Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 787
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 115(5): 1277-1297, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37235696

RESUMO

Plant embryogenic calli (ECs) can undergo somatic embryogenesis to regenerate plants. This process is mediated by regulatory factors, such as transcription factors and specifically expressed genes, but the precise molecular mechanisms underlying somatic embryogenesis at the single-cell level remain unclear. In this study, we performed high-resolution single-cell RNA sequencing analysis to determine the cellular changes in the EC of the woody plant species Dimocarpus longan (longan) and clarify the continuous cell differentiation trajectories at the transcriptome level. The highly heterogeneous cells in the EC were divided into 12 putative clusters (e.g., proliferating, meristematic, vascular, and epidermal cell clusters). We determined cluster-enriched expression marker genes and found that overexpression of the epidermal cell marker gene GDSL ESTERASE/LIPASE-1 inhibited the hydrolysis of triacylglycerol. In addition, the stability of autophagy was critical for the somatic embryogenesis of longan. The pseudo-timeline analysis elucidated the continuous cell differentiation trajectories from early embryonic cell division to vascular and epidermal cell differentiation during the somatic embryogenesis of longan. Moreover, key transcriptional regulators associated with cell fates were revealed. We found that ETHYLENE RESPONSIVE FACTOR 6 was characterized as a heat-sensitive factor that negatively regulates longan somatic embryogenesis under high-temperature stress conditions. The results of this study provide new spatiotemporal insights into cell division and differentiation during longan somatic embryogenesis at single-cell resolution.


Assuntos
Sapindaceae , Transcriptoma , Transcriptoma/genética , Sapindaceae/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Desenvolvimento Embrionário , Técnicas de Embriogênese Somática de Plantas , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Genomics ; 25(1): 308, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528464

RESUMO

BACKGROUND: Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS: DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION: Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.


Assuntos
Arabidopsis , Sapindaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Folhas de Planta/metabolismo , Sapindaceae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
BMC Plant Biol ; 24(1): 752, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103757

RESUMO

Present study assessed the growth of two plant species and ion uptake by them grown on different proportion of industrial solid waste and garden soil. The industrial waste having high concentration of chemicals were used with garden soil at different proportion i.e. 0% (T0), 5% (T1), 10% (T2), 15% (T3) and 20% (T4). Two species namely Conocarpus erectus (alien plant) and Dodonaea viscosa (indigenous) were used as test plants in pot study. Different parameters including growth, physiology, and anatomy of plants and concentration of cations (Na+, K+, Ca2+, and Mg2+) in the plant shoot and root were measured at different time duration (initial, 1st, 2nd, 3rd and 4th month). The key objective of the study was to use these plants to establish their plantations on the barren lands where industrial solid wastes were being disposed of. C. erectus showed better growth than D. viscosa, as well as more uptake of ions. A significant increase in plant growth was observed in fourth month in T1, where plant height reached 24.5% and 46% for C. erectus and D. viscosa, respectively. At harvest, in C. erectus, no significant difference in the fresh (65-78 g) and dry weight (24-30 g) of the shoot was observed across treatments compared to the control. In D. viscosa, at the time of harvest, the fresh and dry weights of the root and shoot showed a strong, significantly decreasing pattern across T1, T2, and T3, leading to the death of the plant at T3 and T4. Further, optimum ratio of waste soil to garden soil was found as 10:90 and 20:80 to establish the plantations of D. viscosa and C. erectus, respectively in areas where such solid waste from industries are disposed. Findings can be used for the restoration of such solid waste for the sustainable management of industrial areas and their associated ecosystems.


Assuntos
Resíduos Industriais , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sapindaceae/crescimento & desenvolvimento , Sapindaceae/metabolismo , Sapindaceae/fisiologia , Íons/metabolismo , Biodegradação Ambiental
4.
Plant Physiol ; 193(1): 555-577, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37313777

RESUMO

Somatic embryogenesis (SE), like zygotic embryo development, is a progressive process. Early SE is the beginning of a switch from a somatic to an embryogenic state and is an important stage for initiating chromatin reprogramming of SE. Previous studies suggest that changes in chromatin accessibility occur during early SE, although information on the 3D structure of chromatin is not yet available. Here, we present a chromosome-level genome assembly of longan (Dimocarpus longan) using PacBio combined with high-through chromosome conformation capture scaffolding, which resulted in a 446 Mb genome assembly anchored onto 15 scaffolds. During early SE, chromatin was concentrated and then decondensed, and a large number of long terminal repeat retrotransposons (LTR-RTs) were enriched in the local chromatin interaction region, suggesting LTR-RTs were involved in chromatin reorganization. Early SE was accompanied by the transformation from A to B compartments, and the interactions between B compartments were enhanced. Results from chromatin accessibility, monomethylation of histone H3 at lysine 4 (H3K4me1) modification, and transcription analyses further revealed a gene regulatory network for cell wall thickening during SE. Particularly, we found that the H3K4me1 differential peak binding motif showed abnormal activation of ethylene response factor transcription factors and participation in SE. The chromosome-level genomic and multiomics analyses revealed the 3D conformation of chromatin during early SE, providing insight into the molecular mechanisms underlying cell wall thickening and the potential regulatory networks of TFs during early SE in D. longan. These results provide additional clues for revealing the molecular mechanisms of plant SE.


Assuntos
Cromossomos de Plantas , Técnicas de Embriogênese Somática de Plantas , Sapindaceae , Biomarcadores/metabolismo , Parede Celular , Cromatina , Redes Reguladoras de Genes , Genoma de Planta , Código das Histonas , Anotação de Sequência Molecular , Sapindaceae/citologia , Sapindaceae/crescimento & desenvolvimento , Sapindaceae/metabolismo , Transcriptoma
5.
Plant Physiol ; 192(3): 1799-1820, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930572

RESUMO

Plant somatic embryogenesis (SE) is an in vitro biological process wherein bipolar structures are induced to form somatic cells and regenerate into whole plants. MicroRNA (miRNA) is an essential player in plant SE. However, the mechanism of microRNA408 (miR408) in SE remains elusive. Here, we used stable transgenic technology in longan (Dimocarpus longan) embryogenic calli to verify the mechanism by which miR408 promotes cell division and differentiation of longan early SE. dlo-miR408-3p regulated riboflavin biosynthesis by targeting nudix hydrolase 23 (DlNUDT23), a previously unidentified gene mediating N6-methyladenosine (m6A) modification and influencing RNA homeostasis and cell cycle gene expression during longan early SE. We showed that DlMIR408 overexpression (DlMIR408-OE) promoted 21-nt miRNA biosynthesis. In DlMIR408-OE cell lines, dlo-miR408-3p targeted and downregulated DlNUDT23, promoted riboflavin biosynthesis, decreased flavin mononucleotide (FMN) accumulation, promoted m6A level, and influenced miRNA homeostasis. DNA replication, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, the pentose phosphate pathway, and taurine and hypotaurine metabolism were also closely associated with riboflavin metabolism. In a riboflavin feeding assay, dlo-miR408-3p and pre-miR408 were upregulated and DlNUDT23 was downregulated, increasing the m6A level and cell division and differentiation in longan globular embryos. When riboflavin biosynthesis was inhibited, dlo-miR408-3p was downregulated and DlNUDT23 was upregulated, which decreased m6A modification and inhibited cell division but did not inhibit cell differentiation. FMN artificial demethylated m6A modification affected the homeostasis of precursor miRNA and miRNA. Our results revealed a mechanism underlying dlo-miR408-3p-activated riboflavin biosynthesis in which DlNUDT23 is targeted, m6A modification is dynamically mediated, and cell division is affected, promoting early SE in plants.


Assuntos
MicroRNAs , Sapindaceae , Perfilação da Expressão Gênica , Sapindaceae/genética , Sapindaceae/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Riboflavina/metabolismo
6.
Plant Physiol ; 191(2): 1122-1137, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36494195

RESUMO

As essential organs of reproduction in angiosperms, flowers, and the genetic mechanisms of their development have been well characterized in many plant species but not in the woody tree yellowhorn (Xanthoceras sorbifolium). Here, we focused on the double flower phenotype in yellowhorn, which has high ornamental value. We found a candidate C-class gene, AGAMOUS1 (XsAG1), through bovine serum albumin sequencing and genetics analysis with a Long Interpersed Nuclear Elements 1 (LINE1) transposable element fragment (Xsag1-LINE1-1) inserted into its second intron that caused a loss-of-C-function and therefore the double flower phenotype. In situ hybridization of XsAG1 and analysis of the expression levels of other ABC genes were used to identify differences between single- and double-flower development processes. These findings enrich our understanding of double flower formation in yellowhorn and provide evidence that transposon insertions into genes can reshape plant traits in forest trees.


Assuntos
Magnoliopsida , Sapindaceae , Fenótipo , Sapindaceae/genética , Magnoliopsida/genética , Elementos de DNA Transponíveis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas
7.
Int J Phytoremediation ; 26(10): 1655-1666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711172

RESUMO

Herein, this work targets to employ the blended fruit wastes including rambutan (Nephelium lappaceum) peel and durian (Durio zibethinus) seed as a promising precursor to produce activated carbon (RPDSAC). The generation of RPDSAC was accomplished through a rapid and practical procedure (microwave-ZnCl2 activation). To evaluate the adsorptive capabilities of RPDSAC, its efficacy in eliminating methylene blue (MB), a simulated cationic dye, was measured. The Box-Behnken design (BBD) was utilized to optimize the crucial adsorption parameters, namely A: RPDSAC dose (0.02-01 g/100 mL), B: pH (4-10), and C: time (2-6 min). The BBD design determined that the highest level of MB removal (79.4%) was achieved with the condition dosage of RPDSAC at 0.1 g/100 mL, contact time (6 min), and pH (10). The adsorption isotherm data is consistent with the Freundlich concept, and the pseudo-second-order versions adequately describe the kinetic data. The monolayer adsorption capacity (qmax) of RPDSAC reached 120.4 mg/g at 25 °C. Various adsorption mechanisms are involved in the adsorption of MB dye onto the surface of RPDSAC, including π-π stacking, H-bonding, pore filling, and electrostatic forces. This study exhibits the potential of the RPDSAC as an adsorbent for removal of toxic cationic dye (MB) from contaminated wastewater.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Cloretos , Azul de Metileno , Poluentes Químicos da Água , Compostos de Zinco , Poluentes Químicos da Água/metabolismo , Adsorção , Carvão Vegetal/química , Micro-Ondas , Sapindaceae , Corantes , Bombacaceae , Eliminação de Resíduos Líquidos/métodos , Cinética
8.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255805

RESUMO

GATA transcription factors, which are DNA-binding proteins with type IV zinc finger binding domains, have a role in transcriptional regulation in biological organisms. They have an indispensable role in the growth and development of plants, as well as in improvements in their ability to face various environmental stresses. To date, GATAs have been identified in many gene families, but the GATA gene in longan (Dimocarpus longan Lour) has not been studied in previous explorations. Various aspects of genes in the longan GATA family, including their identification and classification, the distribution of their positions on chromosomes, their exon/intron structures, a synteny analysis, their expression at different temperatures, concentration of PEG, early developmental stages of somatic embryos and their expression levels in different tissues, and concentrations of exogenous hormones, were investigated in this study. This study showed that the 22 DlGATAs could be divided into four subfamilies. There were 10 pairs of homologous GATA genes in the synteny analysis of DlGATA and AtGATA. Four segmental replication motifs and one pair of tandem duplication events were present among the DlGATA family members. The cis-acting elements located in promoter regions were also found to be enriched with light-responsive elements, which contained related hormone-responsive elements. In somatic embryos, DlGATA4 is upregulated for expression at the globular embryo (GE) stage. We also found that DlGATA expression was strongly up-regulated in roots and stems. The study demonstrated the expression of DlGATA under hormone (ABA and IAA) treatments in embryogenic callus of longan. Under ABA treatment, DlGATA4 was up-regulated and the other DlGATA genes did not respond significantly. Moreover, as demonstrated with qRT-PCR, the expression of DlGATA genes showed strong up-regulated expression levels under 100 µmol·L-1 concentration IAA treatment. This experiment further studied these and simulated their possible connections with a drought response mechanism, while correlating them with their expression under PEG treatment. Overall, this experiment explored the GATA genes and dug into their evolution, structure, function, and expression profile, thus providing more information for a more in-depth study of the characteristics of the GATA family of genes.


Assuntos
Sapindaceae , Sapindaceae/genética , Íntrons , Fatores de Transcrição GATA/genética , Hormônios
9.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542248

RESUMO

Strigolactones (SLs) were recently defined as a novel class of plant hormones that act as key regulators of diverse developmental processes and environmental responses. Much research has focused on SL biosynthesis and signaling in roots and shoots, but little is known about whether SLs are produced in early developing seeds and about their roles in ovule development after fertilization. This study revealed that the fertilized ovules and early developing pericarp in Xanthoceras sorbifolium produced minute amounts of two strigolactones: 5-deoxystrigol and strigol. Their content decreased in the plants with the addition of exogenous phosphate (Pi) compared to those without the Pi treatment. The exogenous application of an SL analog (GR24) and a specific inhibitor of SL biosynthesis (TIS108) affected early seed development and fruit set. In the Xanthoceras genome, we identified 69 potential homologs of genes involved in SL biological synthesis and signaling. Using RNA-seq to characterize the expression of these genes in the fertilized ovules, 37 genes were found to express differently in the fertilized ovules that were aborting compared to the normally developing ovules. A transcriptome analysis also revealed that in normally developing ovules after fertilization, 12 potential invertase genes were actively expressed. Hexoses (glucose and fructose) accumulated at high concentrations in normally developing ovules during syncytial endosperm development. In contrast, a low ratio of hexose and sucrose levels was detected in aborting ovules with a high strigolactone content. XsD14 virus-induced gene silencing (VIGS) increased the hexose content in fertilized ovules and induced the proliferation of endosperm free nuclei, thereby promoting early seed development and fruit set. We propose that the crosstalk between sugar and strigolactone signals may be an important part of a system that accurately regulates the abortion of ovules after fertilization. This study is useful for understanding the mechanisms underlying ovule abortion, which will serve as a guide for genetic or chemical approaches to promote seed yield in Xanthoceras.


Assuntos
Compostos Heterocíclicos com 3 Anéis , Lactonas , Óvulo Vegetal , Sapindaceae , Óvulo Vegetal/genética , Fertilização/genética , Sementes , Sapindaceae/genética , Hexoses/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Molecules ; 29(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124855

RESUMO

Nature provides us with a wealth of inspiration for the design of bionic functional surfaces. Numerous types of plant leaves with exceptional wettability, anisotropy, and adhesion are extensively employed in many engineering applications. Inspired by the wettability, anisotropy, and adhesion of indocalamus leaves, bionic upper and lower surfaces (BUSs and BLSs) of the indocalamus leaf were successfully prepared using a facile approach combining laser scanning and chemical modification. The results demonstrated the BUSs and BLSs obtained similar structural features to the upper and lower surfaces of the indocalamus leaf and exhibited enhanced and more-controllable wettability, anisotropy, and adhesion. More importantly, we conducted a detailed comparative analysis of the wettability, anisotropy, and adhesion between BUSs and BLSs. Finally, BUSs and BLSs were also explored for the corresponding potential applications, including self-cleaning, liquid manipulation, and fog collection, thereby broadening their practical utility. We believe that this study can contribute to the enrichment of the research on novel biological models and provide significant insights into the development of multifunctional bionic surfaces.


Assuntos
Biônica , Folhas de Planta , Propriedades de Superfície , Molhabilidade , Folhas de Planta/química , Anisotropia , Sapindaceae/química
11.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675650

RESUMO

Onosma bracteatum Wall (O. bracteatum) has been used traditionally for the management of arthritis; however, its therapeutic potential warrants further investigation. This study aimed to evaluate the anti-arthritic effects of the aqueous-ethanolic extract of O. bracteatum leaves (AeOB) in a rat model of complete Freund's adjuvant (CFA)-induced arthritis. Rats were treated with AeOB (250, 500, and 750 mg/kg), indomethacin (10 mg/kg), or a vehicle control from days 8 to 28 post-CFA injection. Arthritic score, paw diameter, and body weight were monitored at regular intervals. X-ray radiographs and histopathological analysis were performed to assess arthritic severity. Inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) were quantified by qPCR and icromatography. Phytochemical analysis of AeOB revealed alkaloids, flavonoids, phenols, tannins, Saponins, and glycosides. AeOB also exhibited antioxidant potential with an IC50 of 73.22 µg/mL in a DPPH assay. AeOB and diclofenac exhibited anti-inflammatory and anti-arthritic activities. Rats treated with AeOB at 750 mg/kg and indomethacin showed significantly reduced arthritic symptoms and joint inflammation versus the CFA control. The AeOB treatment downregulated TNF-α and IL-6 and decreased CRP levels compared with arthritic rats. Radiography and histopathology also showed improved prognosis. These findings demonstrate the anti-arthritic potential of AeOB leaves.


Assuntos
Artrite Experimental , Proteína C-Reativa , Adjuvante de Freund , Interleucina-6 , Extratos Vegetais , Fator de Necrose Tumoral alfa , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/induzido quimicamente , Proteína C-Reativa/metabolismo , Interleucina-6/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Sapindaceae/química , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar
12.
J Integr Plant Biol ; 66(8): 1561-1570, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38804840

RESUMO

The Sapindaceae family, encompassing a wide range of plant forms such as herbs, vines, shrubs, and trees, is widely distributed across tropical and subtropical regions. This family includes economically important crops like litchi, longan, rambutan, and ackee. With the wide application of genomic technologies in recent years, several Sapindaceae plant genomes have been decoded, leading to an accumulation of substantial omics data in this field. This surge in data highlights the pressing need for a unified genomic data center capable of storing, sharing, and analyzing these data. Here, we introduced SapBase, that is, the Sapindaceae Genome Database. SapBase houses seven published plant genomes alongside their corresponding gene structure and functional annotations, small RNA annotations, gene expression profiles, gene pathways, and synteny block information. It offers user-friendly features for gene information mining, co-expression analysis, and inter-species comparative genomic analysis. Furthermore, we showcased SapBase's extensive capacities through a detailed bioinformatic analysis of a MYB gene in litchi. Thus, SapBase could serve as an integrative genomic resource and analysis platform for the scientific exploration of Sapinaceae species and their comparative studies with other plants.


Assuntos
Genoma de Planta , Genômica , Sapindaceae , Sapindaceae/genética , Bases de Dados Genéticas , Anotação de Sequência Molecular , Sintenia/genética , Regulação da Expressão Gênica de Plantas
13.
BMC Genomics ; 24(1): 138, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944911

RESUMO

Longan (Dimocarpus longan Lour.) is an economically important subtropical fruit tree. Its fruit quality and yield are affected by embryo development. As a plant seed germination marker gene, the germin-like protein (GLP) gene plays an important role in embryo development. However, the mechanism underlying the role of the GLP gene in somatic embryos is still unclear. Therefore, we conducted genome-wide identification of the longan GLP (DlGLP) gene and preliminarily verified the function of DlGLP1-5-1. Thirty-five genes were identified as longan GLP genes and divided into 8 subfamilies. Based on transcriptome data and qRT‒PCR results, DlGLP genes exhibited the highest expression levels in the root, and the expression of most DlGLPs was upregulated during the early somatic embryogenesis (SE) in longan and responded to high temperature stress and 2,4-D treatment; eight DlGLP genes were upregulated under MeJA treatment, and four of them were downregulated under ABA treatment. Subcellular localization showed that DlGLP5-8-2 and DlGLP1-5-1 were located in the cytoplasm and extracellular stroma/chloroplast, respectively. Overexpression of DIGLP1-5-1 in the globular embryos (GEs) of longan promoted the accumulation of lignin and decreased the H2O2 content by regulating the activities of ROS-related enzymes. The results provide a reference for the functional analysis of DlGLPs and related research on improving lignin accumulation in the agricultural industry through genetic engineering.


Assuntos
Lignina , Sapindaceae , Lignina/metabolismo , Perfilação da Expressão Gênica/métodos , Peróxido de Hidrogênio/metabolismo
14.
Ann Bot ; 132(5): 929-948, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37428838

RESUMO

BACKGROUND AND AIMS: The tribe Paullinieae has the highest diversity of vascular variants among the seed plants. The developmental diversity is better understood in the species-rich genera Paullinia and Serjania; however, the phylogeny and diversity of vascular variants in the smaller genera of Paullinieae remain understudied. Here we investigate the evolution of development of stem vasculatures in the small genus Urvillea. METHODS: We generate the first molecular phylogeny of Urvillea derived from 11 markers using a maximum likelihood and Bayesian approach. In combination with phylogenetic reconstruction, stochastic character mapping is used to assess evolutionary changes in stem ontogenies, determined from developmental anatomy of stems collected in the field or from herbarium and wood collections. KEY RESULTS: Urvillea is supported as a monophyletic group and sister to Serjania. There are five stem ontogenies in Urvillea, including typical growth and four different vascular variants. Most stem ontogenies initiate with lobed stems in primary growth. Lobed stems in secondary growth are ancestral in Urvillea, but this ontogeny was lost multiple times. A reversal to typical growth occurred in non-climbing species. Phloem wedges, fissured stems, and ectopic cambia each evolved once independently. Phloem wedges is an intermediate developmental stage in the formation of fissured stems, which is characterized by a continuous fragmentation of vascular tissues. Lobed stems may generate constriction zones and lobes may split or not. CONCLUSIONS: Urvillea is the third most diverse genus (after Serjania and Paullinia) with respect to the number of vascular variants within Paullinieae. One ontogeny (fissured stems) is exclusive to the genus. Differential cambial activity and ectopic cambia are the main ontogenetic processes generating stem diversity. The evolutionary history of vascular variants demonstrates the large developmental plasticity of the cambium in such a small genus and further demonstrates that complex anatomies have repeatedly evolved within Paullinieae lianas.


Assuntos
Sapindaceae , Filogenia , Teorema de Bayes , Sementes
15.
Physiol Plant ; 175(3): e13932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37170652

RESUMO

Sodium nitroprusside (SNP), as a nitric oxide donor, is widely used in postharvest fruit physiology and metabolism. Our previous study has indicated that SNP plays a crucial role in postharvest browning control of rambutan, but the molecular mechanism underlying this process is still unclear. In this research, we investigated the gene expression and function of postharvest rambutan in response to SNP during browning. We found 7336 differentially expressed genes (DEGs), among which 2206 were upregulated and 5130 were downregulated. Gene Ontology (GO) enrichment as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed, and the real-time quantitative PCR (qPCR) data were consistent with transcriptome data. The DEGs relevant to rambutan pericarp browning were mainly involved in anthocyanin biosynthesis, phenolic oxidation, reactive oxygen species (ROS) production, and energy supply. It was shown that SNP regulated the synthesis and degradation of anthocyanins, accumulation of phenols, level of ROS and energy metabolism to suppress the postharvest browning of rambutan. Also, one WRKY transcription factor involved in ROS metabolism was observed to be differentially regulated. These findings add to our insights into the molecular mechanisms of the SNP-induced browning delays of rambutan, which has implications for subsequent studies on molecular mechanisms of fruit browning.


Assuntos
Sapindaceae , Sapindaceae/metabolismo , Nitroprussiato/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antocianinas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Fenóis/metabolismo
16.
J Integr Neurosci ; 22(6): 161, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38176921

RESUMO

OBJECTIVE: An extract of Xanthoceras sorbifolium Bunge (XSB) oil called nervonic acid (NA) was studied for its potential to ameliorate oxidative stress and inflammation in people living with Parkinson's disease (PD). Recrystallization column chromatography was performed to isolate NA from the XSB oil. Twenty-five C57BL/6 mice (8-10 weeks old) were randomly assigned to one of five groups (control, model, low, medium, and high dosage). METHODOLOGY: Except for the control group, all of the experimental animals received an intraperitoneal injection of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The next phase was administering varied doses of NA produced from XSB oil to mice. Control, model, low-dose, medium-dose, and high-dose groups were created at random from SH-SY5Y and PC-12 cell cultures. Our study's control groups exhibited typical normative conduct. RESEARCH: Polymerase chain reaction (PCR) was used to examine oxidative stress (OS) and inflammatory factors (IFs) in cells. By the time recrystallization column chromatography had finished its analysis, the concentration of NA had increased by a factor of roughly 26. RESULTS: The model and high-dose groups showed similar levels of apoptosis in behavior (p > 0.05). All three NA treatment groups showed decreases in IFs and increases in superoxide dismutase (SOD) and GSH-Px mRNA (p < 0.05). NA, an antioxidant and anti-inflammatory chemical, has shown promising results in PD animal and cell models. CONCLUSIONS: NA synthesized from XSB oil will soon be available for use in the treatment of Parkinson's disease. With the use of deep learning, patients will be able to arrest their health deterioration and enjoy an improved standard of living.


Assuntos
Neuroblastoma , Doença de Parkinson , Sapindaceae , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Antioxidantes/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
17.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203301

RESUMO

B3 family transcription factors play an essential regulatory role in plant growth and development processes. This study performed a comprehensive analysis of the B3 family transcription factor in longan (Dimocarpus longan Lour.), and a total of 75 DlB3 genes were identified. DlB3 genes were unevenly distributed on the 15 chromosomes of longan. Based on the protein domain similarities and functional diversities, the DlB3 family was further clustered into four subgroups (ARF, RAV, LAV, and REM). Bioinformatics and comparative analyses of B3 superfamily expression were conducted in different light and with different temperatures and tissues, and early somatic embryogenesis (SE) revealed its specific expression profile and potential biological functions during longan early SE. The qRT-PCR results indicated that DlB3 family members played a crucial role in longan SE and zygotic embryo development. Exogenous treatments of 2,4-D (2,4-dichlorophenoxyacetic acid), NPA (N-1-naphthylphthalamic acid), and PP333 (paclobutrazol) could significantly inhibit the expression of the DlB3 family. Supplementary ABA (abscisic acid), IAA (indole-3-acetic acid), and GA3 (gibberellin) suppressed the expressions of DlLEC2, DlARF16, DlTEM1, DlVAL2, and DlREM40, but DlFUS3, DlARF5, and DlREM9 showed an opposite trend. Furthermore, subcellular localization indicated that DlLEC2 and DlFUS3 were located in the nucleus, suggesting that they played a role in the nucleus. Therefore, DlB3s might be involved in complex plant hormone signal transduction pathways during longan SE and zygotic embryo development.


Assuntos
Desenvolvimento Embrionário , Sapindaceae , Sapindaceae/genética , Zigoto , Hormônios
18.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375407

RESUMO

A supercritical fluid carbon dioxide (SF-CO2) extraction method was used to obtain the optimum process for extracting yellow horn seed oil. The anti-fatigue and antioxidant properties of the extracted oil were investigated through animal experiments. The optimum process conditions for SF-CO2 extraction of the yellow horn oil were 40 MPa, 50 °C and 120 min, with an extraction yield of 31.61%. The high-dose group of yellow horn oil could significantly increase the weight-bearing swimming time, the hepatic glycogen (HG) content and decrease the lactic acid (LA) content and blood urea nitrogen (BUN) content (p < 0.05) in mice. Moreover, it improved the antioxidant ability by reducing the malondialdehyde (MDA) content (p < 0.01) and raising the glutathione reductase (GR) content and superoxide dismutase (SOD) content (p < 0.05) in mice. Yellow horn oil has the effects of being an anti-fatigue and antioxidant substance, which provides a basis for its further utilization and development.


Assuntos
Cromatografia com Fluido Supercrítico , Sapindaceae , Camundongos , Animais , Antioxidantes/farmacologia , Dióxido de Carbono , Óleos de Plantas/farmacologia , Sementes , Superóxido Dismutase
19.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985842

RESUMO

In East Africa, Dodonaea angustifolia (L.f.) is a well-known medicinal herb. Its leaf is primarily studied in light of its ethnobotanical use. In terms of phytochemistry and biological activity, its flower is not studied. In a prior study, our team looked into phytochemical screening, antioxidant activity, and total phenolic levels. This study aims to compare the profiles and biological activities of the leaf and flower samples of D. angustifolia and to present therapeutic alternatives. The leaf and flower sample powders were extracted with methanol using ultrasound-assisted extraction (UAE). HPTLC profile was obtained using CAMAG-HPTLC equipped with VisionCATS software. Antimicrobial agar well diffusion assay and minimum inhibition concentration (MIC) were determined. The leaf and flower extracts of D. angustifolia showed antibacterial activity with a MIC value of 20 µg/mL against Enterococcus faecalis and Listeria monocytogenes. Similarly, 40 µg/mL was found to be effective against Aspergillus flavus. D. angustifolia flower is a rich source of flavonoids and phenolic acids. Because of its antibacterial properties and profile, which are almost the same, the flower is emerging as a viable option for medicinal alternatives.


Assuntos
Flavonoides , Sapindaceae , Flavonoides/química , Extratos Vegetais/química , Folhas de Planta/química , Flores/química , Antibacterianos/farmacologia , Antibacterianos/análise , Antioxidantes/farmacologia , Antioxidantes/análise
20.
Plant J ; 108(4): 1037-1052, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34519122

RESUMO

Rambutan is a popular tropical fruit known for its exotic appearance, has long flexible spines on shells, extraordinary aril growth, desirable nutrition, and a favorable taste. The genome of an elite rambutan cultivar Baoyan 7 was assembled into 328 Mb in 16 pseudo-chromosomes. Comparative genomics analysis between rambutan and lychee revealed that rambutan chromosomes 8 and 12 are collinear with lychee chromosome 1, which resulted in a chromosome fission event in rambutan (n = 16) or a fusion event in lychee (n = 15) after their divergence from a common ancestor 15.7 million years ago. Root development genes played a crucial role in spine development, such as endoplasmic reticulum pathway genes, jasmonic acid response genes, vascular bundle development genes, and K+ transport genes. Aril development was regulated by D-class genes (STK and SHP1), plant hormone and phenylpropanoid biosynthesis genes, and sugar metabolism genes. The lower rate of male sterility of hermaphroditic flowers appears to be regulated by MYB24. Population genomic analyses revealed genes in selective sweeps during domestication that are related to fruit morphology and environment stress response. These findings enhance our understanding of spine and aril development and provide genomic resources for rambutan improvement.


Assuntos
Frutas/genética , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Sapindaceae/genética , Transcriptoma , Adaptação Fisiológica , Domesticação , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genômica , Glucosídeos/biossíntese , Taninos Hidrolisáveis , Anotação de Sequência Molecular , Fotossíntese , Sapindaceae/crescimento & desenvolvimento , Especificidade da Espécie , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA