Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 34(7-8): 560-579, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32139421

RESUMO

Mutations in the nuclear structural protein lamin A produce rare, tissue-specific diseases called laminopathies. The introduction of a human Emery-Dreifuss muscular dystrophy (EDMD)-inducing mutation into the C. elegans lamin (LMN-Y59C), recapitulates many muscular dystrophy phenotypes, and correlates with hyper-sequestration of a heterochromatic array at the nuclear periphery in muscle cells. Using muscle-specific emerin Dam-ID in worms, we monitored the effects of the mutation on endogenous chromatin. An increased contact with the nuclear periphery along chromosome arms, and an enhanced release of chromosomal centers, coincided with the disease phenotypes of reduced locomotion and compromised sarcomere integrity. The coupling of the LMN-Y59C mutation with the ablation of CEC-4, a chromodomain protein that anchors H3K9-methylated chromatin at the nuclear envelope (NE), suppressed the muscle-associated disease phenotypes. Deletion of cec-4 also rescued LMN-Y59C-linked alterations in chromatin organization and some changes in transcription. Sequences that changed position in the LMN-Y59C mutant, are enriched for E2F (EFL-2)-binding sites, consistent with previous studies suggesting that altered Rb-E2F interaction with lamin A may contribute to muscle dysfunction. In summary, we were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for EDMD.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Proteínas Cromossômicas não Histona/genética , Deleção de Genes , Distrofia Muscular de Emery-Dreifuss/genética , Animais , Sítios de Ligação/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/patologia , Cromatina/genética , Modelos Animais de Doenças , Genoma Helmíntico/genética , Laminina/genética , Laminina/metabolismo , Músculos/fisiopatologia , Distrofia Muscular de Emery-Dreifuss/fisiopatologia , Mutação , Estrutura Terciária de Proteína/genética , Sarcômeros/química , Sarcômeros/genética , Transcrição Gênica/genética
2.
PLoS Genet ; 20(6): e1011101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38905299

RESUMO

Filamins are mechanosensitive actin crosslinking proteins that organize the actin cytoskeleton in a variety of shapes and tissues. In muscles, filamin crosslinks actin filaments from opposing sarcomeres, the smallest contractile units of muscles. This happens at the Z-disc, the actin-organizing center of sarcomeres. In flies and vertebrates, filamin mutations lead to fragile muscles that appear ruptured, suggesting filamin helps counteract muscle rupturing during muscle contractions by providing elastic support and/or through signaling. An elastic region at the C-terminus of filamin is called the mechanosensitive region and has been proposed to sense and counteract contractile damage. Here we use molecularly defined mutants and microscopy analysis of the Drosophila indirect flight muscles to investigate the molecular details by which filamin provides cohesion to the Z-disc. We made novel filamin mutations affecting the C-terminal region to interrogate the mechanosensitive region and detected three Z-disc phenotypes: dissociation of actin filaments, Z-disc rupture, and Z-disc enlargement. We tested a constitutively closed filamin mutant, which prevents the elastic changes in the mechanosensitive region and results in ruptured Z-discs, and a constitutively open mutant which has the opposite elastic effect on the mechanosensitive region and gives rise to enlarged Z-discs. Finally, we show that muscle contraction is required for Z-disc rupture. We propose that filamin senses myofibril damage by elastic changes in its mechanosensory region, stabilizes the Z-disc, and counteracts contractile damage at the Z-disc.


Assuntos
Citoesqueleto de Actina , Proteínas de Drosophila , Drosophila melanogaster , Filaminas , Contração Muscular , Mutação , Miofibrilas , Animais , Filaminas/metabolismo , Filaminas/genética , Miofibrilas/metabolismo , Miofibrilas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Contração Muscular/genética , Contração Muscular/fisiologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Sarcômeros/metabolismo , Sarcômeros/genética , Mecanotransdução Celular/genética , Fenótipo
3.
Hum Mol Genet ; 33(12): 1036-1054, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493359

RESUMO

Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.


Assuntos
Alelos , Modelos Animais de Doenças , Proteínas Musculares , Músculo Esquelético , Mutação , Miopatias da Nemalina , Fenótipo , Sarcômeros , Peixe-Zebra , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Miopatias da Nemalina/fisiopatologia , Peixe-Zebra/genética , Animais , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Humanos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(47): e2315820120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956287

RESUMO

Actin is a highly expressed protein in eukaryotic cells and is essential for numerous cellular processes. In particular, efficient striated muscle contraction is dependent upon the precise regulation of actin-based thin filament structure and function. Alterations in the lengths of actin-thin filaments can lead to the development of myopathies. Leiomodins and tropomodulins are members of an actin-binding protein family that fine-tune thin filament lengths, and their dysfunction is implicated in muscle diseases. An Lmod3 mutation [G326R] was previously identified in patients with nemaline myopathy (NM), a severe skeletal muscle disorder; this residue is conserved among Lmod and Tmod isoforms and resides within their homologous leucine-rich repeat (LRR) domain. We mutated this glycine to arginine in Lmod and Tmod to determine the physiological function of this residue and domain. This G-to-R substitution disrupts Lmod and Tmod's LRR domain structure, altering their binding interface with actin and destroying their abilities to regulate thin filament lengths. Additionally, this mutation renders Lmod3 nonfunctional in vivo. We found that one single amino acid is essential for folding of Lmod and Tmod LRR domains, and thus is essential for the opposing actin-regulatory functions of Lmod (filament elongation) and Tmod (filament shortening), revealing a mechanism underlying the development of NM.


Assuntos
Actinas , Miopatias da Nemalina , Humanos , Actinas/metabolismo , Tropomodulina/genética , Tropomodulina/metabolismo , Miopatias da Nemalina/genética , Miopatias da Nemalina/metabolismo , Proteínas Musculares/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Sarcômeros/genética , Sarcômeros/metabolismo , Mutação , Músculo Esquelético/metabolismo
5.
Hum Mol Genet ; 32(10): 1711-1721, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36661122

RESUMO

Nemaline myopathy (NM) is a rare neuromuscular disorder associated with congenital or childhood-onset of skeletal muscle weakness and hypotonia, which results in limited motor function. NM is a genetic disorder and mutations in 12 genes are known to contribute to autosomal dominant or recessive forms of the disease. Recessive mutations in nebulin (NEB) are the most common cause of NM affecting about 50% of patients. Because of the large size of the NEB gene and lack of mutational hot spots, developing therapies that can benefit a wide group of patients is challenging. Although there are several promising therapies under investigation, there is no cure for NM. Therefore, targeting disease modifiers that can stabilize or improve skeletal muscle function may represent alternative therapeutic strategies. Our studies have identified Nrap upregulation in nebulin deficiency that contributes to structural and functional deficits in NM. We show that genetic ablation of nrap in nebulin deficiency restored sarcomeric disorganization, reduced protein aggregates and improved skeletal muscle function in zebrafish. Our findings suggest that Nrap is a disease modifier that affects skeletal muscle structure and function in NM; thus, therapeutic targeting of Nrap in nebulin-related NM and related diseases may be beneficial for patients.


Assuntos
Miopatias da Nemalina , Animais , Sarcômeros/genética , Sarcômeros/metabolismo , Peixe-Zebra/genética , Músculo Esquelético/metabolismo , Mutação
6.
Circulation ; 148(10): 808-818, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37463608

RESUMO

BACKGROUND: In hypertrophic cardiomyopathy (HCM), myocyte disarray and microvascular disease (MVD) have been implicated in adverse events, and recent evidence suggests that these may occur early. As novel therapy provides promise for disease modification, detection of phenotype development is an emerging priority. To evaluate their utility as early and disease-specific biomarkers, we measured myocardial microstructure and MVD in 3 HCM groups-overt, either genotype-positive (G+LVH+) or genotype-negative (G-LVH+), and subclinical (G+LVH-) HCM-exploring relationships with electrical changes and genetic substrate. METHODS: This was a multicenter collaboration to study 206 subjects: 101 patients with overt HCM (51 G+LVH+ and 50 G-LVH+), 77 patients with G+LVH-, and 28 matched healthy volunteers. All underwent 12-lead ECG, quantitative perfusion cardiac magnetic resonance imaging (measuring myocardial blood flow, myocardial perfusion reserve, and perfusion defects), and cardiac diffusion tensor imaging measuring fractional anisotropy (lower values expected with more disarray), mean diffusivity (reflecting myocyte packing/interstitial expansion), and second eigenvector angle (measuring sheetlet orientation). RESULTS: Compared with healthy volunteers, patients with overt HCM had evidence of altered microstructure (lower fractional anisotropy, higher mean diffusivity, and higher second eigenvector angle; all P<0.001) and MVD (lower stress myocardial blood flow and myocardial perfusion reserve; both P<0.001). Patients with G-LVH+ were similar to those with G+LVH+ but had elevated second eigenvector angle (P<0.001 after adjustment for left ventricular hypertrophy and fibrosis). In overt disease, perfusion defects were found in all G+ but not all G- patients (100% [51/51] versus 82% [41/50]; P=0.001). Patients with G+LVH- compared with healthy volunteers similarly had altered microstructure, although to a lesser extent (all diffusion tensor imaging parameters; P<0.001), and MVD (reduced stress myocardial blood flow [P=0.015] with perfusion defects in 28% versus 0 healthy volunteers [P=0.002]). Disarray and MVD were independently associated with pathological electrocardiographic abnormalities in both overt and subclinical disease after adjustment for fibrosis and left ventricular hypertrophy (overt: fractional anisotropy: odds ratio for an abnormal ECG, 3.3, P=0.01; stress myocardial blood flow: odds ratio, 2.8, P=0.015; subclinical: fractional anisotropy odds ratio, 4.0, P=0.001; myocardial perfusion reserve odds ratio, 2.2, P=0.049). CONCLUSIONS: Microstructural alteration and MVD occur in overt HCM and are different in G+ and G- patients. Both also occur in the absence of hypertrophy in sarcomeric mutation carriers, in whom changes are associated with electrocardiographic abnormalities. Measurable changes in myocardial microstructure and microvascular function are early-phenotype biomarkers in the emerging era of disease-modifying therapy.


Assuntos
Cardiomiopatia Hipertrófica , Hipertrofia Ventricular Esquerda , Humanos , Sarcômeros/genética , Imagem de Tensor de Difusão , Predisposição Genética para Doença , Mutação , Cardiomiopatia Hipertrófica/diagnóstico , Fenótipo , Biomarcadores , Fibrose
7.
PLoS Biol ; 19(4): e3001148, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844684

RESUMO

Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin's structural role in Z-discs.


Assuntos
Actinas/metabolismo , Multimerização Proteica , Sarcômeros/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/genética , Animais , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Humanos , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Contração Muscular/genética , Músculo Esquelético/metabolismo , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética , Sarcômeros/genética , Tropomiosina/química , Tropomiosina/genética , Tropomiosina/metabolismo
8.
Eur Radiol ; 34(2): 1026-1036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37635167

RESUMO

OBJECTIVES: Left atrial (LA) myopathy, characterized by LA enlargement and mechanical dysfunction, is associated with worse prognosis in hypertrophic cardiomyopathy (HCM) while the impact of sarcomere mutation on LA myopathy remains unclear. We aimed to assess the association between LA myopathy and sarcomere mutation and to explore the incremental utility of LA strain in mutation prediction. METHODS: A total of 105 consecutive HCM patients (mean age 47.8 ± 11.9 years, 71% male) who underwent HCM-related gene screening and cardiac MRI were retrospectively enrolled. LA volume, ejection fraction and strain indices in reservoir, conduit, and booster-pump phases were investigated respectively. RESULTS: Fifty mutation-positive patients showed higher LA maximal volume index (59.4 ± 28.2 vs 43.8 ± 18.1 mL/m2, p = 0.001), lower reservoir (21.3 ± 7.9 vs 26.2 ± 6.6%, p < 0.001), and booster-pump strain (12.1 ± 5.4 vs 17.1 ± 5.0%, p < 0.001) but similar conduit strain (9.2 ± 4.5 vs 9.1 ± 4.5%, p = 0.909) compared with mutation-negative patients. In multivariate logistic regression, LA booster-pump strain was associated with sarcomere mutation (odds ratio = 0.86, 95% confidence interval: 0.77-0.96, p = 0.010) independent of maximal wall thickness, late gadolinium enhancement, and LA volume. Furthermore, LA booster-pump strain showed incremental value for mutation prediction added to Mayo II score (AUC 0.798 vs 0.709, p = 0.024). CONCLUSIONS: In HCM, mutation-positive patients suffered worse LA enlargement and worse reservoir and booster-pump functions. LA booster-pump strain was a strong factor for sarcomere mutation prediction added to Mayo II score. CLINICAL RELEVANCE STATEMENT: The independent association between sarcomere mutation and left atrial mechanical dysfunction provide new insights into the pathogenesis of atrial myopathy and is helpful to understand the adverse prognosis regarding atrial fibrillation and stroke in mutation-positive patients. KEY POINTS: • In patients with hypertrophic cardiomyopathy, left atrial (LA) reservoir and booster-pump function, but not conduit function, were significantly impaired in mutation-positive patients compared with mutation-negative patients. • LA booster-pump strain measured by MRI-derived feature tracking is feasible to predict sarcomere mutation with high incremental value added to Mayo II score.


Assuntos
Cardiomiopatia Hipertrófica , Doenças Musculares , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Sarcômeros/genética , Sarcômeros/patologia , Meios de Contraste , Gadolínio , Átrios do Coração , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/complicações , Imageamento por Ressonância Magnética , Doenças Musculares/complicações , Doenças Musculares/patologia , Mutação
9.
Hum Mol Genet ; 30(12): 1131-1141, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33438037

RESUMO

Obscurin is a giant muscle protein that connects the sarcomere with the sarcoplasmic reticulum, and has poorly understood structural and signalling functions. Increasingly, obscurin variants are implicated in the pathophysiology of cardiovascular diseases. The Arg4344Gln variant (R4344Q) in obscurin domain Ig58, initially discovered in a patient with hypertrophic cardiomyopathy, has been reported to reduce binding to titin domains Z8-Z9, impairing obscurin's Z-disc localization. An R4344Q knock-in mouse developed a cardiomyopathy-like phenotype with abnormal Ca2+-handling and arrhythmias, which were attributed to an enhanced affinity of a putative interaction between obscurin Ig58 and phospholamban (PLN) due to the R4344Q variant. However, the R4344Q variant is found in 15% of African Americans, arguing against its pathogenicity. To resolve this apparent paradox, we quantified the influence of the R4344Q variant (alongside another potentially pathogenic variant: Arg4444Trp (R4444W)) on binding to titin Z8-Z9, novex-3 and PLN using pull-down assays and microscale thermophoresis and characterized the influence on domain stability using differential scanning fluorimetry. We found no changes in titin binding and thermostability for both variants and modestly increased affinities of PLN for R4344Q and R4444W. While we could not confirm the novex-3/obscurin interaction, the PLN/obscurin interaction relies on the transmembrane region of PLN and is not reproducible in mammalian cells, suggesting it is an in vitro artefact. Without clear clinical evidence for disease involvement, we advise against classifying these obscurin variants as pathogenic.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cardiomiopatia Hipertrófica/genética , Conectina/genética , Proteínas Serina-Treonina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Animais , Proteínas de Ligação ao Cálcio/ultraestrutura , Cardiomiopatia Hipertrófica/patologia , Conectina/ultraestrutura , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Ligação Proteica/genética , Conformação Proteica , Mapas de Interação de Proteínas/genética , Proteínas Serina-Treonina Quinases/ultraestrutura , Estabilidade Proteica , Fatores de Troca de Nucleotídeo Guanina Rho/ultraestrutura , Sarcômeros/genética , Sarcômeros/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/genética
10.
Circ Res ; 128(10): 1533-1553, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33983830

RESUMO

Hypertrophic cardiomyopathy (HCM) is a genetic disease of the myocardium characterized by a hypertrophic left ventricle with a preserved or increased ejection fraction. Cardiac hypertrophy is often asymmetrical, which is associated with left ventricular outflow tract obstruction. Myocyte hypertrophy, disarray, and myocardial fibrosis constitute the histological features of HCM. HCM is a relatively benign disease but an important cause of sudden cardiac death in the young and heart failure in the elderly. Pathogenic variants (PVs) in genes encoding protein constituents of the sarcomeres are the main causes of HCM. PVs exhibit a gradient of effect sizes, as reflected in their penetrance and variable phenotypic expression of HCM. MYH7 and MYBPC3, encoding ß-myosin heavy chain and myosin binding protein C, respectively, are the two most common causal genes and responsible for ≈40% of all HCM cases but a higher percentage of HCM in large families. PVs in genes encoding protein components of the thin filaments are responsible for ≈5% of the HCM cases. Whereas pathogenicity of the genetic variants in large families has been firmly established, ascertainment causality of the PVs in small families and sporadic cases is challenging. In the latter category, PVs are best considered as probabilistic determinants of HCM. Deciphering the genetic basis of HCM has enabled routine genetic testing and has partially elucidated the underpinning mechanism of HCM as increased number of the myosin molecules that are strongly bound to actin. The discoveries have led to the development of mavacamten that targets binding of the myosin molecule to actin filaments and imparts beneficial clinical effects. In the coming years, the yield of the genetic testing is expected to be improved and the so-called missing causal gene be identified. The advances are also expected to enable development of additional specific therapies and editing of the mutations in HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Hipertrofia Ventricular Esquerda/genética , Cálcio/metabolismo , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte/genética , Morte Súbita Cardíaca/etiologia , Testes Genéticos , Homeostase/genética , Humanos , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Leves de Miosina/genética , Penetrância , Fenótipo , Sarcômeros/genética , Volume Sistólico/genética , Obstrução do Fluxo Ventricular Externo/etiologia
11.
Indian J Med Res ; 158(2): 119-135, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37787257

RESUMO

Hypertrophic cardiomyopathy (HCM) is a genetic heart muscle disease that frequently causes sudden cardiac death (SCD) among young adults. Several pathogenic mutations in genes encoding the cardiac sarcomere have been identified as diagnostic factors for HCM and proposed as prognostic markers for SCD. The objective of this review was to determine the scope of available literature on the variants encoding sarcomere proteins associated with SCD reported among Indian patients with HCM. The eligibility criteria for the scoping review included full text articles that reported the results of genetic screening for sarcomeric gene mutations in HCM patients of Indian south Asian ancestry. We systematically reviewed studies from the databases of Medline, Scopus, Web of Science core collection and Google Scholar. The electronic search strategy included a combination of generic terms related to genetics, disease and population. The protocol of the study was registered with Open Science Framework (https://osf.io/53gde/). A total of 19 articles were identified that reported pathogenic or likely pathogenic (P/LP) variants within MYH7, MYBPC3, TNNT2, TNNI3 and TPM1 genes, that included 16 singletons, one de novo and one digenic mutation (MYH7/ TPM1) associated with SCD among Indian patients. Evidence from functional studies and familial segregation implied a plausible mechanistic role of these P/LP variants in HCM pathology. This scoping review has compiled all the P/LP variants reported to-date among Indian patients and summarized their association with SCD. Single homozygous, de novo and digenic mutations were observed to be associated with severe phenotypes compared to single heterozygous mutations. The abstracted genetic information was updated with reference sequence ID (rsIDs) and compiled into freely accessible HCMvar database, available at https://hcmvar.heartfailure.org.in/. This can be used as a population specific genetic database for reference by clinicians and researchers involved in the identification of diagnostic and prognostic markers for HCM.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Humanos , Adulto Jovem , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/patologia , Coração , Mutação , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/patologia
12.
Proc Natl Acad Sci U S A ; 117(40): 24691-24700, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32968017

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common heritable heart disease. Although the genetic cause of HCM has been linked to mutations in genes encoding sarcomeric proteins, the ability to predict clinical outcomes based on specific mutations in HCM patients is limited. Moreover, how mutations in different sarcomeric proteins can result in highly similar clinical phenotypes remains unknown. Posttranslational modifications (PTMs) and alternative splicing regulate the function of sarcomeric proteins; hence, it is critical to study HCM at the level of proteoforms to gain insights into the mechanisms underlying HCM. Herein, we employed high-resolution mass spectrometry-based top-down proteomics to comprehensively characterize sarcomeric proteoforms in septal myectomy tissues from HCM patients exhibiting severe outflow track obstruction (n = 16) compared to nonfailing donor hearts (n = 16). We observed a complex landscape of sarcomeric proteoforms arising from combinatorial PTMs, alternative splicing, and genetic variation in HCM. A coordinated decrease of phosphorylation in important myofilament and Z-disk proteins with a linear correlation suggests PTM cross-talk in the sarcomere and dysregulation of protein kinase A pathways in HCM. Strikingly, we discovered that the sarcomeric proteoform alterations in the myocardium of HCM patients undergoing septal myectomy were remarkably consistent, regardless of the underlying HCM-causing mutations. This study suggests that the manifestation of severe HCM coalesces at the proteoform level despite distinct genotype, which underscores the importance of molecular characterization of HCM phenotype and presents an opportunity to identify broad-spectrum treatments to mitigate the most severe manifestations of this genetically heterogenous disease.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas/genética , Sarcômeros/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Genótipo , Humanos , Espectrometria de Massas , Miocárdio/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteômica , Sarcômeros/genética , Transdução de Sinais
13.
Curr Cardiol Rep ; 25(6): 473-484, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060436

RESUMO

PURPOSE OF REVIEW: The pace of identifying cardiomyopathy-associated mutations and advances in our understanding of sarcomere function that underlies many cardiomyopathies has been remarkable. Here, we aim to synthesize how these advances have led to the promising new treatments that are being developed to treat cardiomyopathies. RECENT FINDINGS: The genomics era has identified and validated many genetic causes of hypertrophic and dilated cardiomyopathies. Recent advances in our mechanistic understanding of sarcomere pathophysiology include high-resolution molecular models of sarcomere components and the identification of the myosin super-relaxed state. The advances in our understanding of sarcomere function have yielded several therapeutic agents that are now in development and clinical use to correct contractile dysfunction-mediated cardiomyopathy. New genes linked to cardiomyopathy include targets with limited clinical evidence and require additional investigation. Large portions of cardiomyopathy with family history remain genetically undiagnosed and may be due to polygenic disease.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Humanos , Cardiomiopatia Hipertrófica/tratamento farmacológico , Sarcômeros/genética , Sarcômeros/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Mutação
14.
Zhonghua Xin Xue Guan Bing Za Zhi ; 51(5): 497-503, 2023 May 24.
Artigo em Zh | MEDLINE | ID: mdl-37198121

RESUMO

Objective: To observe the association between clinical phenotypes of hypertrophic cardiomyopathy (HCM) patients and a rare calcium channel and regulatory gene variation (Ca2+ gene variation) and to compare clinical phenotypes of HCM patients with Ca2+ gene variation, a single sarcomere gene variation and without gene variation and to explore the influence of rare Ca2+ gene variation on the clinical phenotypes of HCM. Methods: Eight hundred forty-two non-related adult HCM patients diagnosed for the first time in Xijing Hospital from 2013 to 2019 were enrolled in this study. All patients underwent exon analyses of 96 hereditary cardiac disease-related genes. Patients with diabetes mellitus, coronary artery disease, post alcohol septal ablation or septal myectomy, and patients who carried sarcomere gene variation of uncertain significance or carried>1 sarcomere gene variation or carried>1 Ca2+ gene variation, with HCM pseudophenotype or carrier of ion channel gene variations other than Ca2+ based on the genetic test results were excluded. Patients were divided into gene negative group (no sarcomere or Ca2+ gene variants), sarcomere gene variation group (only 1 sarcomere gene variant) and Ca2+ gene variant group (only 1 Ca2+ gene variant). Baseline data, echocardiography and electrocardiogram data were collected for analysis. Results: A total of 346 patients were enrolled, including 170 patients without gene variation (gene negative group), 154 patients with a single sarcomere gene variation (sarcomere gene variation group) and 22 patients with a single rare Ca2+ gene variation (Ca2+ gene variation group). Compared with gene negative group, patients in Ca2+ gene variation group had higher blood pressure and higher percentage of family history of HCM and sudden cardiac death (P<0.05); echocardiographic results showed that patients in Ca2+ gene variation group had thicker ventricular septum ((23.5±5.8) mm vs. (22.3±5.7) mm, P<0.05); electrocardiographic results showed that patients in Ca2+ gene variation group had prolonged QT interval ((416.6±23.1) ms vs. (400.6±47.2) ms, P<0.05) and higher RV5+SV1 ((4.51±2.26) mv vs. (3.50±1.65) mv, P<0.05). Compared with sarcomere gene variation group, patients in Ca2+ gene variation group had later onset age and higher blood pressure (P<0.05); echocardiographic results showed that there was no significant difference in ventricular septal thickness between two groups; patients in Ca2+ gene variation group had lower percentage of left ventricular outflow tract pressure gradient>30 mmHg (1 mmHg=0.133 kPa, 22.8% vs. 48.1%, P<0.05) and the lower early diastolic peak velocity of the mitral valve inflow/early diastolic peak velocity of the mitral valve annulus (E/e') ratio ((13.0±2.5) vs. (15.9±4.2), P<0.05); patients in Ca2+ gene variation group had prolonged QT interval ((416.6±23.1) ms vs. (399.0±43.0) ms, P<0.05) and lower percentage of ST segment depression (9.1% vs. 40.3%, P<0.05). Conclusion: Compared with gene negative group, the clinical phenotype of HCM is more severe in patients with rare Ca2+ gene variation; compared with patients with sarcomere gene variation, the clinical phenotype of HCM is milder in patients with rare Ca2+ gene variation.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Cardiomiopatia Hipertrófica , Humanos , Procedimentos Cirúrgicos Cardíacos/métodos , Cardiomiopatia Hipertrófica/genética , Ecocardiografia , Eletrocardiografia , Fenótipo , Sarcômeros/genética , Adulto
15.
Annu Rev Genomics Hum Genet ; 20: 129-153, 2019 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30978303

RESUMO

Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are common heart muscle disorders that are caused by pathogenic variants in sarcomere protein genes. HCM is characterized by unexplained cardiac hypertrophy (increased chamber wall thickness) that is accompanied by enhanced cardiac contractility and impaired relaxation. DCM is defined as increased ventricular chamber volume with contractile impairment. In this review, we discuss recent analyses that provide new insights into the molecular mechanisms that cause these conditions. HCM studies have uncovered the critical importance of conformational changes that occur during relaxation and enable energy conservation, which are frequently disturbed by HCM mutations. DCM studies have demonstrated the considerable prevalence of truncating variants in titin and have discerned that these variants reduce contractile function by impairing sarcomerogenesis. These new pathophysiologic mechanisms open exciting opportunities to identify new pharmacological targets and develop future cardioprotective strategies.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Conectina/genética , Contração Miocárdica/genética , Sarcômeros/genética , Benzilaminas/uso terapêutico , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/metabolismo , Cardiotônicos/uso terapêutico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Conectina/metabolismo , Expressão Gênica , Humanos , Mutação , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Sarcômeros/patologia , Troponina T/genética , Troponina T/metabolismo , Uracila/análogos & derivados , Uracila/uso terapêutico , Ureia/análogos & derivados , Ureia/uso terapêutico
16.
J Med Genet ; 58(8): 556-564, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32732227

RESUMO

BACKGROUND: Although rare missense variants in Mendelian disease genes often cluster in specific regions of proteins, it is unclear how to consider this when evaluating the pathogenicity of a gene or variant. Here we introduce methods for gene association and variant interpretation that use this powerful signal. METHODS: We present statistical methods to detect missense variant clustering (BIN-test) combined with burden information (ClusterBurden). We introduce a flexible generalised additive modelling (GAM) framework to identify mutational hotspots using burden and clustering information (hotspot model) and supplemented by in silico predictors (hotspot+ model). The methods were applied to synthetic data and a case-control dataset, comprising 5338 hypertrophic cardiomyopathy patients and 125 748 population reference samples over 34 putative cardiomyopathy genes. RESULTS: In simulations, the BIN-test was almost twice as powerful as the Anderson-Darling or Kolmogorov-Smirnov tests; ClusterBurden was computationally faster and more powerful than alternative position-informed methods. For 6/8 sarcomeric genes with strong clustering, Clusterburden showed enhanced power over burden-alone, equivalent to increasing the sample size by 50%. Hotspot+ models that combine burden, clustering and in silico predictors outperform generic pathogenicity predictors and effectively integrate ACMG criteria PM1 and PP3 to yield strong or moderate evidence of pathogenicity for 31.8% of examined variants of uncertain significance. CONCLUSION: GAMs represent a unified statistical modelling framework to combine burden, clustering and functional information. Hotspot models can refine maps of regional burden and hotspot+ models can be powerful predictors of variant pathogenicity. The BIN-test is a fast powerful approach to detect missense variant clustering that when combined with burden information (ClusterBurden) may enhance disease-gene discovery.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Mutação de Sentido Incorreto/genética , Estudos de Casos e Controles , Simulação por Computador , Humanos , Modelos Estatísticos , Sarcômeros/genética
17.
Mol Cell Proteomics ; 19(1): 114-127, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31243064

RESUMO

Hypertrophic cardiomyopathy (HCM) is defined by pathological left ventricular hypertrophy (LVH). It is the commonest inherited cardiac condition and a significant number of high risk cases still go undetected until a sudden cardiac death (SCD) event. Plasma biomarkers do not currently feature in the assessment of HCM disease progression, which is tracked by serial imaging, or in SCD risk stratification, which is based on imaging parameters and patient/family history. There is a need for new HCM plasma biomarkers to refine disease monitoring and improve patient risk stratification. To identify new plasma biomarkers for patients with HCM, we performed exploratory myocardial and plasma proteomics screens and subsequently developed a multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay to validate the 26 peptide biomarkers that were identified. The association of discovered biomarkers with clinical phenotypes was prospectively tested in plasma from 110 HCM patients with LVH (LVH+ HCM), 97 controls, and 16 HCM sarcomere gene mutation carriers before the development of LVH (subclinical HCM). Six peptides (aldolase fructose-bisphosphate A, complement C3, glutathione S-transferase omega 1, Ras suppressor protein 1, talin 1, and thrombospondin 1) were increased significantly in the plasma of LVH+ HCM compared with controls and correlated with imaging markers of phenotype severity: LV wall thickness, mass, and percentage myocardial scar on cardiovascular magnetic resonance imaging. Using supervised machine learning (ML), this six-biomarker panel differentiated between LVH+ HCM and controls, with an area under the curve of ≥ 0.87. Five of these peptides were also significantly increased in subclinical HCM compared with controls. In LVH+ HCM, the six-marker panel correlated with the presence of nonsustained ventricular tachycardia and the estimated five-year risk of sudden cardiac death. Using quantitative proteomic approaches, we have discovered six potentially useful circulating plasma biomarkers related to myocardial substrate changes in HCM, which correlate with the estimated sudden cardiac death risk.


Assuntos
Cardiomiopatia Hipertrófica/sangue , Hipertrofia Ventricular Esquerda/sangue , Aprendizado de Máquina , Peptídeos/sangue , Proteômica/métodos , Adulto , Idoso , Biomarcadores/sangue , Cardiomiopatia Hipertrófica/diagnóstico , Estudos de Casos e Controles , Feminino , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Valor Preditivo dos Testes , Estudos Prospectivos , Sarcômeros/genética , Índice de Gravidade de Doença , Adulto Jovem
18.
Cardiovasc Ultrasound ; 20(1): 14, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35509080

RESUMO

BACKGROUND: PRKAG2 syndrome is a rare disease characterized as left ventricular hypertrophy (LVH), ventricular preexcitation syndrome, and sudden cardiac death. Its natural course, treatment, and prognosis were significantly different from sarcomeric hypertrophic cardiomyopathy (HCM). However, it is often clinically misdiagnosed as sarcomeric HCM. PRKAG2 patients tend to experience delayed treatment. The delay may lead to adverse outcomes. This study aimed to identify the echocardiographic parameters which can differentiate PRKAG2 syndrome from sarcomeric HCM. METHODS: Nine PRKAG2 patients with LVH, 41 HCM patients with sarcomere gene mutations, and 202 healthy volunteers were enrolled. Clinical characteristics, conventional echocardiography, and three-dimensional images were recorded, and reviewed by an attending cardiologist. We evaluated the parameters of left ventricular strains from three-dimensional speckle tracking echocardiography (3D STE) by TomTec software. Receiver operating characteristic (ROC) curves analysis was used to assess clinical and echocardiographic parameters' differential diagnosis potential. RESULTS: The heart rate (HR) of the PRKAG2 group was significantly lower than both the healthy group (53.11 ± 10.14 vs. 69.22 ± 10.48 bpm, P < 0.001) and the sarcomeric HCM group (53.11 ± 10.14 vs. 67.23 ± 10.32 bpm, P = 0.001). The PRKAG2 group had similar interventricular septal thickness (IVS), posterior wall thickness (PWT), and maximum wall thickness (MWT) to the HCM group (P > 0.05). The absolute value of GLS in the PRKAG2 group was significantly higher than HCM patients (-18.92 ± 4.98 vs. -13.43 ± 4.30%, P = 0.004). SV calculated from EDV and ESV in PRKAG2 syndrome showed a higher value than sarcomeric HCM (61.83 ± 13.52 vs. 44.96 ± 17.53%, P = 0.020). The area under the ROC curve (AUC) for HR + GLS was 0.911 (0.803 -1). For HR + GLS, the sensitivity and specificity of the best cut-off value (0.114) were 69.0% and 100%, respectively. CONCLUSIONS: PRKAG2 patients present deteriorated LV diastolic function and preserved LV systolic function. Bradycardia and preserved GLS are useful to identify PRKAG2 syndrome from sarcomeric HCM, which may be beneficial for clinical decision-making.


Assuntos
Cardiomiopatia Hipertrófica , Ecocardiografia Tridimensional , Proteínas Quinases Ativadas por AMP , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Humanos , Hipertrofia Ventricular Esquerda , Sarcômeros/genética , Função Ventricular Esquerda
19.
Echocardiography ; 39(9): 1209-1218, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978457

RESUMO

BACKGROUND: Genetic testing of relatives of hypertrophic cardiomyopathy (HCM) patients has led to a large group of genotype-positive, phenotype-negative (G+/Ph-) subjects. Prediction of progression to overt HCM in these subjects is challenging. While left atrial (LA) strain is reduced in HCM patients it is currently unknown whether this parameter can be used to predict HCM phenotype progression. METHODS: This study includes 91 G+/Ph- subjects and 115 controls. Standard echocardiographic parameters as well as left ventricular global longitudinal strain (LV GLS) and LA reservoir strain (LASr) were assessed for each patient. Logistic and Cox proportional hazard regression analyses were used to investigate predictors of G+/Ph- status and HCM during follow-up. RESULTS: Independent predictors of G+ status included pathological Q waves (OR 1.60 [1.15-2.23], p < .01), maximal wall thickness (MWT: OR 1.10 [1.07-1.14], p < .001), mitral inflow E wave (OR 1.06 [1.02-1.10, p = .001), A wave (OR 1.06 [1.03-1.10], p < .001), LV GLS (OR .96 [.94-.98], p < .001), and LASr (OR .99 [.97-.99], p = .03). In univariable Cox regression analysis, male sex (HR 2.78 [1.06-7.29], p = .04), MWT (HR 1.72 [1.14-2.57], p = .009) and posterior wall thickness (HR 1.65 [1.17-2.30], p = .004) predicted HCM during a median follow-up of 5.9 [3.2-8.6] years, whereas LASr did not (HR .95 [.89-1.02], p = .14). There were no significant predictors of HCM after multivariable adjustment. CONCLUSION: LASr is significantly impaired in G+/Ph- subjects and is an independent predictor of G+/Ph- status, but did not predict HCM development during follow-up.


Assuntos
Cardiomiopatia Hipertrófica , Sarcômeros , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/genética , Ecocardiografia , Átrios do Coração , Humanos , Masculino , Prognóstico , Sarcômeros/genética , Sarcômeros/patologia
20.
Proc Natl Acad Sci U S A ; 116(14): 6969-6974, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886088

RESUMO

Sudden unexpected death of an infant (SUDI) is a devastating occurrence for families. To investigate the genetic pathogenesis of SUDI, we sequenced >70 genes from 191 autopsy-negative SUDI victims. Ten infants sharing a previously unknown variant in troponin I (TnI) were identified. The mutation (TNNI1 R37C+/-) is in the fetal/neonatal paralog of TnI, a gene thought to be expressed in the heart up to the first 24 months of life. Using phylogenetic analysis and molecular dynamics simulations, it was determined that arginine at residue 37 in TNNI1 may play a critical functional role, suggesting that the variant may be pathogenic. We investigated the biophysical properties of the TNNI1 R37C mutation in human reconstituted thin filaments (RTFs) using fluorometry. RTFs reconstituted with the mutant R37C TnI exhibited reduced Ca2+-binding sensitivity due to an increased Ca2+ off-rate constant. Furthermore, we generated TNNI1 R37C+/- mutants in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) using CRISPR-Cas9. In monolayers of hiPSC-CMs, we simultaneously monitored voltage and Ca2+ transients through optical mapping and compared them to their isogenic controls. We observed normal intrinsic beating patterns under control conditions in TNNI1 R37C+/- at stimulation frequencies of 55 beats/min (bpm), but these cells showed no restitution with increased stimulation frequency to 65 bpm and exhibited alternans at >75 bpm. The WT hiPSC-CMs did not exhibit any sign of arrhythmogenicity even at stimulation frequencies of 120 bpm. The approach used in this study provides critical physiological and mechanistic bases to investigate sarcomeric mutations in the pathogenesis of SUDI.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Morte Súbita do Lactente/genética , Troponina I , Cálcio/química , Cálcio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Recém-Nascido , Contração Miocárdica/genética , Miócitos Cardíacos/patologia , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/patologia , Morte Súbita do Lactente/patologia , Troponina I/química , Troponina I/genética , Troponina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA