Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Pestic Biochem Physiol ; 200: 105837, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582599

RESUMO

Susceptibility to insecticides is one of the limiting factors preventing wider adoption of natural enemies to control insect pest populations. Identification and selective breeding of insecticide tolerant strains of commercially used biological control agents (BCAs) is one of the approaches to overcome this constraint. Although a number of beneficial insects have been selected for increased tolerance to insecticides the molecular mechanisms underpinning these shifts in tolerance are not well characterised. Here we investigated the molecular mechanisms of enhanced tolerance of a lab selected strain of Orius laevigatus (Fieber) to the commonly used biopesticide spinosad. Transcriptomic analysis showed that spinosad tolerance is not a result of overexpressed detoxification genes. Molecular analysis of the target site for spinosyns, the nicotinic acetylcholine receptor (nAChR), revealed increased expression of truncated transcripts of the nAChR α6 subunit in the spinosad selected strain, a mechanism of resistance which was described previously in insect pest species. Collectively, our results demonstrate the mechanisms by which some beneficial biological control agents can evolve insecticide tolerance and will inform the development and deployment of insecticide-tolerant natural enemies in integrated pest management strategies.


Assuntos
Inseticidas , Receptores Nicotínicos , Tisanópteros , Animais , Tisanópteros/metabolismo , Inseticidas/toxicidade , Resistência a Inseticidas/genética , Agentes de Controle Biológico/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Insetos/genética , Macrolídeos/farmacologia , Combinação de Medicamentos
2.
Insect Mol Biol ; 32(6): 603-614, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37265417

RESUMO

Insect CAPA-PVK (periviscerokinin) and pyrokinin (PK) neuropeptides belong to the PRX family peptides and are produced from capa and pyrokinin genes. We identified and characterised the two genes from the western flower thrips, Frankliniella occidentalis. The capa gene transcribes three splice variants, capa-a, -b, and -c, encoding two CAPA-PVKs (EVQGLFPFPRVamide; QGLIPFPRVamide) and two PKs (ASWMPSSSPRLamide; DSASFTPRLamide). The pyrokinin mRNA encodes three PKs: DLVTQVLQPGQTGMWFGPRLamide, SEGNLVNFTPRLamide, and ESGEQPEDLEGSMGGAATSRQLRTDSEPTWGFSPRLamide, the most extended pheromone biosynthesis activating neuropeptide (PBAN) ortholog in insects. Multiple potential endoproteolytic cleavage sites were presented in the prepropeptides from the pyrokinin gene, creating ambiguity to predict mature peptides. To solve this difficulty, we used three G protein-coupled receptors (GPCRs) for CAPA-PVK, tryptophan PK (trpPK), and PK peptides, and evaluated the binding affinities of the peptides. The binding activities revealed each subfamily of peptides exclusively bind to their corresponding receptors, and were significant for determining the CAPA-PVK and PK peptides. Our biological method using specific GPCRs would be a valuable tool for determining mature peptides, particularly with multiple and ambiguous cleavage sites in those prepropeptides. Both capa and pyrokinin mRNAs were strongly expressed in the head/thorax, but minimally expressed in the abdomen. The two genes also were clearly expressed during most of the life stages. Whole-mounting immunocytochemistry revealed that neurons contained PRXamide peptides throughout the whole-body: four to six neurosecretory cells in the head, and three and seven pairs of immunostained cells in the thorax and abdomen, respectively. Notably, the unusual PRXamide profiles of Thysanoptera are different from the other insect groups.


Assuntos
Tisanópteros , Animais , Tisanópteros/metabolismo , Sequência de Aminoácidos , Peptídeos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Insetos/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982358

RESUMO

To identify odors in complex environments accurately, insects have evolved multiple olfactory proteins. In our study, various olfactory proteins of Odontothrips loti Haliday, an oligophagous pest that primarily affects Medicago sativa (alfalfa), were explored. Specifically, 47 putative olfactory candidate genes were identified in the antennae transcriptome of O. loti, including seven odorant-binding proteins (OBPs), nine chemosensory proteins (CSPs), seven sensory neuron membrane proteins (SNMPs), eight odorant receptors (ORs), and sixteen ionotropic receptors (IRs). PCR analysis further confirmed that 43 out of 47 genes existed in O. loti adults, and O.lotOBP1, O.lotOBP4, and O.lotOBP6 were specifically expressed in the antennae with a male-biased expression pattern. In addition, both the fluorescence competitive binding assay and molecular docking showed that p-Menth-8-en-2-one, a component of the volatiles of the host, had strong binding ability to the O.lotOBP6 protein. Behavioral experiments showed that this component has a significant attraction to both female and male adults, indicating that O.lotOBP6 plays a role in host location. Furthermore, molecular docking reveals potential active sites in O.lotOBP6 that interact with most of the tested volatiles. Our results provide insights into the mechanism of O. loti odor-evoked behavior and the development of a highly specific and sustainable approach for thrip management.


Assuntos
Receptores Odorantes , Tisanópteros , Masculino , Feminino , Animais , Tisanópteros/genética , Tisanópteros/metabolismo , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Simulação de Acoplamento Molecular , Perfilação da Expressão Gênica , Transcriptoma , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Filogenia
4.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142802

RESUMO

The western flower thrips, Frankliniella occidentalis Pergande, is an invasive pest that damages agricultural and horticultural crops. The induction of plant defenses and RNA interference (RNAi) technology are potent pest control strategies. This study investigated whether the anti-adaptive ability of F. occidentalis to jasmonic acid (JA)- and methyl jasmonate (MeJA)-induced defenses in kidney bean plants was attenuated after glutathione S-transferase (GST) gene knockdown. The expression of four GSTs in thrips fed JA- and MeJA-induced leaves was analyzed, and FoGSTd1 and FoGSTs1 were upregulated. Exogenous JA- and MeJA-induced defenses led to increases in defensive secondary metabolites (tannins, alkaloids, total phenols, flavonoids, and lignin) in leaves. Metabolome analysis indicated that the JA-induced treatment of leaves led to significant upregulation of defensive metabolites. The activity of GSTs increased in second-instar thrips larvae fed JA- and MeJA-induced leaves. Co-silencing with RNAi simultaneously knocked down FoGSTd1 and FoGSTs1 transcripts and GST activity, and the area damaged by second-instar larvae feeding on JA- and MeJA-induced leaves decreased by 62.22% and 55.24%, respectively. The pupation rate of second-instar larvae also decreased by 39.68% and 39.89%, respectively. Thus, RNAi downregulation of FoGSTd1 and FoGSTs1 reduced the anti-adaptive ability of F. occidentalis to JA- or MeJA-induced defenses in kidney bean plants.


Assuntos
Phaseolus , Tisanópteros , Acetatos , Animais , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Flavonoides/metabolismo , Flores/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Lignina/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Phaseolus/metabolismo , Fenóis/metabolismo , Interferência de RNA , Taninos/metabolismo , Tisanópteros/genética , Tisanópteros/metabolismo
5.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413126

RESUMO

The plant-pathogenic virus tomato spotted wilt virus (TSWV) encodes a structural glycoprotein (GN) that, like with other bunyavirus/vector interactions, serves a role in viral attachment and possibly in entry into arthropod vector host cells. It is well documented that Frankliniella occidentalis is one of nine competent thrips vectors of TSWV transmission to plant hosts. However, the insect molecules that interact with viral proteins, such as GN, during infection and dissemination in thrips vector tissues are unknown. The goals of this project were to identify TSWV-interacting proteins (TIPs) that interact directly with TSWV GN and to localize the expression of these proteins in relation to virus in thrips tissues of principal importance along the route of dissemination. We report here the identification of six TIPs from first-instar larvae (L1), the most acquisition-efficient developmental stage of the thrips vector. Sequence analyses of these TIPs revealed homology to proteins associated with the infection cycle of other vector-borne viruses. Immunolocalization of the TIPs in L1 revealed robust expression in the midgut and salivary glands of F. occidentalis, the tissues most important during virus infection, replication, and plant inoculation. The TIPs and GN interactions were validated using protein-protein interaction assays. Two of the thrips proteins, endocuticle structural glycoprotein and cyclophilin, were found to be consistent interactors with GN These newly discovered thrips protein-GN interactions are important for a better understanding of the transmission mechanism of persistent propagative plant viruses by their vectors, as well as for developing new strategies of insect pest management and virus resistance in plants.IMPORTANCE Thrips-transmitted viruses cause devastating losses to numerous food crops worldwide. For negative-sense RNA viruses that infect plants, the arthropod serves as a host as well by supporting virus replication in specific tissues and organs of the vector. The goal of this work was to identify thrips proteins that bind directly to the viral attachment protein and thus may play a role in the infection cycle in the insect. Using the model plant bunyavirus tomato spotted wilt virus (TSWV), and the most efficient thrips vector, we identified and validated six TSWV-interacting proteins from Frankliniella occidentalis first-instar larvae. Two proteins, an endocuticle structural glycoprotein and cyclophilin, were able to interact directly with the TSWV attachment protein, GN, in insect cells. The TSWV GN-interacting proteins provide new targets for disrupting the viral disease cycle in the arthropod vector and could be putative determinants of vector competence.


Assuntos
Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Tisanópteros/metabolismo , Tospovirus/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Proteínas de Insetos/genética , Insetos Vetores/classificação , Insetos Vetores/genética , Larva/metabolismo , Filogenia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , Ligação Proteica , Células Sf9 , Tisanópteros/classificação , Tisanópteros/genética , Nicotiana , Tospovirus/genética , Tospovirus/fisiologia , Proteínas Estruturais Virais/genética
6.
J Chem Ecol ; 46(11-12): 1082-1089, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33089351

RESUMO

The cuticular wax layer can be important for plant resistance to insects. Thrips (Frankliniella occidentalis) damage was assessed on 11 pepper accessions of Capsicum annuum and C. chinense in leaf disc and whole plant assays. Thrips damage differed among the accessions. We analyzed the composition of leaf cuticular waxes of these accessions by GC-MS. The leaf wax composition was different between the two Capsicum species. In C. annuum, 1-octacosanol (C28 alcohol) was the most abundant component, whereas in C. chinense 1-triacotanol (C30 alcohol) was the prominent. Thrips susceptible accessions had significantly higher concentrations of C25-C29 n-alkanes and iso-alkanes compared to relatively resistant pepper accessions. The triterpenoids α- and ß-amyrin tended to be more abundant in resistant accessions. Our study suggests a role for very long chain wax alkanes in thrips susceptibility of pepper.


Assuntos
Alcanos/química , Capsicum/fisiologia , Folhas de Planta/química , Tisanópteros/química , Tisanópteros/metabolismo , Ceras/química , Animais , Álcoois Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/análise , Extratos Vegetais/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade
7.
J Chem Ecol ; 45(4): 348-355, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30788655

RESUMO

Aggregation of the bean flower thrips, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), has been observed on cowpea, Vigna unguiculata (L.) Walp. To understand the mechanism underpinning this behavior, we studied the responses of M. sjostedti to headspace volatiles from conspecifics in a four-arm olfactometer. Both male and female M. sjostedti were attracted to male, but not to female odor. Gas chromatography/mass spectrometry (GC/MS) analyses revealed the presence of two distinct compounds in male M. sjostedti headspace, namely (R)-lavandulyl 3-methylbutanoate (major compound) and (R)-lavandulol (minor compound); by contrast, both compounds were only present in trace amounts in female headspace collections. A behavioral assay using synthetic compounds showed that male M. sjostedti was attracted to both (R)-lavandulyl 3-methylbutanoate and (R)-lavandulol, while females responded only to (R)-lavandulyl 3-methylbutanoate. This is the first report of a male-produced aggregation pheromone in the genus Megalurothrips. The bean flower thrips is the primary pest of cowpea, which is widely grown in sub-Saharan Africa. The attraction of male and female M. sjostedti to these compounds offers an opportunity to develop ecologically sustainable management methods for M. sjostedti in Africa.


Assuntos
Atrativos Sexuais/metabolismo , Tisanópteros/metabolismo , Vigna/parasitologia , Monoterpenos Acíclicos , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Monoterpenos/metabolismo , Comportamento Sexual Animal , Tisanópteros/fisiologia
8.
Pestic Biochem Physiol ; 158: 77-87, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31378364

RESUMO

Pyrethroid-resistance in onion thrips, Thrips tabaci, has been reported in many countries including Japan. Identifying factors of the resistance is important to correctly monitoring the resistance in field populations. To identify pyrethroid-resistance related genes in T. tabaci in Japan, we performed RNA-Seq analysis of seven T. tabaci strains including two pyrethroid-resistant and five pyrethroid-susceptible strains. We identified a pair of single point mutations, T929I and K1774N, introducing two amino acid mutations, in the voltage-gated sodium channel gene, a pyrethroid target gene, in the two resistant strains. The K1774N is a newly identified mutation located in the fourth repeat domain of the sodium channel. Genotyping analysis of field-collected populations showed that most of the T. tabaci individuals in resistant populations carried the mutation pair, indicating that the mutation pair is closely associated with pyrethroid-resistance in Japan. Another resistance-related mutation, M918L, was also identified in part of the resistant populations. Most of the individuals with the mutation pair were arrhenotokous while all individuals with the M918L single mutation were thelytokous. The result of differentially expressed gene analysis revealed a small number of up-regulated detoxification genes in each resistant strain which might be involved in resistance to pyrethroid. However, no up-regulated detoxification genes common to the two resistant strains were detected. Our results indicate that the mutation pair in the sodium channel gene is the most important target for monitoring pyrethroid-resistance in T. tabaci, and that pyrethroid-resistant arrhenotokous individuals with the mutation pair are likely to be widely distributed in Japan.


Assuntos
Piretrinas/farmacologia , Tisanópteros/efeitos dos fármacos , Tisanópteros/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Japão , Mutação/genética , Mutação Puntual/genética , Tisanópteros/genética , Canais de Sódio Disparados por Voltagem/genética
9.
J Insect Sci ; 18(3)2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897590

RESUMO

Heat shock proteins (Hsps) are prominent proteins that greatly contribute to insect survival under stress conditions. In this study, we cloned two Hsp transcripts (Aohsp70 and Aohsp90) from the grass thrip, Anaphothrips obscurus (Müller) (Thysanoptera: Thripidae), which is a polymorphic winged pest of corn and wheat. The cDNA sequences of Aohsp70 and Aohsp90 are 2382 and 2504 bp long, and encode proteins with calculated molecular weights of 70.02 kDa and 83.40 kDa, respectively. Aohsp90 was highly expressed in adults of both brachypters and macropters. Aohsp70 had different expression patterns in brachypters and macropters and was also highly expressed in the pupae of macropters. After adults were exposed to an ascending series of heat shocks, the expression of both Aohsp70 and Aohsp90 were up-regulated. In macropters and brachypters, the maximum induced levels of Aohsp70 (approximately 90-fold and 280-fold, respectively) were higher than Aohsp90 (approximately 2.4-fold and 1.8-fold, respectively). In addition, the up-regulation of Aohsp70 was significantly higher in brachypters than in macropters. Brachypters had a significantly higher Ltem50 (43.2°C) than macropters (42.5°C), which implied that brachypters are more tolerant to thermal stress than macropters. This study has shown that the expression patterns of Aohsp70 and Aohsp90 are variable among different life stages and thermal stress induced different levels of expressions in macropterous and brachypterous adults.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Tisanópteros/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Temperatura Alta , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ninfa/metabolismo , Filogenia , Pupa/metabolismo , Tisanópteros/genética
10.
Plant Cell Physiol ; 58(3): 622-634, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158865

RESUMO

Plant defenses inducible by herbivorous arthropods can determine performance of subsequent feeding herbivores. We investigated how infestation of tomato (Solanum lycopersicum) plants with the Western flower thrips (Frankliniella occidentalis) alters host plant suitability and foraging decisions of their conspecifics. We explored the role of delayed-induced jasmonic acid (JA)-mediated plant defense responses in thrips preference by using the tomato mutant def-1, impaired in JA biosynthesis. In particular, we investigated the effect of thrips infestation on trichome-associated tomato defenses. The results showed that when offered a choice, thrips preferred non-infested plants over infested wild-type plants, while no differences were observed in def-1. Exogenous application of methyl jasmonate restored the repellency effect in def-1. Gene expression analysis showed induction of the JA defense signaling pathway in wild-type plants, while activating the ethylene signaling pathway in both genotypes. Activation of JA defenses led to increases in type-VI leaf glandular trichome densities in the wild type, augmenting the production of trichome-associated volatiles, i.e. terpenes. Our study revealed that plant-mediated intraspecific interactions between thrips are determined by JA-mediated defenses in tomato. We report that insects can alter not only trichome densities but also the allelochemicals produced therein, and that this response might depend on the magnitude and/or type of the induction.


Assuntos
Ciclopentanos/imunologia , Oxilipinas/imunologia , Doenças das Plantas/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Tisanópteros/metabolismo , Tricomas/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Animais , Bioensaio , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Etilenos/metabolismo , Comportamento Alimentar , Regulação da Expressão Gênica de Plantas , Herbivoria/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Monoterpenos/análise , Monoterpenos/metabolismo , Mutação , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Doenças das Plantas/parasitologia , Imunidade Vegetal , Folhas de Planta/química , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Sesquiterpenos/análise , Sesquiterpenos/metabolismo , Terpenos/análise , Terpenos/metabolismo
11.
J Therm Biol ; 57: 110-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27033046

RESUMO

The western flower thrips, Frankliniella occidentalis, is an important invasive pest with a strong tolerance for extreme temperatures; however, the molecular mechanisms that regulate thermotolerance in this insect remain unclear. In this study, four heat shock protein genes were cloned from F. occidentalis and named Fohsp90, Fohsc701, Fohsc702 and Fohsp60. These four Hsps exhibited typical characteristics of heat shock proteins. Subcellular localization signals and phylogenetic analysis indicated that FoHsp90 and FoHsc701 localize to the cytosol, whereas FoHsc702 and FoHsp60 were located in the endoplasmic reticulum and mitochondria, respectively. Analysis of genomic sequences revealed the presence of introns in the four genes (three, four, seven, and five introns for Fohsp90, Fohsc701, Fohsc702 and Fohsp60, respectively). Both the number and position of introns in these four genes were quite different from analogous genes in other species. qRT-PCR indicated that the four Fohsps were detected in second-stage larvae, one-day-old pupae, and one-day-old adults, and mRNA expression levels were lowest in larvae and highest in pupae. Fohsc701 and Fohsc702 possessed similar expression patterns and were not induced by cold or heat stress. Expression of Fohsp60 was significantly elevated by heat, and Fohsp90 was rapidly up-regulated after exposure to both cold and heat stress. Exposure to -8°C had no effect on expression of the four Fohsps; however, expression of Fohsp90 and Fohsp60 was highest after a 2-h incubation at 39°C. Furthermore, cold and heat hardening led to significant up-regulation of the four Fohsps compared to their respective controls. Collectively, our results indicate that the four FoHsps contribute to insect development and also function in rapid cold or heat hardening; furthermore, FoHsp90 and FoHsp60 contribute to thermotolerance in F. occidentalis.


Assuntos
Genoma de Inseto , Proteínas de Choque Térmico/metabolismo , Proteínas de Insetos/metabolismo , Tisanópteros/genética , Aclimatação , Animais , Proteínas de Choque Térmico/genética , Proteínas de Insetos/genética , Tisanópteros/metabolismo , Tisanópteros/fisiologia
12.
J Econ Entomol ; 108(4): 2000-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26470346

RESUMO

The western flower thrips is an economically important worldwide pest of many crops, and chlorpyrifos has been used to control western flower thrips for many years. To develop a better resistance-management strategy, a chlorpyrifos-resistant strain of western flower thrips (WFT-chl) was selected in the laboratory. More than 39-fold resistance was achieved after selected by chlorpyrifos for 19 generations in comparison with the susceptible strain (WFT-S). Proteome of western flower thrips (WFT-S and WFT-chl) was investigated using a quantitative proteomics approach with isobaric tag for relative and absolute quantification technique and liquid chromatography-tandem mass spectrometry technologies. According to the functional analysis, 773 proteins identified were grouped into 10 categories of molecular functions and 706 proteins were presented in 213 kinds of pathways. Comparing the proteome of WFT-chl with that of WFT-S, a total of eight proteins were found up-regulated and three down-regulated. The results from functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that the differentially expressed protein functions in binding, catalyzing, transporting, and enzyme regulation were most important in resistance development. A list of proteins functioning in biological processes of metabolism, biological regulation, and response to stimulus was found in WFT-chl, suggesting that they are possibly the major components of the resistance mechanism to chlorpyrifos in western flower thrips. Notably, several novel potential resistance-related proteins were identified such as ribosomal protein, Vg (vitellogenin), and MACT (muscle actin), which can be used to improve our understanding of the resistance mechanisms in western flower thrips. This study provided the first comprehensive view of the complicated resistance mechanism employed by WFT-S and WFT-chl through the isobaric tag for relative and absolute quantification coupled with liquid chromatography-tandem mass spectrometry technologies.


Assuntos
Clorpirifos/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Proteoma , Tisanópteros/efeitos dos fármacos , Animais , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Ninfa/efeitos dos fármacos , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Tisanópteros/genética , Tisanópteros/crescimento & desenvolvimento , Tisanópteros/metabolismo
13.
Pestic Biochem Physiol ; 112: 51-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24974117

RESUMO

To examine the resistance mechanisms of Thrips palmi against spinosad, we cloned partial nucleotide sequences of the nicotinic acetylcholine receptor α6 subunit (TPα6) gene from susceptible (OK) and resistant (TS1 and TS5) strains and compared the deduced amino acid sequences among the three strains. The OK, TS1, and TS5 strains respectively showed LC50 values of 3.4mg/L, 2838.5mg/L, and 6655.5mg/L. The deduced amino acid sequence of TPα6 gene showed 96% identity with that of Frankliniella occidentalis. Comparison of the deduced amino acid sequences of TPα6 gene among the three strains showed that the TS1 and TS5 strains had a resistant amino acid, Glu, at amino acid position 275. On the other hand, a susceptible amino acid, Gly, was encoded at the corresponding amino acid position for the OK strain. The synergist, piperonyl butoxide, respectively caused 1.1-fold , 5.8-fold , and 9.0-fold decreases in the resistance ratios of the OK, TS1, and TS5 strains. These results suggest that spinosad resistance of T. palmi is conferred by reduced sensitivity of TPα6 and cytochrome P450-mediated detoxification.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Inseticidas/genética , Macrolídeos/farmacologia , Mutação , Receptores Nicotínicos/genética , Tisanópteros/genética , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Combinação de Medicamentos , Sinergismo Farmacológico , Inativação Metabólica , Proteínas de Insetos/genética , Inseticidas/farmacologia , Dados de Sequência Molecular , Organotiofosfatos/farmacologia , Butóxido de Piperonila/farmacologia , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Tisanópteros/classificação , Tisanópteros/metabolismo
14.
Pestic Biochem Physiol ; 111: 60-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24861935

RESUMO

Insects evolve resistance which constrains the sustainable use of insecticides. Spinosyns, a class of environmentally-friendly macrolide insecticides, is not an exception. The mode of inheritance and the mechanisms of resistance to spinosad (the most common spinosyn insecticide) in Frankliniella occidentalis (Western flower thrips, WFT) were investigated in this study. Resistance (170,000-fold) was autosomal and completely recessive. Recent studies showed that deletion of the nicotinic acetylcholine receptor α6 subunit gene resulted in strains of Drosophila melanogaster, Plutella xylostella and Bactrocera dorsalis that are resistant to spinosad, indicating that nAChRα6 subunit maybe important for the toxic action of this insecticide. Conversely, a G275E mutation of this subunit in F. occidentalis was recently proposed as the mechanism of resistance to spinosad. We cloned and characterized nAChRα6 from three susceptible and two spinosad resistant strains from China and the USA. The Foα6 cDNA is 1873bp and the open reading frame is 1458bp which encodes 485 amino acid residues with a predicted molecular weight of 53.5-kDa, the 5' and 3' UTRs are 121 and 294bp, respectively. There was no difference in the cDNA sequence between the resistant and susceptible thrips, suggesting the G275E mutation does not confer resistance in these populations. Ten isoforms of Foα6, arising from alternative splicing, were isolated and did not differ between the spinosad-susceptible and resistant strains. Quantitative real time PCR analysis showed Foα6 was highly expressed in the first instar larva, pupa and adult, and the expression levels were 3.67, 2.47, 1.38 times that of the second instar larva. The expression level was not significantly different between the susceptible and resistant strains. These results indicate that Foα6 is not involved in resistance to spinosad in F. occidentalis from China and the USA.


Assuntos
Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Inseticidas/farmacologia , Macrolídeos/farmacologia , Receptores Nicotínicos/metabolismo , Tisanópteros/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sequência de Bases , Combinação de Medicamentos , Feminino , Proteínas de Insetos/genética , Masculino , Dados de Sequência Molecular , Receptores Nicotínicos/genética , Tisanópteros/genética , Tisanópteros/metabolismo
15.
Pestic Biochem Physiol ; 108: 80-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24485319

RESUMO

We examined the genomic organization of the sodium channel α-subunit gene in two strains of melon thrips, Thrips palmi, having differing sensitivity to cypermethrin. The nucleotide sequences of the strains included 18 or 16 putative exons which covered the entire coding region of the gene producing 2039 amino acid residues. Deduced amino acid sequences of both strains showed 80% homology with those of Periplaneta americana and Cimex lectularius. Comparison of deduced amino acid sequences of both strains showed no consistent amino acid difference. In addition to the previously reported resistant amino acid (Ile) at the T929I site, both strains encoded another resistant amino acids at two positions which are involved in pyrethroid resistance in other arthropods. These amino acids might also involve in the basal levels of resistance to pyrethroids of both strains.


Assuntos
Proteínas de Insetos/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Canais de Sódio/genética , Tisanópteros/efeitos dos fármacos , Tisanópteros/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Genômica , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Dados de Sequência Molecular , Alinhamento de Sequência , Canais de Sódio/química , Canais de Sódio/metabolismo , Tisanópteros/química , Tisanópteros/metabolismo
16.
Z Naturforsch C J Biosci ; 69(7-8): 335-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25265854

RESUMO

A major interest in the gall-inducing thrips of Australia began with the discovery that some species have eusocial colonies. The origin of social castes remains one of the outstanding questions in evolutionary biology. The inference of the ancestral stage from study of solitary species is important to understanding the evolutionary history of semiochemicals in social species. Here we investigated two solitary species, Kladothrips nicolsoni and K. rugosus. Whole body extracts revealed that (Z)-3-dodecenoic acid, here reported for the first time in a thrips species, is the main component. (Z)-3-Dodecenoic acid and (E)-3-dodecenoic acid were synthesized in high stereoisomeric purity (> 99.8%) and exposed to K. nicolsoni 2nd-instar larvae in a contact chemoreception bioassay to test for potential bioactivity. Both isomers decreased the average time spent in the treated area per entry suggesting repellence at the tested dose. (Z)-3-Dodecenoic acid may function as alarm pheromone. (E)-3-Dodecenoic acid increased also the absolute change in direction of larvae compared to an n-hexane control and could potentially function as a repellent.


Assuntos
Ácidos Graxos Monoinsaturados/metabolismo , Feromônios/metabolismo , Tisanópteros/metabolismo , Animais , Bioensaio , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Tisanópteros/patogenicidade
17.
J Hazard Mater ; 466: 133575, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280319

RESUMO

Uridine diphosphate glucosyltransferases (UGTs) play crucial roles in the insect detoxification system and are associated with pesticide resistance. Our previous transcriptomic analysis of spinosad-susceptible (Ivf03) and resistant (NIL-R) Frankliniella occidentalis revealed numerous upregulated UGT genes in the NIL-R strain, suggesting their potential contribution to spinosad resistance. To investigate this hypothesis, here we conducted UGT activity assays and spinosad induction experiments, employing RNA interference (RNAi) techniques for gene function validation. We found significantly elevated UGT activity in the NIL-R strain compared to Ivf03, with 5-nitrouracil showing a substantial synergistic effect on the resistant strain. Eighteen UGT genes were identified in F. occidentalis, with gene expansion and duplication observed within families UGT466, 467, and 468. Ten out of the eighteen UGTs exhibited higher expression levels in NIL-R, specifically FoUGT466B1, FoUGT468A3, and FoUGT468A4 consistently being upregulated across nymphs, males, and females. RNAi-based functional validation targeting these three UGT genes led to increased susceptibility to spinosad in a life stage-, sex-, and dose-dependent manner. These results indicate that UGTs are indeed involved in spinosad resistance in F. occidentalis, and the effects are dependent on life stage, sex, and dose. Therefore, sustainable control for F. occidentalis resistance should always consider these differential responses.


Assuntos
Inseticidas , Macrolídeos , Tisanópteros , Humanos , Animais , Masculino , Feminino , Tisanópteros/genética , Tisanópteros/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Flores , Combinação de Medicamentos
18.
J Chem Ecol ; 39(4): 559-68, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23519504

RESUMO

In a laboratory bioassay, adult female Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) spent more time near filter paper disks that had been exposed to adult males than near unexposed disks; this effect was not observed on disks exposed to adult females. The response could only partly be explained by the known male-produced aggregation pheromone, neryl (S)-2-methylbutanoate, suggesting the presence of an unknown male-produced compound. In gas chromatography/mass spectrometry analyses, 7-methyltricosane was detected on disks exposed to males, but not on disks exposed to females. Extracts of cuticular lipids also showed relatively large amounts of 7-methyltricosane on males, whereas only trace amounts were found on females and none on larvae. Bioassays of synthetic 7-methyltricosane showed that adults responded only after contact. The response to this compound was clearly different from that to n-tricosane or hexane-only controls. Females that contacted 7-methyltricosane on glass beads stayed in the vicinity and frequently raised the abdomen, a behavior that rejects mating attempts by males. Males stayed in the vicinity and wagged the abdomen sideways, a behavior used in fighting between males. This is the first identification of a contact pheromone in the order Thysanoptera.


Assuntos
Alcanos/química , Hidrocarbonetos/química , Atrativos Sexuais/química , Tisanópteros/metabolismo , Alcanos/farmacologia , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Larva/metabolismo , Masculino , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Tisanópteros/crescimento & desenvolvimento
19.
Dev Comp Immunol ; 144: 104706, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37019348

RESUMO

Tomato spotted wilt virus (TSWV) causes a serious plant disease and is transmitted by specific thrips including the western flower thrips, Frankliniella occidentalis. The persistent and circulative virus transmission suggests an induction of immune defenses in the thrips. We investigated the immune responses of F. occidentalis to TSWV infection. Immunofluorescence assay demonstrated viral infection in the larval midguts at early stage and subsequent propagation to the salivary gland in adults. In the larval midgut, TSWV infection led to the release of DSP1, a damage-associated molecular pattern, from the gut epithelium into the hemolymph. DSP1 up-regulated PLA2 activity, which would lead to biosynthesis of eicosanoids that activate cellular and humoral immune responses. Phenoloxidase (PO) activity was enhanced following induction of PO and its activating protease gene expressions. Antimicrobial peptide genes and dual oxidase, which produces reactive oxygen species, were induced by the viral infection. Expression of four caspase genes increased and TUNEL assay confirmed apoptosis in the larval midgut after the virus infection. These immune responses to viral infection were significantly suppressed by the inhibition of DSP1 release. We infer that TSWV infection induces F. occidentalis immune responses, which are activated by the release of DSP1 from the infection foci within midguts.


Assuntos
Tisanópteros , Tospovirus , Animais , Tisanópteros/genética , Tisanópteros/metabolismo , Tospovirus/genética , Tospovirus/metabolismo , Larva , Flores , Doenças das Plantas
20.
Front Immunol ; 13: 875239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450074

RESUMO

Western flower thrips, Frankliella occidentalis, is a serious pest by directly infesting host crops. It can also give indirect damage to host crops by transmitting a plant virus called tomato spotted wilt virus. A fungal pathogen, Beauveria bassiana, can infect thrips. It has been used as a biopesticide. However, little is known on the defense of thrips against this fungal pathogen. This study assessed the defense of thrips against the fungal infection with respect to immunity by analyzing immune-associated genes of F. occidentalis in both larvae and adults. Immunity-associated genes of western flower thrips were selected from three immunity steps: nonself recognition, mediation, and immune responses. For the pathogen recognition step, dorsal switch protein 1 (DSP1) was chosen. For the immune mediation step, phospholipase A2 (PLA2) and prostaglandin E2 synthase were also selected. For the step of immune responses, two phenoloxidases (PO) genes and four proPO-activating peptidase genes involved in melanization against pathogens were chosen. Dual oxidase gene involved in the production of reactive oxygen species and four antimicrobial peptide genes for executing humoral immune responses were selected. All immunity-associated genes were inducible to the fungal infection. Their expression levels were induced higher in adults than in larvae by the fungal infections. However, inhibitor treatments specific to DSP1 or PLA2 significantly suppressed the inducible expression of these immune-associated genes, leading to significant enhancement of fungal pathogenicity. These results suggest that immunity is essential for thrips to defend against B. bassiana, in which DSP1 and eicosanoids play a crucial role in eliciting immune responses.


Assuntos
Beauveria , Tisanópteros , Animais , Flores , Proteínas Fúngicas/metabolismo , Imunidade , Larva/microbiologia , Tisanópteros/genética , Tisanópteros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA