Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
FASEB J ; 38(13): e23760, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924449

RESUMO

Hyponatremia is the most common disorder of electrolyte imbalances. It is necessary to develop new type of diuretics to treat hyponatremia without losing electrolytes. Urea transporters (UT) play an important role in the urine concentrating process and have been proved as a novel diuretic target. In this study, rat and mouse syndromes of inappropriate antidiuretic hormone secretion (SIADH) models were constructed and analyzed to determine if UTs are a promising drug target for treating hyponatremia. Experimental results showed that 100 mg/kg UT inhibitor 25a significantly increased serum osmolality (from 249.83 ± 5.95 to 294.33 ± 3.90 mOsm/kg) and serum sodium (from 114 ± 2.07 to 136.67 ± 3.82 mmol/L) respectively in hyponatremia rats by diuresis. Serum chemical examination showed that 25a neither caused another electrolyte imbalance nor influenced the lipid metabolism. Using UT-A1 and UT-B knockout mouse SIADH model, it was found that serum osmolality and serum sodium were lowered much less in UT-A1 knockout mice than in UT-B knockout mice, which suggest UT-A1 is a better therapeutic target than UT-B to treat hyponatremia. This study provides a proof of concept that UT-A1 is a diuretic target for SIADH-induced hyponatremia and UT-A1 inhibitors might be developed into new diuretics to treat hyponatremia.


Assuntos
Hiponatremia , Síndrome de Secreção Inadequada de HAD , Proteínas de Membrana Transportadoras , Camundongos Knockout , Transportadores de Ureia , Animais , Masculino , Camundongos , Ratos , Modelos Animais de Doenças , Diuréticos/farmacologia , Hiponatremia/tratamento farmacológico , Hiponatremia/metabolismo , Síndrome de Secreção Inadequada de HAD/tratamento farmacológico , Síndrome de Secreção Inadequada de HAD/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Concentração Osmolar , Ratos Sprague-Dawley , Sódio/metabolismo
2.
Am J Physiol Cell Physiol ; 326(3): C905-C916, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223930

RESUMO

We studied urea, thiourea, and methylurea transport and interaction in human red blood cells (RBCs) under conditions of self-exchange (SE), net efflux (NE), and net influx (NI) at pH 7.2. We combined four methods, a four-centrifuge technique, the Millipore-Swinnex filtering technique, the continuous flow tube method, and a continuous pump method to measure the transport of the 14C-labeled compounds. Under SE conditions, both urea and thiourea show perfect Michaelis-Menten kinetics with half-saturation constants, K½,SE (mM), of ≈300 (urea) and ≈20 (thiourea). The solutes show no concentration-dependent saturation under NE conditions. Under NI conditions, transport displays saturation or self-inhibition kinetics with a K½,NI (mM) of ≈210 (urea) and ≈20 (thiourea). Urea, thiourea, and methylurea are competitive inhibitors of the transport of analog solutes. This study supports the hypothesis that the three compounds share the same urea transport system (UT-B). UT-B functions asymmetrically as it saturates from the outside only under SE and NI conditions, whereas it functions as a high-capacity channel-like transporter under NE conditions. When the red blood cell enters the urea-rich kidney tissue, self-inhibition reduces the urea uptake in the cell. When the cell leaves the kidney, the channel-like function of UT-B implies that intracellular urea rapidly equilibrates with external urea. The net result is that the cell during the passage in the kidney capillaries carries urea to the kidney to be excreted while the urea transfer from the kidney via the bloodstream is minimized.NEW & NOTEWORTHY The kinetics of urea transport in red blood cells was determined by means of a combination of four methods that ensures a high time resolution. In the present study, we disclose that the urea transporter UT-B functions highly asymmetric being channel-like with no saturation under conditions of net efflux and saturable under conditions of net influx and self-exchange in the concentration range 1-1,000 mM (pH 7.2 and 25-38 °C).


Assuntos
Compostos de Metilureia , Transportadores de Ureia , Ureia , Humanos , Tioureia/farmacologia , Eritrócitos
3.
Immunohematology ; 40(1): 28-33, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739024

RESUMO

Since publication of the original Immunohematology review of the Kidd blood group system in 2015 (Hamilton JR. Kidd blood group system: a review. Immunohematology 2015;31:29-34), knowledge has mushroomed pertaining to gene structure, alleles causing variant and null phenotypes, clinical significance in renal transplant and hemolytic disease of the fetus and newborn, and physiologic functions of urea transporters in non-renal tissues. This review will detail much of this new information.


Assuntos
Sistema do Grupo Sanguíneo Kidd , Transplante de Rim , Humanos , Sistema do Grupo Sanguíneo Kidd/genética , Sistema do Grupo Sanguíneo Kidd/imunologia , Transportadores de Ureia , Eritroblastose Fetal/genética , Eritroblastose Fetal/imunologia , Eritroblastose Fetal/sangue , Recém-Nascido , Proteínas de Membrana Transportadoras/genética , Alelos , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/imunologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-36965831

RESUMO

As part of their osmoregulatory strategy, marine elasmobranchs retain large quantities of urea to balance the osmotic pressure of the marine environment. The main source of nitrogen used to synthesize urea comes from the digestion and absorption of food across the gastrointestinal tract. In this study we investigated possible mechanisms of nitrogen movement across the spiral valve of the cloudy catshark (Scyliorhinus torazame) through the molecular identification of two Rhesus glycoprotein ammonia transporters (Rhp2 and Rhbg) and a urea transporter (UT). We used immunohistochemistry to determine the cellular localizations of Rhp2 and UT. Within the spiral valve, Rhp2 was expressed along the apical brush border membrane, and UT was expressed along the basolateral membrane and the blood vessels. The mRNA abundance of Rhp2 was significantly higher in all regions of the spiral valve of fasted catsharks compared to fed catsharks. The mRNA abundance of UT was significantly higher in the anterior spiral valve of fasted catsharks compared to fed. The mRNA transcript of four ornithine urea cycle (OUC) enzymes were detected along the length of the spiral valve and in the renal tissue, indicating the synthesis of urea via the OUC occurs in these tissues. The presence of Rhp2, Rhbg, and UT along the length of the spiral valve highlights the importance of ammonia and urea movement across the intestinal tissues, and increases our understanding of the mechanisms involved in maintaining whole-body nitrogen homeostasis in the cloudy catshark.


Assuntos
Elasmobrânquios , Nitrogênio , Animais , Amônia , RNA Mensageiro , Ureia , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ureia
5.
Mol Divers ; 26(5): 2549-2559, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34978011

RESUMO

Urea transporter is a membrane transport protein. It is involved in the transferring of urea across the cell membrane in humans. Along with urea transporter A, urea transporter B (UT-B) is also responsible for the management of urea concentration and blood pressure of human. The inhibitors of urea transporters have already generated a huge attention to be developed as alternate safe class of diuretic. Unlike conventional diuretics, these inhibitors are suitable for long-term therapy without hampering the precious electrolyte imbalance in the human body. In this study, UT-B inhibitors were analysed by using multi-chemometric modelling approaches. The possible pharmacophore features along with favourable and unfavourable sub-structural fingerprints for UT-B inhibition are extracted. This information will guide the medicinal chemist to design potent UT-B inhibitors in future.


Assuntos
Diuréticos , Proteínas de Membrana Transportadoras , Diuréticos/química , Diuréticos/farmacologia , Eletrólitos/metabolismo , Humanos , Ureia/farmacologia , Transportadores de Ureia
6.
BMC Nephrol ; 23(1): 297, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038817

RESUMO

BACKGROUND: The transport of water and urea through the erythrocyte membrane is facilitated by aquaporins such as aquaglyceroporin (AQP3), and type B urea transporters (UT-B). As they may play an important role in osmotic balance of maintenance hemodialysis (HD) patients, the aim of the present study was to determine whether any relationship exists between the expression of their genes and the biochemical / clinical parameters in HD patients. METHODS: AQP3 and UT-B (SLC14A1) gene expression was evaluated using RT-qPCR analysis in 76 HD patients and 35 participants with no kidney failure. RESULTS: The HD group demonstrated significantly higher median expression of AQP3 and UT-B (Z = 2.16; P = 0.03 and Z = 8.82; p < 0.0001, respectively) than controls. AQP3 negatively correlated with pre-dialysis urea serum concentration (R = -0.22; P = 0.049) and sodium gradient (R = -0.31; P = 0.04); however, no significant UT-B correlations were observed. Regarding the cause of end-stage kidney disease, AQP3 expression positively correlated with erythropoietin dosages in the chronic glomerulonephritis (GN) subgroup (R = 0.6; P = 0.003), but negatively in the diabetic nephropathy subgroup (R = -0.59; P = 0.004). UT-B positively correlated with inter-dialytic weight gain% in the GN subgroup (R = 0.47; P = 0.03). CONCLUSION: Maintenance hemodialysis seems significantly modify AQP3 and UT-B expression but their link to clinical and biochemical parameters needs further large-scale evaluation.


Assuntos
Aquagliceroporinas , Aquaporinas , Proteínas de Membrana Transportadoras/metabolismo , Aquagliceroporinas/genética , Aquaporina 3/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Expressão Gênica , Humanos , Diálise Renal , Ureia/metabolismo , Transportadores de Ureia
7.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555682

RESUMO

Through a combination of comparative modeling, site-directed and classical random mutagenesis approaches, we previously identified critical residues for binding, recognition, and translocation of urea, and its inhibition by 2-thiourea and acetamide in the Aspergillus nidulans urea transporter, UreA. To deepen the structural characterization of UreA, we employed the artificial intelligence (AI) based AlphaFold2 (AF2) program. In this analysis, the resulting AF2 models lacked inward- and outward-facing cavities, suggesting a structural intermediate state of UreA. Moreover, the orientation of the W82, W84, N279, and T282 side chains showed a large variability, which in the case of W82 and W84, may operate as a gating mechanism in the ligand pathway. To test this hypothesis non-conservative and conservative substitutions of these amino acids were introduced, and binding and transport assessed for urea and its toxic analogue 2-thiourea, as well as binding of the structural analogue acetamide. As a result, residues W82, W84, N279, and T282 were implicated in substrate identification, selection, and translocation. Using molecular docking with Autodock Vina with flexible side chains, we corroborated the AF2 theoretical intermediate model, showing a remarkable correlation between docking scores and experimental affinities determined in wild-type and UreA mutants. The combination of AI-based modeling with classical docking, validated by comprehensive mutational analysis at the binding region, would suggest an unforeseen option to determine structural level details on a challenging family of proteins.


Assuntos
Inteligência Artificial , Furilfuramida , Simulação de Acoplamento Molecular , Ureia/metabolismo , Tioureia , Acetamidas , Transportadores de Ureia
8.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458649

RESUMO

Urea transporter (UT) inhibitors are a class of promising novel diuretics that do not cause the imbalance of Na+, K+, Cl-, and other electrolytes. In our previous studies, 25a, a promising diuretic candidate inhibiting UT, was discovered and showed potent diuretic activities in rodents. Here, a sensitive liquid chromatography-tandem mass spectrometry method for the quantitation of 25a in rat plasma, urine, feces, bile, and tissue homogenates was developed and validated to support the preclinical pharmacokinetic studies. The tissue distribution, excretion, and plasma protein binding were investigated in rats. After a single oral dose of 25a at 25, 50, and 100 mg/kg, the drug exposure increased linearly with the dose. The drug accumulation was observed after multiple oral doses compared to a single dose. In the distribution study, 25a exhibited a wide distribution to tissues with high blood perfusion, such as kidney, heart, lung, and spleen, and the lowest distribution in the brain and testis. The accumulative excretion rate of 25a was 0.14%, 3.16%, and 0.018% in urine, feces, and bile, respectively. The plasma protein binding of 25a was approximately 60% in rats and 40% in humans. This is the first study on the preclinical pharmacokinetic profiles of 25a.


Assuntos
Diuréticos , Ureia , Animais , Cromatografia Líquida , Diuréticos/química , Diuréticos/farmacologia , Masculino , Proteínas de Membrana Transportadoras , Ratos , Ratos Sprague-Dawley , Ureia/metabolismo , Transportadores de Ureia
9.
J Biol Chem ; 295(29): 9893-9900, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32461256

RESUMO

Urea transporters are a family of urea-selective channel proteins expressed in multiple tissues that play an important role in the urine-concentrating mechanism of the mammalian kidney. Previous studies have shown that knockout of urea transporter (UT)-B, UT-A1/A3, or all UTs leads to urea-selective diuresis, indicating that urea transporters have important roles in urine concentration. Here, we sought to determine the role of UT-A1 in the urine-concentrating mechanism in a newly developed UT-A1-knockout mouse model. Phenotypically, daily urine output in UT-A1-knockout mice was nearly 3-fold that of WT mice and 82% of all-UT-knockout mice, and the UT-A1-knockout mice had significantly lower urine osmolality than WT mice. After 24-h water restriction, acute urea loading, or high-protein (40%) intake, UT-A1-knockout mice were unable to increase urine-concentrating ability. Compared with all-UT-knockout mice, the UT-A1-knockout mice exhibited similarly elevated daily urine output and decreased urine osmolality, indicating impaired urea-selective urine concentration. Our experimental findings reveal that UT-A1 has a predominant role in urea-dependent urine-concentrating mechanisms, suggesting that UT-A1 represents a promising diuretic target.


Assuntos
Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ureia/metabolismo , Urina , Animais , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Transportadores de Ureia
10.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R377-R384, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318705

RESUMO

The purpose of this study was to investigate if the cardiovascular system is important for ammonia excretion in the early life stages of zebrafish. Morpholino knockdowns of cardiac troponin T (TNNT2) or vascular endothelial growth factor A (VEGFA) provided morphants with nonfunctional circulation. At the embryonic stage [30-36 h postfertilization (hpf)], ammonia excretion was not constrained by a lack of cardiovascular function. At 2 days postfertilization (dpf) and 4 dpf, morpholino knockdowns of TNNT2 or VEGFA significantly reduced ammonia excretion in all morphants. Expression of rhag, rhbg, and rhcgb showed no significant changes but the mRNA levels of the urea transporter (ut) were upregulated in the 4 dpf morphants. Taken together, rhag, rhbg, rhcgb, and ut gene expression and an unchanged tissue ammonia concentration but an increased tissue urea concentration, suggest that impaired ammonia excretion led to increased urea synthesis. However, in larvae anesthetized with tricaine or clove oil, ammonia excretion was not reduced in the 4 dpf morphants compared with controls. Furthermore, oxygen consumption was reduced in morphants regardless of anesthesia. These results suggest that cardiovascular function is not directly involved in ammonia excretion, but rather reduced activity and external convection may explain reduced ammonia excretion and compensatory urea accumulation in morphants with reduced cardiovascular function.


Assuntos
Sistema Cardiovascular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ureia/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Brânquias/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Transportadores de Ureia
11.
FASEB J ; 34(6): 8296-8309, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367640

RESUMO

Uremic cardiomyopathy, characterized by hypertension, cardiac hypertrophy, and fibrosis, is a complication of chronic kidney disease (CKD). Urea transporter (UT) inhibition increases the excretion of water and urea, but the effect on uremic cardiomyopathy has not been studied. We tested UT inhibition by dimethylthiourea (DMTU) in 5/6 nephrectomy mice. This treatment suppressed CKD-induced hypertension and cardiac hypertrophy. In CKD mice, cardiac fibrosis was associated with upregulation of UT and vimentin abundance. Inhibition of UT suppressed vimentin amount. Left ventricular mass index in DMTU-treated CKD was less compared with non-treated CKD mice as measured by echocardiography. Nephrectomy was performed in UT-A1/A3 knockout (UT-KO) to further confirm our finding. UT-A1/A3 deletion attenuates the CKD-induced increase in cardiac fibrosis and hypertension. The amount of α-smooth muscle actin and tgf-ß were significantly less in UT-KO with CKD than WT/CKD mice. To study the possibility that UT inhibition could benefit heart, we measured the mRNA of renin and angiotensin-converting enzyme (ACE), and found both were sharply increased in CKD heart; DMTU treatment and UT-KO significantly abolished these increases. Conclusion: Inhibition of UT reduced hypertension, cardiac fibrosis, and improved heart function. These changes are accompanied by inhibition of renin and ACE.


Assuntos
Cardiomiopatias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Insuficiência Renal Crônica/metabolismo , Ureia/metabolismo , Actinas/metabolismo , Animais , Cardiomegalia/metabolismo , Fibrose/metabolismo , Ventrículos do Coração/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transportadores de Ureia
12.
Transfusion ; 61(2): 603-616, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33231305

RESUMO

BACKGROUND: Genetic variants in the SLC14A1, ACKR1, and KEL genes, which encode Kidd, Duffy, and Kell red blood cell antigens, respectively, may result in weakened expression of antigens or a null phenotype. These variants are of particular interest to individuals with sickle cell disease (SCD), who frequently undergo chronic transfusion therapy with antigen-matched units. The goal was to describe the diversity and the frequency of variants in SLC14A1, ACKR1, and KEL genes among individuals with SCD using whole genome sequencing (WGS) data. STUDY DESIGN AND METHODS: Two large SCD cohorts were studied: the Recipient Epidemiology and Donor Evaluation Study III (REDS-III) (n = 2634) and the Outcome Modifying Gene in SCD (OMG) (n = 640). Most of the studied individuals were of mixed origin. WGS was performed as part of the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. RESULTS: In SLC14A1, variants included four encoding a weak Jka phenotype and five null alleles (JKnull ). JKA*01N.09 was the most common JKnull . One possible JKnull mutation was novel: c.812G>T. In ACKR1, identified variants included two that predicted Fyx (FY*X) and one corresponding to the c.-67T>C GATA mutation. The c.-67T>C mutation was associated with FY*A (FY*01N.01) in four participants. FY*X was identified in 49 individuals. In KEL, identified variants included three null alleles (KEL*02N.17, KEL*02N.26, and KEL*02N.04) and one allele predicting Kmod phenotype, all in heterozygosity. CONCLUSIONS: We described the diversity and distribution of SLC14A1, ACKR1, and KEL variants in two large SCD cohorts, comprising mostly individuals of mixed ancestry. This information may be useful for planning the transfusion support of patients with SCD.


Assuntos
Anemia Falciforme/genética , Sistema do Grupo Sanguíneo Duffy/genética , Variação Genética , Sistema do Grupo Sanguíneo de Kell/genética , Sistema do Grupo Sanguíneo Kidd/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Metaloendopeptidases/genética , Receptores de Superfície Celular/genética , Sequenciamento Completo do Genoma , Alelos , Anemia Falciforme/etnologia , Brasil/epidemiologia , Estudos de Coortes , Etnicidade/genética , Frequência do Gene , Estudos de Associação Genética , Humanos , Mutação INDEL , Anotação de Sequência Molecular , Mutação de Sentido Incorreto , National Heart, Lung, and Blood Institute (U.S.) , Polimorfismo de Nucleotídeo Único , Grupos Raciais/genética , Estados Unidos , Transportadores de Ureia
13.
Neurochem Res ; 46(6): 1322-1329, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33675462

RESUMO

Urea is the major nitrogen-containing product of protein metabolism, and the urea cycle is intrinsically linked to nitric oxide (NO) production via the common substrate L-arginine. Urea accumulates in the brain in neurodegenerative states, including Alzheimer's and Huntington's disease. Urea transporter B (UT-B, SLC14A1) is the primary transport protein for urea in the CNS, identified most abundantly in astrocytes. Moreover, enhanced expression of the Slc14a1 gene has been reported under neurodegenerative conditions. While the role of UT-B in disease pathology remains unclear, UT-B-deficient mice display behavioural impairment coupled with urea accumulation, NO disruption and neuronal loss. Recognising the role of inflammation in neurodegenerative disease pathology, the current short study evaluates the role of UT-B in regulating inflammatory responses. Using the specific inhibitor UTBinh-14, we investigated the impact of UT-B inhibition on LPS-induced changes in BV2 microglia and N2a neuroblastoma cells. We found that UTBinh-14 significantly attenuated LPS-induced production of TNFα and IL-6 from BV2 cells, accompanied by reduced release of NO. While we observed a similar reduction in supernatant concentration of IL-6 from N2a cells, the LPS-stimulated NO release was further augmented by UTBinh-14. These changes were accompanied by a small, but significant downregulation in UT-B expression in both cell types following incubation with LPS, which was not restored by UTBinh-14. Taken together, the current evidence implicates UT-B in regulation of inflammatory responses in microglia and neuronal-like cells. Moreover, our findings offer support for the further investigation of UT-B as a novel therapeutic target for neuroinflammatory conditions.


Assuntos
Inflamação/tratamento farmacológico , Proteínas de Membrana Transportadoras/metabolismo , Microglia/efeitos dos fármacos , Neuroblastoma/metabolismo , Animais , Linhagem Celular Tumoral , Inflamação/induzido quimicamente , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/metabolismo , Óxido Nítrico/metabolismo , Pirimidinas/uso terapêutico , Tiofenos/uso terapêutico , Triazóis/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Transportadores de Ureia
14.
Vox Sang ; 116(4): 451-463, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33567470

RESUMO

BACKGROUND AND OBJECTIVES: Next generation sequencing (NGS) has promising applications in transfusion medicine. Exome sequencing (ES) is increasingly used in the clinical setting, and blood group interpretation is an additional value that could be extracted from existing data sets. We provide the first release of an open-source software tailored for this purpose and describe its validation with three blood group systems. MATERIALS AND METHODS: The DTM-Tools algorithm was designed and used to analyse 1018 ES NGS files from the ClinSeq® cohort. Predictions were correlated with serology for 5 antigens in a subset of 108 blood samples. Discrepancies were investigated with alternative phenotyping and genotyping methods, including a long-read NGS platform. RESULTS: Of 116 genomic variants queried, those corresponding to 18 known KEL, FY and JK alleles were identified in this cohort. 596 additional exonic variants were identified KEL, ACKR1 and SLC14A1, including 58 predicted frameshifts. Software predictions were validated by serology in 108 participants; one case in the FY blood group and three cases in the JK blood group were discrepant. Investigation revealed that these discrepancies resulted from (1) clerical error, (2) serologic failure to detect weak antigenic expression and (3) a frameshift variant absent in blood group databases. CONCLUSION: DTM-Tools can be employed for rapid Kell, Duffy and Kidd blood group antigen prediction from existing ES data sets; for discrepancies detected in the validation data set, software predictions proved accurate. DTM-Tools is open-source and in continuous development.


Assuntos
Alelos , Antígenos de Grupos Sanguíneos/análise , Antígenos de Grupos Sanguíneos/genética , Sequenciamento do Exoma/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Sistema do Grupo Sanguíneo Duffy/genética , Variação Genética , Técnicas de Genotipagem , Humanos , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Metaloendopeptidases/genética , Receptores de Superfície Celular/genética , Transportadores de Ureia
15.
J Am Soc Nephrol ; 31(6): 1212-1225, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32381599

RESUMO

BACKGROUND: As the glomerular filtrate passes through the nephron and into the renal medulla, electrolytes, water, and urea are reabsorbed through the concerted actions of solute carrier channels and aquaporins at various positions along the nephron and in the outer and inner medulla. Proliferating stem cells expressing the nuclear transcription factor Pax2 give rise to renal epithelial cells. Pax2 expression ends once the epithelial cells differentiate into mature proximal and distal tubules, whereas expression of the related Pax8 protein continues. The collecting tubules and renal medulla are derived from Pax2-positive ureteric bud epithelia that continue to express Pax2 and Pax8 in adult kidneys. Despite the crucial role of Pax2 in renal development, functions for Pax2 or Pax8 in adult renal epithelia have not been established. METHODS: To examine the roles of Pax2 and Pax8 in the adult mouse kidney, we deleted either Pax2, Pax8, or both genes in adult mice and examined the resulting phenotypes and changes in gene expression patterns. We also explored the mechanism of Pax8-mediated activation of potential target genes in inner medullary collecting duct cells. RESULTS: Mice with induced deletions of both Pax2 and Pax8 exhibit severe polyuria that can be attributed to significant changes in the expression of solute carriers, such as the urea transporters encoded by Slc14a2, as well as aquaporins within the inner and outer medulla. Furthermore, Pax8 expression is induced by high-salt levels in collecting duct cells and activates the Slc14a2 gene by recruiting a histone methyltransferase complex to the promoter. CONCLUSIONS: These data reveal novel functions for Pax proteins in adult renal epithelia that are essential for retaining water and concentrating urine.


Assuntos
Aquaporinas/fisiologia , Capacidade de Concentração Renal/fisiologia , Rim/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Fator de Transcrição PAX2/fisiologia , Fator de Transcrição PAX8/fisiologia , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Osmorregulação , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX8/genética , Transportadores de Ureia
16.
Am J Physiol Renal Physiol ; 318(5): F1160-F1166, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174141

RESUMO

Renal fibrosis is a major contributor to the development and progression of chronic kidney disease. A low-protein diet can reduce the progression of chronic kidney disease and reduce the development of renal fibrosis, although the mechanism is not well understood. Urea reabsorption into the inner medulla is regulated by inner medullary urea transporter (UT)-A1 and UT-A3. Inhibition or knockout of UT-A1/A3 will reduce interstitial urea accumulation, which may be beneficial in reducing renal fibrosis. To test this hypothesis, the effect of unilateral ureteral obstruction (UUO) was compared in wild-type (WT) and UT-A1/A3 knockout mice. UUO causes increased extracellular matrix associated with increases in transforming growth factor-ß, vimentin, and α-smooth muscle actin (α-SMA). In WT mice, UUO increased the abundance of three markers of fibrosis: transforming growth factor-ß, vimentin, and α-SMA. In contrast, in UT-A1/A3 knockout mice, the increase following UUO was significantly reduced. Consistent with the Western blot results, immunohistochemical staining showed that the levels of vimentin and α-SMA were increased in WT mice with UUO and that the increase was reduced in UT-A1/A3 knockout mice with UUO. Masson's trichrome staining showed increased collagen in WT mice with UUO, which was reduced in UT-A1/A3 knockout mice with UUO. We conclude that reduced UT activity reduces the severity of renal fibrosis following UUO.


Assuntos
Nefropatias/metabolismo , Rim/patologia , Proteínas de Membrana Transportadoras/deficiência , Obstrução Ureteral/complicações , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibrose , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/patologia , Nefropatias/prevenção & controle , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Índice de Gravidade de Doença , Fator de Crescimento Transformador beta/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Vimentina/metabolismo , Transportadores de Ureia
17.
Acta Pharmacol Sin ; 41(1): 65-72, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31213671

RESUMO

Urea transporters (UTs) are transmembrane proteins selectively permeable to urea and play an important role in urine concentration. UT-knockout mice exhibit the urea-selective urine-concentrating defect, without affecting electrolyte balance, suggesting that UT-B inhibitors have the potential to be developed as novel diuretics. In this study, we characterized a novel compound 5-ethyl-2-methyl-3-amino-6-methylthieno[2,3-b]pyridine-2,5-dicarboxylate (CB-20) with UT inhibitory activity as novel diuretics with excellent pharmacological properties. This compound was discovered based on high-throughput virtual screening combined with the erythrocyte osmotic lysis assay. Selectivity of UT inhibitors was assayed using transwell chambers. Diuretic activity of the compound was examined in rats and mice using metabolic cages. Pharmacokinetic parameters were detected in rats using LC-MS/MS. Molecular docking was employed to predict the potential binding modes for the CB-20 with human UT-B. This compound dose-dependently inhibited UT-facilitated urea transport with IC50 values at low micromolar levels. It exhibited nearly equal inhibitory activity on both UT-A1 and UT-B. After subcutaneous administration of CB-20, the animals showed polyuria, without electrolyte imbalance and abnormal metabolism. CB-20 possessed a good absorption and rapid clearance in rat plasma. Administration of CB-20 for 5 days did not cause significant morphological abnormality in kidney or liver tissues of rats. Molecular docking showed that CB-20 was positioned near several residues in human UT-B, including Leu364, Val367, and so on. This study provides proof of evidence for the prominent diuretic activity of CB-20 by specifically inhibiting UTs. CB-20 or thienopyridine analogs may be developed as novel diuretics.


Assuntos
Diuréticos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Tienopiridinas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diuréticos/administração & dosagem , Diuréticos/química , Cães , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tienopiridinas/administração & dosagem , Tienopiridinas/química , Transportadores de Ureia
18.
J Dairy Sci ; 103(3): 2814-2820, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980228

RESUMO

Urea nitrogen salvaging is a crucial mechanism that ruminants have evolved to conserve nitrogen. Facilitative urea transporter-B proteins are known to be involved in urea transport across the rumen epithelium and thus efficiently facilitate the urea nitrogen salvaging process. Recently, functional studies have suggested that aquaglyceroporin transporters might also play a significant role in ruminal urea transport and aquaporin-3 (AQP3) protein has previously been detected in rumen tissue. In this current study, we investigated the specific localization of AQP3 transporters in the bovine rumen. First, end-point reverse-transcription PCR experiments confirmed strong AQP3 expression in both bovine rumen and kidney. Immunoblotting analysis using 2 separate anti-AQP3 antibodies detected AQP3 protein signals at 25, 32, and 42-45 kDa. Further immunolocalization studies showed AQP3 protein located in all the layers of rumen epithelium, especially in the stratum basale, and in the basolateral membranes of kidney collecting duct cells. These data confirm that AQP3 transporters are highly abundant within the bovine rumen and appear to be located throughout the ruminal epithelial layers. The physiological significance of the multiple AQP3 proteins detected and their location is not yet clear, hence further investigation is required to determine their exact contribution to ruminal urea transport.


Assuntos
Aquaporina 3/metabolismo , Bovinos/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Transporte Proteico , Animais , Aquaporina 3/genética , Membrana Celular/metabolismo , Epitélio/metabolismo , Feminino , Proteínas de Membrana Transportadoras/genética , Rúmen/metabolismo , Transportadores de Ureia
19.
Am J Physiol Cell Physiol ; 317(1): C31-C38, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067085

RESUMO

We previously described the protective role of the nuclear factor of activated T cells 5 (NFAT5) during hypoxia. Alternatively, inducible nitric oxide synthase (iNOS) is also induced by hypoxia. Some evidence indicates that NFAT5 is essential for the expression of iNOS in Toll-like receptor-stimulated macrophages and that iNOS inhibition increases NFAT5 expression in renal ischemia-reperfusion. Here we studied potential NFAT5 target genes stimulated by hypoxia in mouse embryonic fibroblast (MEF) cells. We used three types of MEF cells associated with NFAT5 gene: NFAT5 wild type (MEF-NFAT5+/+), NFAT5 knockout (MEF-NFAT5-/-), and NFAT5 dominant-negative (MEF-NFAT5Δ/Δ) cells. MEF cells were exposed to 21% or 1% O2 in a time course curve of 48 h. We found that, in MEF-NFAT5+/+ cells exposed to 1% O2, NFAT5 was upregulated and translocated into the nuclei, and its transactivation domain activity was induced, concomitant with iNOS, aquaporin 1 (AQP-1), and urea transporter 1 (UTA-1) upregulation. Interestingly, in MEF-NFAT5-/- or MEF-NFAT5Δ/Δ cells, the basal levels of iNOS and AQP-1 expression were strongly downregulated, but not for UTA-1. The upregulation of AQP-1, UTA-1, and iNOS by hypoxia was blocked in both NFAT5-mutated cells. The iNOS induction by hypoxia was recovered in MEF-NFAT5-/- MEF cells, when recombinant NFAT5 protein expression was reconstituted, but not in MEF-NFAT5Δ/Δ cells, confirming the dominant-negative effect of MEF-NFAT5Δ/Δ cells. We did not see the rescue effect on AQP-1 expression. This work provides novel and relevant information about the signaling pathway of NFAT5 during responses to oxygen depletion in mammalian cells and suggests that the expression of iNOS induced by hypoxia is dependent on NFAT5.


Assuntos
Fibroblastos/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Aquaporina 1/genética , Aquaporina 1/metabolismo , Hipóxia Celular , Células Cultivadas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Transdução de Sinais , Fatores de Transcrição/genética , Transportadores de Ureia
20.
Pflugers Arch ; 471(11-12): 1359-1368, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31734718

RESUMO

Urea transporters (UTs) are membrane proteins in the urea transporter protein A (UT-A) and urea transporter protein B (UT-B) families. UT-B is mainly expressed in endothelial cell membrane of the renal medulla and in other tissues, including the brain, heart, pancreas, colon, bladder, bone marrow, and cochlea. UT-B is responsible for the maintenance of urea concentration, male reproductive function, blood pressure, bone metabolism, and brain astrocyte and cardiac functions. Its deficiency and dysfunction contribute to the pathogenesis of many diseases. Actually, UT-B deficiency increases the sensitivity of bladder epithelial cells to apoptosis triggers in mice and UT-B-null mice develop II-III atrioventricular block and depression. The expression of UT-B in the rumen of cow and sheep may participate in digestive function. However, there is no systemic review to discuss the UT-B functions. Here, we update research approaches to understanding the functions of UT-B.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Ureia/metabolismo , Animais , Apoptose/fisiologia , Células Epiteliais/metabolismo , Humanos , Bexiga Urinária/metabolismo , Transportadores de Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA