Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241393

RESUMO

Streptococcus suis serotype 2 is an important encapsulated bacterial swine pathogen and zoonotic agent for which no effective vaccine exists. The interaction with B cells and the humoral response against S. suis are poorly understood despite their likely relevance for a potential vaccine. We evaluated germinal center (GC) B cell kinetics, as well as the production and role of S. suis-specific antibodies following infections in a mouse model. We found that mice infected with S. suis developed GC that peaked 13-21 days post-infection. GC further increased and persisted upon periodic reinfection that mimics real life conditions in swine farms. Anti-S. suis IgM and several IgG subclasses were produced, but antibodies against the S. suis capsular polysaccharide (CPS) were largely IgM. Interestingly, depletion of total IgG from the wild-type mice sera had no effect on bacterial killing by opsonophagocytosis in vitro. Somatic hypermutation and isotype switching were dispensable for controlling the infection or anti-CPS IgM production. However, T cell-deficient (Tcrb-/-) mice were unable to control bacteremia, produce optimal anti-CPS IgM titers, or elicit antibodies with opsonophagocytic activity. SAP deficiency, which prevents GC formation but not extrafollicular B cell responses, ablated anti S. suis-IgG production but maintained IgM production and eliminated the infection. In contrast, B cell deficient mice were unable to control bacteremia. Collectively, our results indicate that the antibody response plays a large role in immunity against S. suis, with GC-independent but T cell-dependent germline IgM being the major effective antibody specificities. Our results further highlight the importance IgM, and potentially anti-CPS antibodies, in clearing S. suis infections and provide insight for future development of S. suis vaccines.


Assuntos
Bacteriemia , Infecções Estreptocócicas , Streptococcus suis , Vacinas , Animais , Camundongos , Suínos , Streptococcus suis/genética , Anticorpos Antibacterianos , Imunoglobulina G , Imunoglobulina M , Linfócitos T , Infecções Estreptocócicas/microbiologia
2.
PLoS Pathog ; 20(4): e1012169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38640137

RESUMO

Integrative and conjugative elements (ICEs) play a vital role in bacterial evolution by carrying essential genes that confer adaptive functions to the host. Despite their importance, the mechanism underlying the stable inheritance of ICEs, which is necessary for the acquisition of new traits in bacteria, remains poorly understood. Here, we identified SezAT, a type II toxin-antitoxin (TA) system, and AbiE, a type IV TA system encoded within the ICESsuHN105, coordinately promote ICE stabilization and mediate multidrug resistance in Streptococcus suis. Deletion of SezAT or AbiE did not affect the strain's antibiotic susceptibility, but their duple deletion increased susceptibility, mainly mediated by the antitoxins SezA and AbiEi. Further studies have revealed that SezA and AbiEi affect the genetic stability of ICESsuHN105 by moderating the excision and extrachromosomal copy number, consequently affecting the antibiotic resistance conferred by ICE. The DNA-binding proteins AbiEi and SezA, which bind palindromic sequences in the promoter, coordinately modulate ICE excision and extracellular copy number by binding to sequences in the origin-of-transfer (oriT) and the attL sites, respectively. Furthermore, AbiEi negatively regulates the transcription of SezAT by binding directly to its promoter, optimizing the coordinate network of SezAT and AbiE in maintaining ICESsuHN105 stability. Importantly, SezAT and AbiE are widespread and conserved in ICEs harbouring diverse drug-resistance genes, and their coordinated effects in promoting ICE stability and mediating drug resistance may be broadly applicable to other ICEs. Altogether, our study uncovers the TA system's role in maintaining the genetic stability of ICE and offers potential targets for overcoming the dissemination and evolution of drug resistance.


Assuntos
Proteínas de Bactérias , Streptococcus suis , Sistemas Toxina-Antitoxina , Streptococcus suis/genética , Streptococcus suis/efeitos dos fármacos , Sistemas Toxina-Antitoxina/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/genética , Antibacterianos/farmacologia , Conjugação Genética , Animais , Sequências Repetitivas Dispersas
3.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963246

RESUMO

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Humanos , Suínos , Infecções Estreptocócicas/veterinária , Fazendas , Doenças dos Suínos/epidemiologia , Virulência/genética , Streptococcus suis/genética , Gado
4.
PLoS Pathog ; 19(3): e1011227, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913374

RESUMO

GntR transcription factor of Streptococcus suis serotype 2 (SS2) is a potential substrate protein of STK, but the regulation mechanisms of GntR phosphorylation are still unclear. This study confirmed that STK phosphorylated GntR in vivo, and in vitro phosphorylation experiments showed that STK phosphorylated GntR at Ser-41. The phosphomimetic strain (GntR-S41E) had significantly reduced lethality in mice and reduced bacterial load in the blood, lung, liver, spleen, and brain of infected mice compared to wild-type (WT) SS2. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments demonstrated that the promoter of nox was bound by GntR. The phosphomimetic protein GntR-S41E cannot bind to the promoter of nox, and the nox transcription levels were significantly reduced in the GntR-S41E mutant compared to WT SS2. The virulence in mice and the ability to resist oxidative stress of the GntR-S41E strain were restored by complementing transcript levels of nox. NOX is an NADH oxidase that catalyzes the oxidation of NADH to NAD+ with the reduction of oxygen to water. We found that NADH is likely accumulated under oxidative stress in the GntR-S41E strain, and higher NADH levels resulted in increased amplified ROS killing. In total, we report GntR phosphorylation could inhibit the transcription of nox, which impaired the ability of SS2 to resist oxidative stress and virulence.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Camundongos , Virulência , Streptococcus suis/genética , Fosforilação , NAD/metabolismo , Estresse Oxidativo , Infecções Estreptocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
BMC Genomics ; 25(1): 808, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198749

RESUMO

BACKGROUND: Streptococcus suis (S. suis) is an important swine and human pathogen. A recent study reported the first isolate of S. suis capable of infecting fish, designated as S. suis strain 3112. The bacterium was isolated from snakeskin gourami (Trichopodus pectoralis), an economically important fish species native to Southeast Asia, and it was previously shown that it can infect and cause lethal streptococcosis in the fish. RESULTS: In this study, we present the complete genome of S. suis 3112. Molecular sequence analysis revealed that it belongs to serotype 6, sequence type 2340. Phylogenetic analysis showed that the bacterium clustered with healthy-pig S. suis isolates, suggestive of an ultimate swine (as opposed to human) origin of the bacterium. Two fluoroquinolone resistance genes are present in the bacterial genome, namely patA and patB. Our results showed that both genes are expressed in our bacterium, and the bacterium is resistant to norfloxacin, but is still sensitive to other fluoroquinolones, including ciprofloxacin, enrofloxacin, and sparfloxacin. Additionally, the bacterium is sensitive to ß-lactams, tetracyclines, sulphonamides, and an aminoglycoside. CONCLUSIONS: This study reports and describes the complete genome of S. suis 3112, the first isolate of S. suis known to infect fish, and provides further insights into the bacterial isolate, particularly regarding its drug resistance profile. These results will facilitate further investigations of the comparative genomics and pathogenic characteristics of S. suis, as well as the development of control strategies against this newly-identified fish pathogen.


Assuntos
Genoma Bacteriano , Filogenia , Streptococcus suis , Sequenciamento Completo do Genoma , Animais , Streptococcus suis/genética , Streptococcus suis/isolamento & purificação , Streptococcus suis/efeitos dos fármacos , Antibacterianos/farmacologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Perciformes/microbiologia , Farmacorresistência Bacteriana/genética
6.
Emerg Infect Dis ; 30(3): 616-619, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407167

RESUMO

In Jeju Island, South Korea, a patient who consumed raw pig products had subdural empyema, which led to meningitis, sepsis, and status epilepticus. We identified Streptococcus suis from blood and the subdural empyema. This case illustrates the importance of considering dietary habits in similar clinical assessments to prevent misdiagnosis.


Assuntos
Empiema Subdural , Sepse , Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Empiema Subdural/diagnóstico , Streptococcus suis/genética , República da Coreia , Comportamento Alimentar , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/tratamento farmacológico
7.
Emerg Infect Dis ; 30(3): 413-422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407169

RESUMO

Streptococcus suis, a zoonotic bacterial pathogen circulated through swine, can cause severe infections in humans. Because human S. suis infections are not notifiable in most countries, incidence is underestimated. We aimed to increase insight into the molecular epidemiology of human S. suis infections in Europe. To procure data, we surveyed 7 reference laboratories and performed a systematic review of the scientific literature. We identified 236 cases of human S. suis infection from those sources and an additional 87 by scanning gray literature. We performed whole-genome sequencing to type 46 zoonotic S. suis isolates and combined them with 28 publicly available genomes in a core-genome phylogeny. Clonal complex (CC) 1 isolates accounted for 87% of typed human infections; CC20, CC25, CC87, and CC94 also caused infections. Emergence of diverse zoonotic clades and notable severity of illness in humans support classifying S. suis infection as a notifiable condition.


Assuntos
Epidemiologia Molecular , Filogenia , Infecções Estreptocócicas , Streptococcus suis , Zoonoses , Streptococcus suis/genética , Streptococcus suis/classificação , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Europa (Continente)/epidemiologia , Humanos , Animais , Zoonoses/epidemiologia , Suínos , Sequenciamento Completo do Genoma , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/microbiologia , Zoonoses Bacterianas/epidemiologia , Zoonoses Bacterianas/microbiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia
8.
J Antimicrob Chemother ; 79(2): 403-411, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153239

RESUMO

BACKGROUND: Streptococcus suis is an important pig pathogen and an emerging zoonotic agent. In a previous study, we described a high proportion of penicillin-resistant serotype 9 S. suis (SS9) isolates on pig farms in Italy. OBJECTIVES: We hypothesized that resistance to penicillin emerged in some SS9 lineages characterized by substitutions at the PBPs, contributing to the successful spread of these lineages in the last 20 years. METHODS: Sixty-six SS9 isolates from cases of streptococcosis in pigs were investigated for susceptibility to penicillin, ceftiofur and ampicillin. The isolates were characterized for ST, virulence profile, and antimicrobial resistance genes through WGS. Multiple linear regression models were employed to investigate the associations between STs, year of isolation, substitutions at the PBPs and an increase in MIC values to ß-lactams. RESULTS: MIC values to penicillin increased by 4% each year in the study period. Higher MIC values for penicillin were also positively associated with ST123, ST1540 and ST1953 compared with ST16. The PBP sequences presented a mosaic organization of blocks. Within the same ST, substitutions at the PBPs were generally more frequent in recent isolates. Resistance to penicillin was driven by substitutions at PBP2b, including K479T, D512E and K513E, and PBP2x, including T551S, while reduced susceptibility to ceftiofur and ampicillin were largely dependent on substitutions at PBP2x. CONCLUSIONS: Here, we identify the STs and substitutions at the PBPs responsible for increased resistance of SS9 to penicillin on Italian pig farms. Our data highlight the need for monitoring the evolution of S. suis in the coming years.


Assuntos
Aminoaciltransferases , Cefalosporinas , Streptococcus suis , Animais , Suínos , Penicilinas/farmacologia , Proteínas de Ligação às Penicilinas/genética , Streptococcus suis/genética , Proteínas de Bactérias/genética , Streptococcus pneumoniae/genética , Sorogrupo , Aminoaciltransferases/genética , Testes de Sensibilidade Microbiana , Resistência às Penicilinas/genética , Genômica , Ampicilina , Células Clonais , Antibacterianos/farmacologia
9.
PLoS Pathog ; 18(8): e1010765, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35921364

RESUMO

Streptococcus suis serotype 2 (SS2) is a major zoonotic pathogen resulting in manifestations as pneumonia and septic shock. The upper respiratory tract is typically thought to be the main colonization and entry site of SS2 in pigs, but the mechanism through which it penetrates the respiratory barrier is still unclear. In this study, a mutant with low invasive potential to swine tracheal epithelial cells (STECs) was screened from the TnYLB-1 transposon insertion mutant library of SS2, and the interrupted gene was identified as autolysin (atl). Compared to wild-type (WT) SS2, Δatl mutant exhibited lower ability to penetrate the tracheal epithelial barrier in a mouse model. Purified Atl also enhanced SS2 translocation across STEC monolayers in Transwell inserts. Furthermore, Atl redistributed the tight junctions (TJs) in STECs through myosin light chain kinase (MLCK) signaling, which led to increased barrier permeability. Using mass spectrometry, co-immunoprecipitation (co-IP), pull-down, bacterial two-hybrid and saturation binding experiments, we showed that Atl binds directly to vimentin. CRISPR/Cas9-targeted deletion of vimentin in STECs (VIM KO STECs) abrogated the capacity of SS2 to translocate across the monolayers, SS2-induced phosphorylation of myosin II regulatory light chain (MLC) and MLCK transcription, indicating that vimentin is indispensable for MLCK activation. Consistently, vimentin null mice were protected from SS2 infection and exhibited reduced tracheal and lung injury. Thus, MLCK-mediated epithelial barrier opening caused by the Atl-vimentin interaction is found to be likely the key mechanism by which SS2 penetrates the tracheal epithelium.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Epitélio , Camundongos , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Suínos , Junções Íntimas/metabolismo , Vimentina/genética , Vimentina/metabolismo
10.
BMC Microbiol ; 24(1): 297, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127666

RESUMO

BACKGROUND: Streptococcus suis is an important zoonotic pathogen. Biofilm formation largely explains the difficulty in preventing and controlling S. suis. However, little is known about the molecular mechanism of S. suis biofilm formation. RESULTS: In this study, transcriptomic and metabolomic analyses of S. suis in biofilm and planktonic states were performed to identify key genes and metabolites involved in biofilm formation. A total of 789 differential genes and 365 differential metabolites were identified. By integrating transcriptomics and metabolomics, five main metabolic pathways were identified, including amino acid pathway, nucleotide metabolism pathway, carbon metabolism pathway, vitamin and cofactor metabolism pathway, and aminoacyl-tRNA biosynthesis metabolic pathway. CONCLUSIONS: These results provide new insights for exploring the molecular mechanism of S. suis biofilm formation.


Assuntos
Biofilmes , Streptococcus suis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Metaboloma , Metabolômica , Multiômica , Streptococcus suis/genética , Streptococcus suis/metabolismo , Transcriptoma
11.
Microb Pathog ; 188: 106565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309311

RESUMO

Streptococcus suis serotype 2 is a zoonotic agent that causes substantial economic losses to the swine industry and threatens human public health. Factors that contribute to its ability to cause disease are not yet fully understood. Glutamate dehydrogenase (GDH) is an enzyme found in living cells and plays vital roles in cellular metabolism. It has also been shown to affect pathogenic potential of certain bacteria. In this study, we constructed a S. suis serotype 2 GDH mutant (Δgdh) by insertional inactivation mediated by a homologous recombination event and confirmed loss of expression of GDH in the mutant by immunoblot and enzyme activity staining assays. Compared with the wild type (WT) strain, Δgdh displayed a different phenotype. It exhibited impaired growth in all conditions evaluated (solid and broth media, increased temperature, varying pH, and salinity) and formed cells of reduced size. Using a swine infection model, pigs inoculated with the WT strain exhibited fever, specific signs of disease, and lesions, and the strain could be re-isolated from the brain, lung, joint fluid, and blood samples collected from the infected pigs. Pigs inoculated with the Δgdh strain did not exhibit any clinical signs of disease nor histologic lesions, and the strain could not be re-isolated from any of the tissues nor body fluid sampled. The Δgdh also showed a decreased level of survival in pig blood. Taken together, these results suggest that the gdh is important in S. suis physiology and its ability to colonize, disseminate, and cause disease.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Humanos , Virulência , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Streptococcus suis/genética , Sorogrupo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Doenças dos Suínos/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia
12.
Microb Pathog ; 193: 106759, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906494

RESUMO

Streptococcus suis is one of the major pathogens of pigs circulating worldwide, and the development of vaccines will help to effectively control streptococcosis in swine. In this study, we evaluated the potential of three membrane associated proteins, histidine kinase (HK), glycosyltransferase family 2 (Gtf-2) and phosphate binding protein (PsbP) of S. suis as subunit vaccines. Bioinformatics analysis shows that protein ABC is highly conserved in S. suis. To verify the protective effects of these proteins in animal models, recombinant protein HK, Gtf-2 and PsbP were used to immunize BALB/c mice separately. The results showed that these proteins immunization in mice can effectively induce strong humoral immune responses, protect mice from cytokine storms caused by S. suis infection, and have a significant protective effect against lethal doses of S. suis infection. Furthermore, antibodies with opsonic activity exist in the recombinant proteins antiserum to assist phagocytic cells in killing S. suis. Overall, these results indicated that these recombinant proteins all elicit good immune protective effect against S. suis infection and can be represent promising candidate antigens for subunit vaccines against S. suis.


Assuntos
Anticorpos Antibacterianos , Proteínas de Bactérias , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Proteínas Recombinantes , Infecções Estreptocócicas , Vacinas Estreptocócicas , Streptococcus suis , Vacinas de Subunidades Antigênicas , Streptococcus suis/imunologia , Streptococcus suis/genética , Animais , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Camundongos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Vacinas Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/genética , Sorogrupo , Citocinas/metabolismo , Feminino , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Imunidade Humoral , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Suínos , Biologia Computacional
13.
Vet Res ; 55(1): 11, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268053

RESUMO

Streptococcus suis is a zoonotic pathogen that causes a major health problem in the pig production industry worldwide. Spain is one of the largest pig producers in the world. This work aimed to investigate the genetic and phenotypic features of invasive S. suis isolates recovered in Spain. A panel of 156 clinical isolates recovered from 13 Autonomous Communities, representing the major pig producers, were analysed. MLST and serotyping analysis revealed that most isolates (61.6%) were assigned to ST1 (26.3%), ST123 (18.6%), ST29 (9.6%), and ST3 (7.1%). Interestingly, 34 new STs were identified, indicating the emergence of novel genetic lineages. Serotypes 9 (27.6%) and 1 (21.8%) prevailed, followed by serotypes 7 (12.8%) and 2 (12.2%). Analysis of 13 virulence-associated genes showed significant associations between ST, serotype, virulence patterns, and clinical features, evidencing particular virulence traits associated with genetic clusters. The pangenome was generated, and the core genome was distributed in 7 Bayesian groups where each group included a variable set of over- and under-represented genes of different categories. The study provides comprehensive data and knowledge to improve the design of new vaccines, antimicrobial treatments, and bacterial typing approaches.


Assuntos
Streptococcus suis , Animais , Suínos , Streptococcus suis/genética , Espanha/epidemiologia , Teorema de Bayes , Tipagem de Sequências Multilocus/veterinária , Virulência , Genômica
14.
Vet Res ; 55(1): 14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317258

RESUMO

Streptococcus suis (S. suis) is an important porcine pathogen causing meningitis, arthritis, and septicemia. Serotypes 2 and 14 are the most common zoonotic ones worldwide, whereas serotypes 2, 9, and 7 are very important in pigs in Europe. To cause invasive infections S. suis needs to enter the bloodstream. Consequently, the immune response in blood represents an important line of defense and bacteremia plays a key role in the pathogenesis of invasive S. suis infections. We investigated the working hypothesis that S. suis strains of the same serotype but different clonal complex (CC) might exhibit substantial differences in the interaction with components of the immune system in porcine blood. The experimental design of this study includes comparative analysis of 8 virulent strains belonging to 4 serotypes with strains of the same serotype being genetically not closely related. Significant differences between two strains of the same serotype but different clonal complex were recorded in the flow cytometric analysis of association with different leukocytes for serotype 9 and 14. Our results demonstrate that the serotype 9 strain of CC94 shows significantly increased association with monocytes and survival in porcine blood of conventional piglets as well as a tendency towards decreased composition of C3 in plasma of these piglets in comparison to the serotype 9 strain of CC16. Correlation analysis of C3 deposition on the bacterial surface and survival in respective blood samples of 8-week-old piglets demonstrated a negative correlation indicating that C3 deposition is a crucial step to limit bacterial survival and proliferation of different S. suis pathotypes in the blood of these piglets. In summary, our results indicate that the capsule composition of a S. suis strain is not alone sufficient to determine association with leukocytes, activation of complement, induction of proinflammatory cytokines, oxidative burst, and bacterial survival in porcine blood. In this study, substantial differences in these host-pathogen interactions were observed between strains of the same serotype. Therefore, a more comprehensive characterization of the field isolates, including at least MLST analysis to determine the sequence type/clonal complex, is recommended.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Streptococcus suis/genética , Monócitos , Tipagem de Sequências Multilocus/veterinária , Sorogrupo , Granulócitos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia
15.
Vet Res ; 55(1): 17, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321502

RESUMO

Streptococcus suis is a gram-positive bacterium that causes meningitis, septicemia, endocarditis, and other disorders in pigs and humans. We obtained 42 and 50 S. suis isolates from lesions of porcine endocarditis and palatine tonsils, respectively, of clinically healthy pigs in Japan; we then determined their sequence types (STs) by multilocus sequence typing (MLST), cps genotypes, serotypes, and presence of classical major virulence-associated marker genes (mrp, epf, and sly). The 42 isolates from endocarditis lesions were assigned to a limited number of STs and clonal complexes (CCs). On the other hand, the 50 isolates from tonsils were diverse in these traits and seemingly in the degree of virulence, suggesting that tonsils can accommodate a variety of S. suis isolates. The goeBURST full algorithm using tonsil isolates obtained in this study and those retrieved from the database showed that major CCs as well as many other clusters were composed of isolates originating from different countries, and some of the STs were very similar to each other despite the difference in country of origin. These findings indicate that S. suis with not only different but also similar mutations in the genome have survived in tonsils independently across different geographical locations. Therefore, unlike the lesions of endocarditis, the tonsils of pigs seemingly accommodate various S. suis lineages. The present study suggests that S. suis acquired its diversity by natural mutations during colonization and persistence in the tonsils of pigs.


Assuntos
Endocardite , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Humanos , Suínos , Animais , Tipagem de Sequências Multilocus/veterinária , Tonsila Palatina/microbiologia , Streptococcus suis/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia , Endocardite/veterinária
16.
PLoS Genet ; 17(11): e1009864, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748531

RESUMO

Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens.


Assuntos
Adaptação Biológica/genética , Doenças Transmissíveis Emergentes/microbiologia , Taxa de Mutação , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Zoonoses/microbiologia , Animais , Ecologia , Streptococcus suis/isolamento & purificação , Streptococcus suis/patogenicidade , Virulência/genética
17.
J Basic Microbiol ; 64(9): e2400030, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031597

RESUMO

Streptococcus suis is an important zoonotic pathogen, causing cytokine storms of Streptococcal toxic shock-like syndrome amongst humans after a wound infection into the bloodstream. To overcome the challenges of fever and leukocyte recruitment, invasive S. suis must deploy multiple stress responses forming a network and utilize proteases to degrade short-lived regulatory and misfolded proteins induced by adverse stresses, thereby adapting and evading host immune responses. In this study, we found that S. suis encodes multiple ATP-dependent proteases, including single-chain FtsH and double-subunit Clp protease complexes ClpAP, ClpBP, ClpCP, and ClpXP, which were activated as the fever of infected mice in vivo. The expression of genes ftsH, clpA/B/C, and clpP, but not clpX, were significantly upregulated in S. suis in response to heat stress, while were not changed notably under the treatments with several other stresses, including oxidative, acidic, and cold stimulation. FtsH and ClpP were required for S. suis survival within host blood under heat stress in vitro and in vivo. Deletion of ftsH or clpP attenuated the tolerance of S. suis to heat, oxidative and acidic stresses, and significantly impaired the bacterial survival within macrophages. Further analysis identified that repressor CtsR directly binds and controls the clpA/B/C and clpP operons and is relieved by heat stress. In summary, the deployments of multiple ATP-dependent proteases form a flexible heat stress response network that appears to allow S. suis to fine-tune the degradation or refolding of the misfolded proteins to maintain cellular homeostasis and optimal survival during infection.


Assuntos
Proteínas de Bactérias , Infecções Estreptocócicas , Streptococcus suis , Streptococcus suis/enzimologia , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções Estreptocócicas/microbiologia , Resposta ao Choque Térmico , Proteases Dependentes de ATP/metabolismo , Proteases Dependentes de ATP/genética , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Macrófagos/imunologia , Endopeptidase Clp/metabolismo , Endopeptidase Clp/genética , Feminino
18.
Can Vet J ; 65(5): 429-436, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694742

RESUMO

Objective: Streptococcus suis is a major agent of disease in modern swine operations, linked to increased mortality, treatment costs, and secondary infections. Although it is ubiquitous in swine, only a fraction of pigs develop clinical disease. The goals of this study were to profile isolates obtained from diseased pigs in western Canada and to investigate potential associations with disease severity. Procedure: Isolates of S. suis (n = 128) from 75 diagnostic submission and 63 premises were paired with epidemiological surveys completed by submitting practitioners (n = 22). Whole-genome sequencing was used to type isolates. Results: The most prevalent serotypes identified were 1/2 (7.8%, 10/128), 2 (9.3%, 12/128), 3 (9.3%, 12/128), and 7 (7.8%, 10/128); and sequence types 28 (17%, 23/128) and 839 (14%, 19/128). There was no association between serotype or sequence type and organ source or barn location. Approximately 74% (14/19) of the premises had diseased animals colonized by > 1 S. suis serotype, but only 1 pig was simultaneously infected with multiple serotypes and sequence types. Serotype distribution from diseased pigs in western Canada differed from that of those in other geographic regions. Conclusion: Infection of diseased pigs by multiple serotypes should be considered when disease control strategies are implemented. No association between S. suis type and isolation organ was identified.


Le profil moléculaire et les caractéristiques épidémiologiques de Streptococcus suis isolés de porcs malades dans l'ouest du Canada révèlent une infection à sérotypes multiples : implications pour la maitrise de la maladie. Objectif: Streptococcus suis est un agent pathogène majeur dans les exploitations porcines modernes, lié à une mortalité accrue, aux coûts de traitement et aux infections secondaires. Bien qu'elle soit omniprésente chez le porc, seule une fraction des porcs développe une maladie clinique. Les objectifs de cette étude étaient de dresser le profil des isolats obtenus à partir de porcs malades dans l'ouest du Canada et d'étudier les associations potentielles avec la gravité de la maladie. Procédure: Des isolats de S. suis (n = 128) provenant de 75 soumissions pour diagnostic et de 63 sites ont été associés à des enquêtes épidémiologiques réalisées auprès des praticiens soumettant les échantillons (n = 22). Le séquençage du génome entier a été utilisé pour typer les isolats. Résultats: Les sérotypes les plus répandus identifiés étaient 1/2 (7,8 %, 10/128), 2 (9,3 %, 12/128), 3 (9,3 %, 12/128) et 7 (7,8 %, 10/128); et les types de séquence 28 (17 %, 23/128) et 839 (14 %, 19/128). Il n'y avait aucune association entre le sérotype ou le type de séquence et la source d'organes ou l'emplacement de la ferme. Environ 74 % (14/19) des exploitations abritaient des animaux malades colonisés par > 1 sérotype de S. suis, mais 1 seul porc était infecté simultanément par plusieurs sérotypes et types de séquences. La répartition des sérotypes chez les porcs malades de l'ouest du Canada différait de celle des porcs d'autres régions géographiques. Conclusion: L'infection des porcs malades par plusieurs sérotypes doit être envisagée lors de la mise en oeuvre de stratégies de maitrise de la maladie. Aucune association entre le type de S. suis et l'organe d'isolement n'a été identifiée.(Traduit par Dr Serge Messier).


Assuntos
Sorogrupo , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Streptococcus suis/genética , Streptococcus suis/isolamento & purificação , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Canadá/epidemiologia
19.
Appl Environ Microbiol ; 89(11): e0128423, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37861326

RESUMO

IMPORTANCE: To the best of our knowledge, this study reveals a strong correlation between mass spectra pattern and virulence phenotype among S. suis for the first time. In order to make the findings applicable and to excavate the intrinsic information in the spectra, the classifiers based on the machine learning algorithms were established, and RF (Random Forest)-based models have achieved an accuracy of over 90%. Overall, this study will pave the way for virulent SS2 (Streptococcus suis serotype 2) rapid detection, and the important findings on the association between genotype and mass spectrum may provide a new idea for the genotype-dependent detection of specific pathogens.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Virulência/genética , Streptococcus suis/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sorogrupo , Aprendizado de Máquina
20.
Appl Environ Microbiol ; 89(3): e0204722, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36809058

RESUMO

Bacterial outer membrane vesicles (OMVs) are considered a promising vaccine platform for their high built-in adjuvanticity and ability to efficiently induce immune responses. OMVs can be engineered with heterologous antigens based on genetic engineering strategies. However, several critical issues should still be validated, including optimal exposure to the OMV surface, increased production of foreign antigens, nontoxicity, and induction of powerful immune protection. In this study, engineered OMVs with the lipoprotein transport machinery (Lpp) were designed to present SaoA antigen as a vaccine platform against Streptococcus suis. The results suggest that Lpp-SaoA fusions can be delivered on the OMV surface and do not have significant toxicity. Moreover, they can be engineered as lipoprotein and significantly accumulated in OMVs at high levels, thus accounting for nearly 10% of total OMV proteins. Immunization with OMVs containing Lpp-SaoA fusion antigen induced strong specific antibody responses and high levels of cytokines, as well as a balanced Th1/Th2 immune response. Furthermore, the decorated OMV vaccination significantly enhanced microbial clearance in a mouse infection model. It was found that antiserum against lipidated OMVs significantly promoted the opsonophagocytic uptake of S. suis in RAW246.7 macrophages. Lastly, OMVs engineered with Lpp-SaoA induced 100% protection against a challenge with 8× the 50% lethal dose (LD50) of S. suis serotype 2 and 80% protection against a challenge with 16× the LD50 in mice. Altogether, the results of this study provide a promising versatile strategy for the engineering of OMVs and suggest that Lpp-based OMVs may be a universal adjuvant-free vaccine platform for important pathogens. IMPORTANCE Bacterial outer membrane vesicles (OMVs) have become a promising vaccine platform due to their excellent built-in adjuvanticity properties. However, the location and amount of the expression of the heterologous antigen in the OMVs delivered by the genetic engineering strategies should be optimized. In this study, we exploited the lipoprotein transport pathway to engineer OMVs with heterologous antigen. Not only did lapidated heterologous antigen accumulate in the engineered OMV compartment at high levels, but also it was engineered to be delivered on the OMV surface, thus leading to the optimal activation of antigen-specific B cells and T cells. Immunization with engineered OMVs induced a strong antigen-specific antibodies in mice and conferred 100% protection against S. suis challenge. In general, the data of this study provide a versatile strategy for the engineering of OMVs and suggest that OMVs engineered with lipidated heterologous antigens may be a vaccine platform for significant pathogens.


Assuntos
Streptococcus suis , Vacinas , Animais , Camundongos , Streptococcus suis/genética , Streptococcus suis/metabolismo , Antígenos Heterófilos , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Lipoproteínas/genética , Anticorpos Antibacterianos , Vacinas Bacterianas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA