimic some of those associated with the membrane-bound desaturase family underscores the latent potential of O(2)-dependent nonheme diiron enzymes to mediate a diversity of functionalization chemistry. In summary, this study contributes detailed mechanistic insights into factors that govern the highly selective production of unusual fatty acids.


Assuntos
Ácidos Graxos/metabolismo , Oxigenases de Função Mista/metabolismo , Ricinus/enzimologia , Sítios de Ligação , Hidroxilação , Isomerismo , Cinética , Ácido Linoleico/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Mutação , Oxirredução , Oxigênio/metabolismo , Propanóis/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ricinus/química , Ricinus/genética
18.
Sci Rep ; 11(1): 6913, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767251

RESUMO

The hydrolysis properties of lipase in castor was evaluated using two different substrate forms (tripalmitic glycerides and trioleic glycerides) to catalyze the reaction under different operational conditions. RcLipase was obtained from castor seeds and results show that RcLipase is a conservative serine lipase with a conserved catalytic center (SDH) and a conserved pentapeptide (GXSXG). This enzyme exhibited the greatest activity and tolerance to chloroform and toluene when it was expressed in Pichia pastoris GS115 at 40 ℃ and pH 8.0. Zn and Cu ions exerted obvious inhibitory effects on the enzyme, and displayed good hydrolytic activity for long-chain natural and synthetic lipids. HPLC analysis showed that this enzyme has 1,3 regioselectivity when glycerol tripalmitate and oleic acid are used as substrates. The fatty acid composition in the reaction product was 21.3% oleic acid and 79.1% sn-2 palmitic acid.


Assuntos
Lipase/metabolismo , Ricinus/enzimologia , Sequência de Aminoácidos , Hidrólise , Lipase/química , Lipase/genética , Lipase/isolamento & purificação , Ácidos Oleicos/biossíntese , Ácido Palmítico/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Ricinus/genética , Saccharomycetales , Especificidade por Substrato
19.
J Cell Biol ; 44(1): 94-102, 1970 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-5409466

RESUMO

The development of glyoxysomes and their associated enzymes, isocitrate lyase and malate synthetase, was studied in the endosperm of castor bean seeds during germination and early growth in darkness. The protein content of the glyoxysome fraction, separated by sucrose density centrifugation, increased linearly from day 2 to day 4 and declined subsequently, while maximum enzyme activities were reached at day 5. The specific activities of the enzymes in the glyoxysomes increased until day 5 and remained constant thereafter. At all stages of germination the only organelle with isocitrate lyase activity was the glyoxysome, but at the earlier stages a greater portion of the total activity was recovered in the soluble form. Malate synthetase was found primarily in the glyoxysomes after day 4, but at earlier stages part of the activity appeared at regions of lower density on the sucrose gradient. It was shown that this particulate malate synthetase activity was due to glyoxysomes broken during preparation, and that, as a result of this breakage, isocitrate lyase was solubilized. We conclude that both enzymes are housed in the glyoxysome in vivo throughout the germination period, and that the rise and fall in enzyme activities in phase with fat breakdown correspond to the net production and destruction of this organelle.


Assuntos
Liases/metabolismo , Organoides/metabolismo , Plantas Tóxicas , Ricinus/citologia , Ricinus/enzimologia , Isótopos de Carbono , Centrifugação com Gradiente de Concentração , Escuridão , Sementes , Succinato Desidrogenase/metabolismo , Trítio
20.
J Cell Biol ; 46(3): 435-54, 1970 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-4121486

RESUMO

Structural changes in endosperm cells of germinating castor beans were examined and complemented with a cytochemical analysis of staining with diaminobenzidine (DAB). Deposition of oxidized DAB occurred only in microbodies due to the presence of catalase, and in cell walls associated with peroxidase activity. Seedling development paralleled the disappearance of spherosomes (lipid bodies) and matrix of aleurone grains in endosperm cells. 6 to 7 days after germination, a cross-section through the endosperm contained cells in all stages of development and senescence beginning at the seed coat and progressing inward to the cotyledons. Part of this aging process involved vacuole formation by fusion of aleurone grain membranes. This coincided with an increase in microbodies (glyoxsomes), mitochondria, plastids with an elaborate tubular network, and the formation of a new protein body referred to as a dilated cisterna, which is structurally and biochemically distinct from microbodies although both apparently develop from rough endoplasmic reticulum (ER). In vacuolate cells microbodies are the most numerous organelle and are intimately associated with spherosomes and dilated cisternae. This phenomenon is discussed in relation to the biochemical activities of these organelles. Turnover of microbodies involves sequestration into autophagic vacuoles as intact organelles which still retain catalase activity. Crystalloids present in microbodies develop by condensation of matrix protein and are the principal site of catalase formerly in the matrix.


Assuntos
Glioxilatos/análise , Organoides/análise , Plantas Tóxicas , Ricinus/citologia , Sementes/citologia , Catalase/análise , Parede Celular/enzimologia , Cristalização , Grânulos Citoplasmáticos , Retículo Endoplasmático , Histocitoquímica , Peróxido de Hidrogênio , Corpos de Inclusão/análise , Lipídeos/análise , Microscopia Eletrônica , Microscopia de Contraste de Fase , Mitocôndrias , Oxirredução , Peroxidases/análise , Proteínas de Plantas/análise , Ricinus/enzimologia , Ricinus/crescimento & desenvolvimento , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Coloração e Rotulagem , Fatores de Tempo , p-Dimetilaminoazobenzeno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA