Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.311
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 725: 150258, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897041

RESUMO

OBJECTIVE: Long-term exposure to arsenic has been linked to several illnesses, including hypertension, diabetes, hepatic and renal diseases and cardiovascular malfunction. The aim of the current investigation was to determine whether zingerone (ZN) could shield rats against the hepatotoxicity that sodium arsenite (SA) causes. METHODS: The following five groups of thirty-five male Sprague Dawley rats were created: I) Control; received normal saline, II) ZN; received ZN, III) SA; received SA, IV) SA + ZN 25; received 10 mg/kg body weight SA + 25 mg/kg body weight ZN, and V) SA + ZN 50; received 10 mg/kg body weight SA + 50 mg/kg body weight ZN. The experiment lasted 14 days, and the rats were sacrificed on the 15th day. While oxidative stress parameters were studied by spectrophotometric method, apoptosis, inflammation and endoplasmic reticulum stress parameters were measured by RT-PCR method. RESULTS: The SA disrupted the histological architecture and integrity of the liver and enhanced oxidative damage by lowering antioxidant enzyme activity, such as those of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) level and increasing malondialdehyde (MDA) level in the liver tissue. Additionally, SA increased the mRNA transcript levels of Bcl2 associated x (Bax), caspases (-3, -6, -9), apoptotic protease-activating factor 1 (Apaf-1), p53, tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), c-Jun NH2-terminal kinase (JNK), mitogen-activated protein kinase 14 (MAPK14), MAPK15, receptor for advanced glycation endproducts (RAGE) and nod-like receptor family pyrin domain-containing 3 (NLRP3) in the liver tissue. Also produced endoplasmic reticulum stress by raising the mRNA transcript levels of activating transcription factor 6 (ATF-6), protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and glucose-regulated protein 78 (GRP-78). These factors together led to inflammation, apoptosis, and endoplasmic reticulum stress. On the other hand, liver tissue treated with ZN at doses of 25 and 50 mg/kg showed significant improvement in oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress. CONCLUSIONS: Overall, the study's data suggest that administering ZN may be able to lessen the liver damage caused by SA toxicity.


Assuntos
Arsenitos , Doença Hepática Induzida por Substâncias e Drogas , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Transdução de Sinais , Compostos de Sódio , Fator de Necrose Tumoral alfa , Animais , Masculino , Transdução de Sinais/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Arsenitos/toxicidade , Compostos de Sódio/toxicidade , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Caspase 3/metabolismo , Caspase 3/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases , Complexos Multienzimáticos , Proteínas Serina-Treonina Quinases
2.
Pharmacol Res ; 207: 107301, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009291

RESUMO

Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.


Assuntos
Polissacarídeos , Humanos , Polissacarídeos/uso terapêutico , Polissacarídeos/farmacologia , Animais , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Substâncias Protetoras/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
3.
Fish Shellfish Immunol ; 150: 109624, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740228

RESUMO

Avermectin is one of the widely used anthelmintics in aquaculture and exhibits substantial toxicity to aquatic organisms. Silybin is extensively used for its anti-inflammatory, antioxidant and anti-apoptotic biological properties. Heart is essential for the survival of fish and plays a vital role in pumping blood oxygen and nutrients. Residual avermectin in water poses harm to carp. However, there is still insufficient research on whether silybin can mitigate the toxicity of avermectin to carp heart tissues. In this research, we established a model involving carp subjected to acute avermectin exposure and administered diets containing silybin to explore the potential protective effects of silybin against avermectin-induced cardiotoxicity. The results revealed that avermectin induced oxidative stress, inflammation, endoplasmic reticulum (ER) stress, mitochondrial pathway apoptosis and autophagy in the cardiac tissues of carp. Compared with the avermectin group, silybin significantly reduced ROS accumulation in cardiac tissues, restored antioxidant enzyme activity, inhibited mRNA transcript levels of pro-inflammatory-related factors, and attenuated ER stress, mitochondrial pathway apoptosis and autophagy. Protein-protein interaction (PPI) analysis demonstrated that silybin mitigated avermectin-induced cardiac oxidative stress, inflammation, ER stress, mitochondrial pathway apoptosis and autophagy. Silybin exerted anti-inflammatory effects through the Nuclear Factor kappa B (NF-κB) pathway, antioxidant effects through the Nuclear factor erythroid 2-related factor 2 (Nrf2) - Kelch-like ECH-associated protein 1 (Keap1) pathway, alleviated cardiac ER stress through the Glucose-regulated protein 78 (GRP78)/Activating Transcription Factor 6 (ATF6)/C/EBP homologous protein (CHOP) axis, suppressed apoptosis through the mitochondrial pathway, and inhibited excessive autophagy initiation through the PTEN-induced putative kinase 1 (PINK1)/Parkin RBR E3 ubiquitin protein ligase (PARKIN) signaling pathway. This study provided evidence supporting the protective effect of silybin against avermectin-induced cardiotoxicity in carp, highlighting its potential as a dietary additive to protect fish from adverse effects caused by avermectin exposure.


Assuntos
Anti-Helmínticos , Carpas , Ivermectina , Substâncias Protetoras , Silibina , Silibina/farmacologia , Silibina/uso terapêutico , Estresse do Retículo Endoplasmático , Cardiotoxicidade/tratamento farmacológico , Carpas/fisiologia , Animais , Ivermectina/toxicidade , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Fator de Transcrição CHOP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Biomarcadores/sangue , Coração/efeitos dos fármacos , Coração/fisiologia , Miocárdio/patologia
4.
Biol Pharm Bull ; 47(9): 1550-1556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39313391

RESUMO

Acute kidney injury (AKI) is one of the common complications in patients with sepsis. We aimed to investigate the protective mechanism of salidroside (SLDS) on AKI induced by cecal ligation and perforation (CLP). We established a sepsis model using the CLP, and pretreated the mice with SLDS. We used biochemical methods to measure renal function, inflammatory factors and oxidase levels. We used transmission electron microscopy to observe mitochondrial damage, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) to detect apoptosis in renal tubular epithelial cells (TECs), and RT-quantitative PCR (qPCR) to detect the expression of apoptotic genes. CLP induced renal pathological damage and decreased renal function, activated inflammatory factors and oxidases, leading to mitochondrial damage and increased apoptosis of TECs. SLDS pretreatment improved renal pathological damage, reduced tumor necrosis factor (TNF)-α, interleukin (IL)-6 and malondialdehyde levels, and increased the levels of glutathione peroxidase, superoxide dismutase and catalase. Moreover, SLDS stabilized mitochondrial damage induced by CLP, inhibited TECs apoptosis, increased Bcl-2 mRNA level, and decreased Bax and Caspase-3 mRNA levels. SLDS protects CLP induced AKI by inhibiting oxidative stress, mitochondrial damage, and cell apoptosis in TECs.


Assuntos
Injúria Renal Aguda , Apoptose , Glucosídeos , Mitocôndrias , Estresse Oxidativo , Fenóis , Sepse , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Modelos Animais de Doenças
5.
Ecotoxicol Environ Saf ; 276: 116284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581912

RESUMO

Fluorosis due to high fluoride levels in drinking water profoundly affects the development of human skeletal and dental structures. Sodium butyrate (NaB) has been found to regulate overall bone mass and prevent pathological bone loss. However, the mechanism of NaB action on fluorosis remains unclear. In this study, a rat model of fluorosis induced by 100 mg/L sodium fluoride was used to investigate the impact of NaB on bone homeostasis and serum metabolomics. It was found that NaB significantly reduced the levels of bone resorption markers CTX-Ⅰ and TRACP-5B in fluorosis rats. Moreover, NaB increased calcium and magnesium levels in bone, while decreasing phosphorus levels. In addition, NaB improved various bone microstructure parameters, including bone mineral density (BMD), trabecular thickness (Tb. Th), trabecular bone separation (Tb. SP), and structural model index (SMI) in the femur. Notably, NaB intervention also enhanced the antioxidant capacity of plasma in fluorosis rats. Furthermore, a comprehensive analysis of serum metabolomics by LC-MS revealed a significant reversal trend of seven biomarkers after the intervention of NaB. Finally, pathway enrichment analysis based on differential metabolites indicated that NaB exerted protective effects on fluorosis by modulating arginine and proline metabolic pathways. These findings suggest that NaB has a beneficial effect on fluorosis and can regulate bone homeostasis by ameliorating metabolic disorders.


Assuntos
Ácido Butírico , Fluorose Dentária , Homeostase , Animais , Ratos , Homeostase/efeitos dos fármacos , Ácido Butírico/farmacologia , Osso e Ossos/efeitos dos fármacos , Masculino , Densidade Óssea/efeitos dos fármacos , Biomarcadores/sangue , Ratos Sprague-Dawley , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Reabsorção Óssea/induzido quimicamente , Fluoreto de Sódio/toxicidade
6.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892435

RESUMO

Acute liver failure is an infrequent yet fatal condition marked by rapid liver function decline, leading to abnormalities in blood clotting and cognitive impairment among individuals without prior liver ailments. The primary reasons for liver failure are infection with hepatitis virus or overdose of certain medicines, such as acetaminophen. Phaeodactylum tricornutum (PT), a type of microalgae known as a diatom species, has been reported to contain an active ingredient with anti-inflammatory and anti-obesity effects. In this study, we evaluated the preventive and therapeutic activities of PT extract in acute liver failure. To achieve our purpose, we used two different acute liver failure models: acetaminophen- and D-GalN/LPS-induced acute liver failure. PT extract showed protective activity against acetaminophen-induced acute liver failure through attenuation of the inflammatory response. However, we failed to demonstrate the protective effects of PT against acute liver injury in the D-GalN/LPS model. Although the PT extract did not show protective activity against two different acute liver failure animal models, this study clearly demonstrates the importance of considering the differences among animal models when selecting an acute liver failure model for evaluation.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Modelos Animais de Doenças , Microalgas , Animais , Acetaminofen/efeitos adversos , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Microalgas/química , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Masculino , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Etanol/efeitos adversos , Diatomáceas , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Lipopolissacarídeos/efeitos adversos
7.
Pharmacogenet Genomics ; 33(5): 111-115, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068004

RESUMO

With the scarcity of pharmacological otoprotective agents against cisplatin-induced ototoxicity (CIO), researchers find themselves compelled to look at and navigate all possible strategies to identify ways to prevent CIO. One of these promising strategies is pharmacogenomic implementation. This strategy aims for identifying and detecting high-risk genetic variants to tailor cisplatin therapy to reach the best survival outcomes with the least risk of ototoxicity.


Assuntos
Antineoplásicos , Ototoxicidade , Humanos , Cisplatino/efeitos adversos , Antineoplásicos/efeitos adversos , Ototoxicidade/genética , Ototoxicidade/tratamento farmacológico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Farmacogenética
8.
Arterioscler Thromb Vasc Biol ; 42(2): 127-144, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34911361

RESUMO

OBJECTIVE: Nobiletin is a dietary flavonoid that improves insulin resistance and atherosclerosis in mice with metabolic dysfunction. Dysregulation of intestinal lipoprotein metabolism contributes to atherogenesis. The objective of the study was to determine if nobiletin targets the intestine to improve metabolic dysregulation in both male and female mice. Approach and Results: Triglyceride-rich lipoprotein (TRL) secretion, intracellular triglyceride kinetics, and intestinal morphology were determined in male and female LDL (low-density lipoprotein) receptor knockout (Ldlr-/-), and male wild-type mice fed a standard laboratory diet or high-fat, high-cholesterol (HFHC) diet ± nobiletin using an olive oil gavage, radiotracers, and electron microscopy. Nobiletin attenuated postprandial TRL levels in plasma and enhanced TRL clearance. Nobiletin reduced fasting jejunal triglyceride accumulation through accelerated TRL secretion and lower jejunal fatty acid synthesis with no impact on fatty acid oxidation. Fasting-refeeding experiments revealed that nobiletin led to higher levels of phosphorylated AKT (protein kinase B) and FoxO1 (forkhead box O1) and normal Srebf1c expression indicating increased insulin sensitivity. Intestinal length and weight were diminished by HFHC feeding and restored by nobiletin. Both fasting and postprandial plasma GLP-1 (glucagon-like peptide-1; and likely GLP-2) were elevated in response to nobiletin. Treatment with a GLP-2 receptor antagonist, GLP-2(3-33), reduced villus length in HFHC-fed mice but did not impact TRL secretion in any diet group. In contrast to males, nobiletin did not improve postprandial lipid parameters in female mice. CONCLUSIONS: Nobiletin opposed the effects of the HFHC diet by normalizing intestinal de novo lipogenesis through improved insulin sensitivity. Nobiletin prevents postprandial lipemia because the enhanced TRL clearance more than compensates for increased TRL secretion.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Flavonas/farmacologia , Hiperlipidemias/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Feminino , Flavonas/uso terapêutico , Hiperlipidemias/sangue , Hiperlipidemias/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Período Pós-Prandial , Substâncias Protetoras/uso terapêutico , Triglicerídeos/sangue , Triglicerídeos/metabolismo
9.
Ren Fail ; 45(1): 2194434, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36974638

RESUMO

BACKGROUND: Patients with diabetic kidney disease (DKD) are at increased risk to develop post-contrast acute kidney injury (AKI). Diabetic patients under dipeptidyl peptidase 4 inhibitors (DPP4Is) experience a lower propensity to develop AKI. We speculated that linagliptin as a single agent or in combination with allopurinol may reduce the incidence of post-contrast AKI in stage 3-5 chronic kidney disease (CKD) patients with underlying DKD. METHODS: Out of 951 DKD patients eligible for this study, 800 accepted to sign informed consent. They were randomly allocated to 4 equal groups that received their prophylaxis for 2 days before and after radiocontrast. The first control group received N-acetyl cysteine and saline, the 2nd received allopurinol, the 3rd group received linagliptin, and the 4th received both allopurinol and linagliptin. Post-procedure follow-up for kidney functions was conducted for 2 weeks in all patients. RESULTS: 20, 19, 14, and 8 patients developed post-contrast AKI in groups 1 through 4, respectively. Neither linagliptin nor allopurinol was superior to N-acetyl cysteine and saline alone. However, the combination of the two agents provided statistically significant renal protection: post-contrast AKI in group 4 was significantly lower than in groups 1 and 2 (p < 0.02 and <0.03, respectively). None of the post-contrast AKI cases required dialysis. CONCLUSION: Linagliptin and allopurinol in combination may offer protection against post-contrast AKI in DKD exposed to radiocontrast. Further studies are needed to support this view. TRIAL REGISTRATION CLINICALTRIALS.GOV: NCT03470454.


Assuntos
Injúria Renal Aguda , Alopurinol , Meios de Contraste , Nefropatias Diabéticas , Linagliptina , Substâncias Protetoras , Humanos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Alopurinol/administração & dosagem , Alopurinol/uso terapêutico , Nefropatias Diabéticas/classificação , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/diagnóstico , Falência Renal Crônica/complicações , Falência Renal Crônica/diagnóstico , Linagliptina/administração & dosagem , Linagliptina/uso terapêutico , Estudos Prospectivos , Insuficiência Renal Crônica/classificação , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Meios de Contraste/efeitos adversos , Quimioprevenção/métodos , Quimioterapia Combinada , Acetilcisteína/administração & dosagem , Acetilcisteína/uso terapêutico , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/efeitos adversos , Substâncias Protetoras/uso terapêutico , Solução Salina/administração & dosagem , Solução Salina/uso terapêutico
10.
Pak J Pharm Sci ; 36(3): 819-827, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37580931

RESUMO

Gastric ulcer is a common gastrointestinal disease caused by excessive gastric acid secretion, which has been recognized as one of the most common causes of morbidity and mortality in the world. The skin of Rana chensinensis is rich in collagen and many previous studies have shown that it has certain bioactivity. Therefore, we extracted and purified collagen with a molecular weight less than 10000 Da from the skin of Rana chensinensis, and studied its gastric protective mechanism through the model of ethanol-induced gastric ulcer in Balb/c mice. The results showed that through macroscopic observation and significantly reduced ulcer index, it was proved that PCRCS could protect gastric mucosa and alleviate the damage of ethanol to gastric mucosa. PCRCS reduced ethanol-induced oxidative stress by boosting depleted SOD levels and dramatically lowering MDA levels, as well as significantly reducing lipid peroxidation. Additionally PCRCS (Protein Chinese Rana chesinensis Skin) additionally decreased the launch of inflammatory mediators TNF-α and IL-6 and more desirable the content material of protective elements NO and PGE2 in gastric mucosa. Based on these findings, we believe that PCRCS has potential stomach protective effects on ethanol-induced gastric ulcer, which may be achieved by inhibiting oxidative stress and stomach inflammation.


Assuntos
Antiulcerosos , Mucosa Gástrica , Ranidae , Úlcera Gástrica , Animais , Camundongos , Antiulcerosos/efeitos adversos , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Colágeno/farmacologia , Etanol/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Substâncias Protetoras/efeitos adversos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , China , Modelos Animais de Doenças , Pele
11.
J Biol Chem ; 296: 100761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33971198

RESUMO

Diabetes mellitus (DM) causes injury to tissues and organs, including to the heart and kidney, resulting in increased morbidity and mortality. Thus, novel potential therapeutics are continuously required to minimize DM-related organ damage. We have previously shown that dipeptidyl peptidase III (DPPIII) has beneficial roles in a hypertensive mouse model, but it is unknown whether DPPIII has any effects on DM. In this study, we found that intravenous administration of recombinant DPPIII in diabetic db/db mice for 8 weeks suppressed the DM-induced cardiac diastolic dysfunctions and renal injury without alteration of the blood glucose level. This treatment inhibited inflammatory cell infiltration and fibrosis in the heart and blocked the increase in albuminuria by attenuating the disruption of the glomerular microvasculature and inhibiting the effacement of podocyte foot processes in the kidney. The beneficial role of DPPIII was, at least in part, mediated by the cleavage of a cytotoxic peptide, named Peptide 2, which was increased in db/db mice compared with normal mice. This peptide consisted of nine amino acids, was a digested fragment of complement component 3 (C3), and had an anaphylatoxin-like effect determined by the Miles assay and chemoattractant analysis. The effect was dependent on its interaction with the C3a receptor and protein kinase C-mediated RhoA activation downstream of the receptor in endothelial cells. In conclusion, DPPIII plays a protective role in the heart and kidney in a DM animal model through cleavage of a peptide that is a part of C3.


Assuntos
Cardiomiopatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Terapia Enzimática , Coração/fisiopatologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Rim/metabolismo , Rim/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Substâncias Protetoras/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico
12.
Biochem Biophys Res Commun ; 589: 63-70, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34891043

RESUMO

Psoriasiform skin inflammation is the common chronic skin inflammatory disease with no effective clinical therapy. Salubrinal is a multifunctional molecule playing a protective role in several conditions. Recently, studies have reported that Salubrinal is a potential therapeutic agent for inflammatory diseases. However, the protective role of Salubrinal in psoriasis-like skin inflammation remains unknown. In this article, imiquimod (IMQ)-induced psoriasis models were established in wild-type mice to explore the role of Salubrinal in the development of psoriasis. As a result, the IMQ-induced mouse models exhibited typical skin inflammation, which was alleviated by the administration of Salubrinal. Furthermore, RAW264.7 macrophage was stimulated with Lipopolysaccharide(LPS) in the presence or absence of Salubrinal. LPS stimulation elevated the expression of various inflammatory biomarkers, while the administration of Salubrinal abolished the function of LPS in RAW264.7 macrophages. In addition, the activation of the nuclear factor-kappa B (NF-κB) signaling pathway in both the LPS-stimulated RAW264.7 macrophage and psoriasis mouse models was antagonized by the administration of Salubrinal. Collectively, Salubrinal might be considered as a promising therapeutic agent for psoriasis-like skin inflammation.


Assuntos
Cinamatos/farmacologia , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Psoríase/patologia , Pele/patologia , Tioureia/análogos & derivados , Animais , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/uso terapêutico , Psoríase/tratamento farmacológico , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Tioureia/farmacologia , Fator de Necrose Tumoral alfa
13.
Biochem Biophys Res Commun ; 588: 154-160, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971904

RESUMO

Non-alcoholic fatty liver disease (NAFLD) includes a broad spectrum of liver diseases characterized by steatosis, inflammation, and fibrosis. This study aimed to investigate the potential of dipeptidyl peptidase-4 inhibitors and sodium-glucose cotransporter 2 inhibitors in alleviating the progression of NAFLD. The NAFLD model was generated by feeding male C57BL/6J mice a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 7 weeks. After 2 weeks of CDAHFD feeding, the NAFLD model mice were assigned to four groups, namely (ⅰ) VEHICLE, (ⅱ) gemigliptin (GEMI), (ⅲ) empagliflozin (EMPA), and (ⅳ) GEMI + EMPA. For the next 5 weeks, mice received the vehicle or the drug based upon the group to which they belonged. Thereafter, the triglyceride concentration, extent of fibrosis, and the expression of genes encoding inflammatory cytokines, chemokines, and antioxidant enzymes were analyzed in the livers of mice. The NAFLD activity score and hepatic fibrosis grade were assessed via hematoxylin and eosin and Sirius Red staining of the liver tissue samples. All mice belonging to the GEMI, EMPA, and GEMI + EMPA groups showed improvements in the accumulation of liver triglycerides and the expression of inflammatory cytokines and chemokines. Additionally, the oxidative stress was reduced due to inhibition of the c-Jun N-terminal kinase pathway and upregulation of the antioxidant enzymes. Furthermore, in these three groups, the galectin-3 and interleukin 33-induced activity of tumor necrosis factor-α was inhibited, thereby preventing the progression of liver fibrosis. These findings suggest that the GEMI, EMPA, and GEMI + EMPA treatments ameliorate hepatic steatosis, inflammation, oxidative stress, and fibrosis in CDAHFD-induced NAFLD mouse models.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Dieta Hiperlipídica , Glucosídeos/uso terapêutico , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Piperidonas/farmacologia , Piperidonas/uso terapêutico , Substâncias Protetoras/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Aminoácidos , Animais , Compostos Benzidrílicos/farmacologia , Colina , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Glucosídeos/farmacologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia
14.
Pharmacol Res ; 175: 106005, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843960

RESUMO

As a source of various compounds, natural products have long been important and valuable for drug development. Kaempferol (KP) is the most common flavonol with bioactive activity and has been extracted from many edible plants and traditional Chinese medicines. It has a wide range of pharmacological effects on inflammation, oxidation, and tumour and virus regulation. The liver is an important organ and is involved in metabolism and activity. Because the pathological process of liver diseases is extremely complicated, liver diseases involving ALD, NASH, liver fibrosis, and HCC are often complicated and difficult to treat. Fortunately, there have been many reports that KP has a good pharmacological effect on a series of complex liver diseases. To fully understand the mechanism of KP and provide new ideas for its clinical application in the treatment of liver diseases, this article reviews the pharmacological mechanism and potential value of KP in different studies involving various liver diseases. In the trilogy of liver disease, high concentrations of ROS stimulate peroxidation and activate the inflammatory signal cascade, which involves signalling pathways such as MAPK/JAK-STAT/PERK/Wnt/Hipp, leading to varying degrees of cell degradation and liver damage. The development of liver disease is promoted in an inflammatory environment, which is conducive to the activation of TGF-ß1, leading to increased expression of pro-fibrosis and pro-inflammatory genes. Inflammation and oxidative stress promote the formation of tumour microenvironments, and uncontrolled autophagy of cancer cells further leads to the development of liver cancer. The main pathway in this process is AMPK/PTEN/PI3K-Akt/TOR. KP can not only protect liver parenchymal cells through a variety of antioxidant and anti-apoptotic mechanisms but also reduces the immune inflammatory response in the liver microenvironment, thereby preventing cell apoptosis; it can also inhibit the ER stress response, prevent inflammation and inhibit tumour growth. KP exerts multiple therapeutic effects on liver disease by regulating precise signalling targets and is expected to become an emerging therapeutic opportunity to treat liver disease in the future.


Assuntos
Quempferóis/uso terapêutico , Hepatopatias/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Animais , Humanos , Quempferóis/farmacologia , Substâncias Protetoras/farmacologia
15.
J Pathol ; 253(2): 198-208, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33125701

RESUMO

Alcoholic cardiomyopathy (ACM) resulting from chronic alcohol misuse is one of the main contributors leading to heart failure and cardiovascular mortality. Fibroblast growth factor 21 (FGF21) is a well-established cardioprotective factor. We aimed to study the role of FGF21 in experimentally induced models and clinical affected patients with cardiac damage due to chronic alcohol consumption. We found that circulating FGF21 levels and cardiac FGF21 and ß-klotho protein levels were increased in subjects with chronic alcohol consumption. As an experimental model of ACM, we fed wild-type and Fgf21 knockout (Fgf21-/- ) mice with a 4% alcohol liquid diet for 4 and 12 weeks. FGF21 circulating levels and FGF21 expression in the myocardium were also increased in wild-type mice after chronic alcohol intake. Fgf21-/- mice develop a higher degree of cardiac hypertrophy, fibrosis, and cardiac dysfunction after chronic alcohol consumption than wild-type mice. Moreover, the myocardium of Fgf21-/- mice showed signs of metabolic deregulation, oxidative stress, and mitochondrial dysfunction after alcohol intake. Finally, human cardiac biopsies from patients with chronic alcohol consumption developing ACM presented a higher degree of oxidative stress which positively correlated with the FGF21 protein levels in the myocardium. We conclude that plasma levels and cardiac myocyte FGF21 expression were induced in response to chronic alcohol consumption. The lack of FGF21 aggravated cardiac damage produced by ACM, in association with enhanced mitochondrial and oxidative stress, thus pointing to FGF21 as a protective agent against development of alcohol-induced cardiomyopathy. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Cardiomegalia/patologia , Cardiomiopatia Alcoólica/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Insuficiência Cardíaca/patologia , Animais , Cardiomiopatia Alcoólica/complicações , Cardiomiopatia Alcoólica/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/genética , Insuficiência Cardíaca/etiologia , Humanos , Masculino , Camundongos , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Substâncias Protetoras/uso terapêutico
16.
J Biochem Mol Toxicol ; 36(7): e23071, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35403780

RESUMO

Pulmonary fibrosis has been recently linked to metabolic dysregulation. Silica-induced pulmonary fibrosis in rats was employed by the current study to explore the effects of trimetazidine (a metabolic modulator-antianginal drug; TMZ) on silica-induced pulmonary fibrosis. Pulmonary fibrosis was induced by intranasal instillation of silica (50 mg/100 µl/rat) in TMZ versus vehicle-treated rats. Body weights of rats, weights of lungs, and wet-to-dry lung weights were determined. Various parameters were also measured in serum, bronchoalveolar lavage fluid (BALF) in addition to lung tissue homogenates. Moreover, histopathological examination of sectioned lungs for lesion score and distribution and histochemical detection of myeloperoxidase (MPO) in lung tissues were also performed. No significant differences were observed in body weight gains, lung coefficients, lung weights, and wet-to-dry lung weight in silica versus control rats. Elevated lactate levels in serum and lung homogenates were significantly attenuated by TMZ. In addition, lactate dehydrogenase activity, transforming growth factor-ß, and total proteins in BALF were significantly normalized with TMZ. Moreover, TMZ significantly increased reduced glutathione and adenosine triphosphate levels and decreased nitrate/nitrite and hydroxyproline content in lungs of silica-treated rats. Histopathological examination of lungs revealed more than 56% reduction in lesion score and distribution by TMZ. MPO expression in lungs of silica-treated rats was also significantly attenuated by TMZ. TMZ attenuates silica-induced pulmonary fibrosis, an effect that could be mediated by suppressing anaerobic glycolysis-induced excessive lactate production. Regulation of oxidative stress could also play a role in TMZ-promoted protective effects.


Assuntos
Substâncias Protetoras/farmacologia , Fibrose Pulmonar , Trimetazidina , Animais , Líquido da Lavagem Broncoalveolar/química , Lactatos/análise , Lactatos/metabolismo , Lactatos/farmacologia , Pulmão/metabolismo , Substâncias Protetoras/uso terapêutico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Ratos , Dióxido de Silício/análise , Dióxido de Silício/toxicidade , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico
17.
Am J Respir Crit Care Med ; 204(8): 933-942, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252009

RESUMO

Rationale: Unilateral ligation of the pulmonary artery may induce lung injury through multiple mechanisms, which might be dampened by inhaled CO2. Objectives: This study aims to characterize bilateral lung injury owing to unilateral ligation of the pulmonary artery in healthy swine undergoing controlled mechanical ventilation and its prevention by 5% CO2 inhalation and to investigate relevant pathophysiological mechanisms. Methods: Sixteen healthy pigs were allocated to surgical ligation of the left pulmonary artery (ligation group), seven to surgical ligation of the left pulmonary artery and inhalation of 5% CO2 (ligation + FiCO2 5%), and six to no intervention (no ligation). Then, all animals received mechanical ventilation with Vt 10 ml/kg, positive end-expiratory pressure 5 cm H2O, respiratory rate 25 breaths/min, and FiO2 50% (±FiCO2 5%) for 48 hours or until development of severe lung injury. Measurements and Main Results: Histological, physiological, and quantitative computed tomography scan data were compared between groups to characterize lung injury. Electrical impedance tomography and immunohistochemistry analysis were performed in a subset of animals to explore mechanisms of injury. Animals from the ligation group developed bilateral lung injury as assessed by significantly higher histological score, larger increase in lung weight, poorer oxygenation, and worse respiratory mechanics compared with the ligation + FiCO2 5% group. In the ligation group, the right lung received a larger fraction of Vt and inflammation was more represented, whereas CO2 dampened both processes. Conclusions: Mechanical ventilation induces bilateral lung injury within 48 hours in healthy pigs undergoing left pulmonary artery ligation. Inhalation of 5% CO2 prevents injury, likely through decreased stress to the right lung and antiinflammatory effects.


Assuntos
Dióxido de Carbono/uso terapêutico , Modelos Animais de Doenças , Lesão Pulmonar/prevenção & controle , Substâncias Protetoras/uso terapêutico , Artéria Pulmonar/cirurgia , Respiração Artificial/efeitos adversos , Suínos/cirurgia , Administração por Inalação , Animais , Feminino , Ligadura , Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/terapia , Resultado do Tratamento
18.
Am J Respir Crit Care Med ; 204(6): 651-666, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34033525

RESUMO

Rationale: Cigarette smoke (CS) inhalation triggers oxidative stress and inflammation, leading to accelerated lung aging, apoptosis, and emphysema, as well as systemic pathologies. Metformin is beneficial for protecting against aging-related diseases. Objectives: We sought to investigate whether metformin may ameliorate CS-induced pathologies of emphysematous chronic obstructive pulmonary disease (COPD). Methods: Mice were exposed chronically to CS and fed metformin-enriched chow for the second half of exposure. Lung, kidney, and muscle pathologies, lung proteostasis, endoplasmic reticulum (ER) stress, mitochondrial function, and mediators of metformin effects in vivo and/or in vitro were studied. We evaluated the association of metformin use with indices of emphysema progression over 5 years of follow-up among the COPDGene (Genetic Epidemiology of COPD) study participants. The association of metformin use with the percentage of emphysema and adjusted lung density was estimated by using a linear mixed model. Measurements and Main Results: Metformin protected against CS-induced pulmonary inflammation and airspace enlargement; small airway remodeling, glomerular shrinkage, oxidative stress, apoptosis, telomere damage, aging, dysmetabolism in vivo and in vitro; and ER stress. The AMPK (AMP-activated protein kinase) pathway was central to metformin's protective action. Within COPDGene, participants receiving metformin compared with those not receiving it had a slower progression of emphysema (-0.92%; 95% confidence interval [CI], -1.7% to -0.14%; P = 0.02) and a slower adjusted lung density decrease (2.2 g/L; 95% CI, 0.43 to 4.0 g/L; P = 0.01). Conclusions: Metformin protected against CS-induced lung, renal, and muscle injury; mitochondrial dysfunction; and unfolded protein responses and ER stress in mice. In humans, metformin use was associated with lesser emphysema progression over time. Our results provide a rationale for clinical trials testing the efficacy of metformin in limiting emphysema progression and its systemic consequences.


Assuntos
Metformina/uso terapêutico , Substâncias Protetoras/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Fumar Cigarros/efeitos adversos , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Resultado do Tratamento
19.
Molecules ; 27(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35056867

RESUMO

The indigenous purplish red fruit, Cleistocalyx nervosum var. paniala (CN), is grown in northern Thailand. The aqueous extract of CN pulp is known to exhibit antioxidant and anticarcinogenic properties. To search for an antioxidant fraction separated from CN, various hydroalcoholic extractions were performed. The acidified ethanolic extract of CN obtained from 0.5% (v/v) citric acid in 80% (v/v) ethanol yielded greater polyphenol content and DPPH radical scavenging activity when compared with other hydroethanolic extracts. Cyanidin-3-glucoside is a major anthocyanin present in the acidified ethanolic extract of CN (AECN). At a dose of 5000 mg/kg bw, an anthocyanin-rich extract was found to be safe when given to rats without any acute toxicity. To examine the hepatoprotective properties of AECN, an overdose of acetaminophen (APAP) was induced in a rat model, while silymarin was used as a standard reference. The administration of AECN at a dose of 300 mg/kg bw for 28 days improved hepatocyte architecture and modulated serum alanine aminotransferase levels in APAP-induced rats. Furthermore, it significantly decreased serum and hepatic malondialdehyde levels but increased hepatic glutathione content, as well as glutathione peroxidase and UDP-glucuronosyltransferase activities. In conclusion, AECN may effectively reduce oxidative stress induced acute hepatotoxicity in overdose APAP-treated rats through the suppression of oxidative stress and the enhancement of the antioxidant system in rat livers.


Assuntos
Acetaminofen/efeitos adversos , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Syzygium/química , Alanina Transaminase/sangue , Animais , Antocianinas , Antioxidantes/uso terapêutico , Antioxidantes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Enzimas/efeitos dos fármacos , Enzimas/metabolismo , Etanol/química , Feminino , Frutas/química , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Polifenóis/análise , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Substâncias Protetoras/uso terapêutico , Substâncias Protetoras/toxicidade , Ratos Wistar , Silimarina/farmacologia , Silimarina/uso terapêutico , Tailândia
20.
J Cell Mol Med ; 25(21): 9905-9917, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626066

RESUMO

Transient ischaemia and reperfusion in liver tissue induce hepatic ischaemia/reperfusion (I/R) tissue injury and a profound inflammatory response in vivo. Hepatic I/R can be classified into warm I/R and cold I/R and is characterized by three main types of cell death, apoptosis, necrosis and autophagy, in rodents or patients following I/R. Warm I/R is observed in patients or animal models undergoing liver resection, haemorrhagic shock, trauma, cardiac arrest or hepatic sinusoidal obstruction syndrome when vascular occlusion inhibits normal blood perfusion in liver tissue. Cold I/R is a condition that affects only patients who have undergone liver transplantation (LT) and is caused by donated liver graft preservation in a hypothermic environment prior to entering a warm reperfusion phase. Under stress conditions, autophagy plays a critical role in promoting cell survival and maintaining liver homeostasis by generating new adenosine triphosphate (ATP) and organelle components after the degradation of macromolecules and organelles in liver tissue. This role of autophagy may contribute to the protection of hepatic I/R-induced liver injury; however, a considerable amount of evidence has shown that autophagy inhibition also protects against hepatic I/R injury by inhibiting autophagic cell death under specific circumstances. In this review, we comprehensively discuss current strategies and underlying mechanisms of autophagy regulation that alleviates I/R injury after liver resection and LT. Directed autophagy regulation can maintain liver homeostasis and improve liver function in individuals undergoing warm or cold I/R. In this way, autophagy regulation can contribute to improving the prognosis of patients undergoing liver resection or LT.


Assuntos
Autofagia , Hepatopatias/etiologia , Hepatopatias/metabolismo , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores , Gerenciamento Clínico , Suscetibilidade a Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Humanos , Precondicionamento Isquêmico/métodos , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitofagia , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA