Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.575
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(3): 628-642.e10, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33476549

RESUMO

SARS-CoV-2 infection causes more severe disease in pregnant women compared to age-matched non-pregnant women. Whether maternal infection causes changes in the transfer of immunity to infants remains unclear. Maternal infections have previously been associated with compromised placental antibody transfer, but the mechanism underlying this compromised transfer is not established. Here, we used systems serology to characterize the Fc profile of influenza-, pertussis-, and SARS-CoV-2-specific antibodies transferred across the placenta. Influenza- and pertussis-specific antibodies were actively transferred. However, SARS-CoV-2-specific antibody transfer was significantly reduced compared to influenza- and pertussis-specific antibodies, and cord titers and functional activity were lower than in maternal plasma. This effect was only observed in third-trimester infection. SARS-CoV-2-specific transfer was linked to altered SARS-CoV-2-antibody glycosylation profiles and was partially rescued by infection-induced increases in IgG and increased FCGR3A placental expression. These results point to unexpected compensatory mechanisms to boost immunity in neonates, providing insights for maternal vaccine design.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , Troca Materno-Fetal/imunologia , Placenta/imunologia , Complicações Infecciosas na Gravidez/imunologia , SARS-CoV-2/imunologia , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Terceiro Trimestre da Gravidez/imunologia , Receptores de IgG/imunologia , Células THP-1
2.
Annu Rev Immunol ; 31: 387-411, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23298207

RESUMO

The immune cells that reside at the interface between the placenta and uterus are thought to play many important roles in pregnancy. Recent work has revealed that the composition and function of these cells are locally controlled by the specialized uterine stroma (the decidua) that surrounds the implanted conceptus. Here, I discuss how key immune cell types (natural killer cells, macrophages, dendritic cells, and T cells) are either enriched or excluded from the decidua, how their function is regulated within the decidua, and how they variously contribute to pregnancy success or failure. The discussion emphasizes the relationship between human and mouse studies. Deeper understanding of the immunology of the maternal-fetal interface promises to yield significant insight into the pathogenesis of many human pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, preterm birth, and congenital infection.


Assuntos
Troca Materno-Fetal/imunologia , Animais , Diferenciação Celular/imunologia , Decídua/citologia , Decídua/imunologia , Decídua/patologia , Implantação do Embrião/imunologia , Feminino , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Placenta/irrigação sanguínea , Placenta/imunologia , Gravidez
3.
Annu Rev Cell Dev Biol ; 36: 441-468, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32722920

RESUMO

Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.


Assuntos
Feto/embriologia , Feto/imunologia , Fatores Imunológicos/metabolismo , Sistema Nervoso/embriologia , Sistema Nervoso/imunologia , Animais , Citocinas/metabolismo , Feminino , Humanos , Troca Materno-Fetal/imunologia , Modelos Biológicos , Gravidez
4.
Nat Immunol ; 19(10): 1100-1111, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250184

RESUMO

Females have an overall advantage over males in resisting Gram-negative bacteremias, thus hinting at sexual dimorphism of immunity during infections. Here, through intravital microscopy, we observed a sex-biased difference in the capture of blood-borne bacteria by liver macrophages, a process that is critical for the clearance of systemic infections. Complement opsonization was indispensable for the capture of enteropathogenic Escherichia coli (EPEC) in male mice; however, a faster complement component 3-independent process involving abundant preexisting antibodies to EPEC was detected in female mice. These antibodies were elicited predominantly in female mice at puberty in response to estrogen regardless of microbiota-colonization conditions. Estrogen-driven antibodies were maternally transferrable to offspring and conferred protection during infancy. These antibodies were conserved in humans and recognized specialized oligosaccharides integrated into the bacterial lipopolysaccharide and capsule. Thus, an estrogen-driven, innate antibody-mediated immunological strategy conferred protection to females and their offspring.


Assuntos
Anticorpos Antibacterianos/imunologia , Infecções por Escherichia coli/imunologia , Imunidade Inata/imunologia , Caracteres Sexuais , Animais , Escherichia coli Enteropatogênica , Estrogênios/imunologia , Feminino , Humanos , Lactente , Células de Kupffer/imunologia , Masculino , Troca Materno-Fetal/imunologia , Camundongos , Gravidez
5.
Cell ; 161(1): 36-48, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25815983

RESUMO

Microbiota assembly is perturbed in children with undernutrition, resulting in persistent microbiota immaturity that is not rescued by current nutritional interventions. Evidence is accumulating that this immaturity is causally related to the pathogenesis of undernutrition and its lingering sequelae. Preclinical models in which human gut communities are replicated in gnotobiotic mice have provided an opportunity to identify and predict the effects of different dietary ingredients on microbiota structure, expressed functions, and host biology. This capacity sets the stage for proof-of-concept tests designed to deliberately shape the developmental trajectory and configurations of microbiota in children representing different geographies, cultural traditions, and states of health. Developing these capabilities for microbial stewardship is timely given the global health burden of childhood undernutrition, the effects of changing eating practices brought about by globalization, and the realization that affordable nutritious foods need to be developed to enhance our capacity to cultivate healthier microbiota in populations at risk for poor nutrition.


Assuntos
Desenvolvimento Infantil , Trato Gastrointestinal/microbiologia , Microbiota , Animais , Criança , Fenômenos Fisiológicos da Nutrição Infantil , Feminino , Humanos , Troca Materno-Fetal , Gravidez
6.
Cell ; 161(1): 93-105, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25815988

RESUMO

It has long been understood that the pathogenesis of complex diseases such as diabetes includes both genetic and environmental components. More recently, it has become clear that not only does an individual's environment influence their own metabolism, but in some cases, the environment experienced by their parents may also contribute to their risk of metabolic disease. Here, we review the evidence that parental diet influences metabolic phenotype in offspring in mammals and provide a current survey of our mechanistic understanding of these effects.


Assuntos
Epigênese Genética , Comportamento Alimentar , Doenças Metabólicas/genética , Animais , Feminino , Impressão Genômica , Humanos , Troca Materno-Fetal , Doenças Metabólicas/patologia , Estado Nutricional , Gravidez
7.
Cell ; 161(3): 634-646, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910211

RESUMO

Gestational vitamin A (retinol) deficiency poses a risk for ocular birth defects and blindness. We identified missense mutations in RBP4, encoding serum retinol binding protein, in three families with eye malformations of differing severity, including bilateral anophthalmia. The mutant phenotypes exhibit dominant inheritance, but incomplete penetrance. Maternal transmission significantly increases the probability of phenotypic expression. RBP normally delivers retinol from hepatic stores to peripheral tissues, including the placenta and fetal eye. The disease mutations greatly reduce retinol binding to RBP, yet paradoxically increase the affinity of RBP for its cell surface receptor, STRA6. By occupying STRA6 nonproductively, the dominant-negative proteins disrupt vitamin A delivery from wild-type proteins within the fetus, but also, in the case of maternal transmission, at the placenta. These findings establish a previously uncharacterized mode of maternal inheritance, distinct from imprinting and oocyte-derived mRNA, and define a group of hereditary disorders plausibly modulated by dietary vitamin A.


Assuntos
Oftalmopatias Hereditárias/genética , Mutação de Sentido Incorreto , Proteínas Plasmáticas de Ligação ao Retinol/genética , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Feminino , Genes Dominantes , Humanos , Masculino , Troca Materno-Fetal , Dados de Sequência Molecular , Linhagem , Penetrância , Gravidez , Proteínas Plasmáticas de Ligação ao Retinol/química , Alinhamento de Sequência , Deficiência de Vitamina A/metabolismo
8.
Nature ; 619(7970): 595-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468587

RESUMO

Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.


Assuntos
Troca Materno-Fetal , Trofoblastos , Útero , Feminino , Humanos , Gravidez , Artérias/fisiologia , Decídua/irrigação sanguínea , Decídua/citologia , Decídua/imunologia , Decídua/fisiologia , Primeiro Trimestre da Gravidez/genética , Primeiro Trimestre da Gravidez/metabolismo , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/citologia , Trofoblastos/imunologia , Trofoblastos/fisiologia , Útero/irrigação sanguínea , Útero/citologia , Útero/imunologia , Útero/fisiologia , Troca Materno-Fetal/genética , Troca Materno-Fetal/imunologia , Troca Materno-Fetal/fisiologia , Fatores de Tempo , Proteômica , Perfilação da Expressão Gênica , Conjuntos de Dados como Assunto , Idade Gestacional
10.
Immunity ; 50(4): 907-923, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995506

RESUMO

Type I interferons (IFNs) (IFN-α, IFN-ß) and type III IFNs (IFN-λ) share many properties, including induction by viral infection, activation of shared signaling pathways, and transcriptional programs. However, recent discoveries have revealed context-specific functional differences. Here, we provide a comprehensive review of type I and type III IFN activities, highlighting shared and distinct features from molecular mechanisms through physiological responses. Beyond discussing canonical antiviral functions, we consider the adaptive immune priming, anti-tumor, and autoimmune functions of IFNs. We discuss a model wherein type III IFNs serve as a front-line defense that controls infection at epithelial barriers while minimizing damaging inflammatory responses, reserving the more potent type I IFN response for when local responses are insufficient. In this context, we discuss current therapeutic applications targeting these cytokine pathways and highlight gaps in understanding of the biology of type I and type III IFNs in health and disease.


Assuntos
Interferon Tipo I/imunologia , Interferons/imunologia , Imunidade Adaptativa , Animais , Antivirais/uso terapêutico , Doenças Autoimunes/etiologia , Doenças Autoimunes/imunologia , Células Epiteliais/imunologia , Feminino , Humanos , Interferon Tipo I/efeitos adversos , Interferon Tipo I/uso terapêutico , Interferons/efeitos adversos , Interferons/uso terapêutico , Masculino , Troca Materno-Fetal/imunologia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Especificidade de Órgãos , Gravidez , Transdução de Sinais/imunologia , Transcrição Gênica , Transcriptoma , Viroses/tratamento farmacológico , Viroses/imunologia , Interferon lambda
11.
Immunol Rev ; 323(1): 288-302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445769

RESUMO

Maternal environmental exposures, particularly during gestation and lactation, significantly influence the immunological development and long-term immunity of offspring. Mammalian immune systems develop through crucial inputs from the environment, beginning in utero and continuing after birth. These critical developmental windows are essential for proper immune system development and, once closed, may not be reopened. This review focuses on the mechanisms by which maternal exposures, particularly to pathogens, diet, and microbiota, impact offspring immunity. Mechanisms driving maternal-offspring immune crosstalk include transfer of maternal antibodies, changes in the maternal microbiome and microbiota-derived metabolites, and transfer of immune cells and cytokines via the placenta and breastfeeding. We further discuss the role of transient maternal infections, which are common during pregnancy, in providing tissue-specific immune education to offspring. We propose a "maternal-driven immune education" hypothesis, which suggests that offspring can use maternal encounters that occur during a critical developmental window to develop optimal immune fitness against infection and inflammation.


Assuntos
Exposição Materna , Humanos , Feminino , Gravidez , Animais , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Imunidade Materno-Adquirida , Microbiota/imunologia , Sistema Imunitário/imunologia , Sistema Imunitário/crescimento & desenvolvimento , Troca Materno-Fetal/imunologia , Placenta/imunologia
12.
Proc Natl Acad Sci U S A ; 121(8): e2310502121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346193

RESUMO

The placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.5. Single-cell RNA sequencing analysis revealed excessive accumulation of multipotent LaTPs upon conditional deletion of GATA factors. The GATA factor-deleted multipotent progenitors were unable to differentiate into matured SynTs. We also show that the GATA factor-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. Loss of either GATA2 or GATA3 in cytotrophoblast-derived human trophoblast stem cells (human TSCs) drastically inhibits SynT differentiation potential. Identification of GATA2 and GATA3 target genes along with comparative bioinformatics analyses revealed that GATA factors directly regulate hundreds of common genes in human TSCs, including genes that are essential for SynT development and implicated in preeclampsia and fetal growth retardation. Thus, our study uncovers a conserved molecular mechanism, in which coordinated function of GATA2 and GATA3 promotes trophoblast progenitor-to-SynT commitment, ensuring establishment of the maternal-fetal exchange interface.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Troca Materno-Fetal , Gravidez , Feminino , Humanos , Animais , Camundongos , Placenta , Trofoblastos , Diferenciação Celular/fisiologia , Desenvolvimento Fetal , Fatores de Transcrição GATA
13.
Nucleic Acids Res ; 52(D1): D738-D746, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37819042

RESUMO

Extensive evidence has demonstrated that the human microbiome and probiotics confer great impacts on human health, particularly during critical developmental stages such as pregnancy and infancy when microbial communities undergo remarkable changes and maturation. However, a major challenge in understanding the microbial community structure and interactions between mothers and infants lies in the current lack of comprehensive microbiome databases specifically focused on maternal and infant health. To address this gap, we have developed an extensive database called MAMI (Microbiome Atlas of Mothers and Infants) that archives data on the maternal and neonatal microbiome, as well as abundant resources on edible probiotic strains. By leveraging this resource, we can gain profound insights into the dynamics of microbial communities, contributing to lifelong wellness for both mothers and infants through precise modulation of the developing microbiota. The functionalities incorporated into MAMI provide a unique perspective on the study of the mother-infant microbiome, which not only advance microbiome-based scientific research but also enhance clinical practice. MAMI is publicly available at https://bioinfo.biols.ac.cn/mami/.


Assuntos
Microbiota , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Probióticos , Troca Materno-Fetal
14.
Proc Natl Acad Sci U S A ; 119(15): e2113310119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377817

RESUMO

Gestational maternal immune activation (MIA) in mice induces persistent brain microglial activation and a range of neuropathologies in the adult offspring. Although long-term phenotypes are well documented, how MIA in utero leads to persistent brain inflammation is not well understood. Here, we found that offspring of mothers treated with polyriboinosinic­polyribocytidylic acid [poly(I:C)] to induce MIA at gestational day 13 exhibit blood­brain barrier (BBB) dysfunction throughout life. Live MRI in utero revealed fetal BBB hyperpermeability 2 d after MIA. Decreased pericyte­endothelium coupling in cerebral blood vessels and increased microglial activation were found in fetal and 1- and 6-mo-old offspring brains. The long-lasting disruptions result from abnormal prenatal BBB formation, driven by increased proliferation of cyclooxygenase-2 (COX2; Ptgs2)-expressing microglia in fetal brain parenchyma and perivascular spaces. Targeted deletion of the Ptgs2 gene in fetal myeloid cells or treatment with the inhibitor celecoxib 24 h after immune activation prevented microglial proliferation and disruption of BBB formation and function, showing that prenatal COX2 activation is a causal pathway of MIA effects. Thus, gestational MIA disrupts fetal BBB formation, inducing persistent BBB dysfunction, which promotes microglial overactivation and behavioral alterations across the offspring life span. Taken together, the data suggest that gestational MIA disruption of BBB formation could be an etiological contributor to neuropsychiatric disorders.


Assuntos
Barreira Hematoencefálica , Ciclo-Oxigenase 2 , Encefalite , Troca Materno-Fetal , Microglia , Efeitos Tardios da Exposição Pré-Natal , Animais , Barreira Hematoencefálica/anormalidades , Barreira Hematoencefálica/fisiopatologia , Celecoxib/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Encefalite/imunologia , Feminino , Deleção de Genes , Troca Materno-Fetal/imunologia , Camundongos , Microglia/enzimologia , Poli I-C/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia
15.
Semin Cell Dev Biol ; 131: 66-77, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35393235

RESUMO

The placenta is a transient fetal organ that plays a critical role in the health and wellbeing of both the fetus and its mother. Functionally, the placenta sustains the growth of the fetus as it facilitates delivery of oxygen and nutrients and removal of waste products. Not surprisingly, defective early placental development is the primary cause of common disorders of pregnancy, including recurrent miscarriage, fetal growth restriction, pre-eclampsia and stillbirth. Adverse pregnancy conditions will also affect the life-long health of the fetus via developmental programming[1]. Despite its critical importance in reproductive success and life-long health, our understanding of placental development is not extensive, largely due to ethical limitations to studying early or chronological placental development, lack of long-term in vitro models, or comparative animal models. In this review, we examine current knowledge of early human placental development, discuss the critical role of the maternal endometrium and of the fetal-maternal dialogue in pregnancy success, and we explore the latest models of trophoblast and endometrial stem cells. In addition, we discuss the role of oxygen in placental formation and function, how nutrient delivery is mediated during the periods of histotrophic nutrition (uptake of uterine secretions) and haemotrophic nutrition (exchange between the maternal and fetal circulations), and how placental endocrine function facilitates fetal growth and development.


Assuntos
Placenta , Placentação , Animais , Feminino , Desenvolvimento Fetal , Humanos , Troca Materno-Fetal , Oxigênio , Gravidez
16.
Eur J Neurosci ; 60(4): 4536-4551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38978299

RESUMO

During development, embryos and foetuses may be exposed to maternally ingested antiseizure medications (ASM), valproate and lamotrigine, essential in some patients to control their epilepsy symptoms. Often, the two drugs are co-administered to reduce required doses of valproate, a known potential teratogen. This study used Genetic Absence Epilepsy Rat from Strasbourg to evaluate transfer of valproate and lamotrigine across late gestation placenta and their entry into cerebrospinal fluid (CSF) and brain of developing rats, in mono- and combination therapies. Animals at embryonic day (E) 19, postnatal day (P) 0, 4 and 21, and adults were administered valproate (30 mg/kg) or lamotrigine (6 mg/kg) with their respective [3H]-tracers, either alone or in combination. In chronic experiments, females consumed valproate-containing diet from 2 weeks prior to mating until offspring were used at E19 and P0. Drugs were injected 30 min before blood, CSF and brain samples were collected from terminally anaesthetised animals. Radioactivity in samples was measured. In acute monotherapy brain entry of valproate was higher in foetal than postnatal animals, correlating with its plasma protein binding. Brain entry of lamotrigine was not age-dependent. Combination therapy enhanced entry of lamotrigine into the adult brain but had no effects on brain and CSF entry of valproate. Following chronic valproate exposure, placental transfer of valproate decreased in combination therapy; however, foetal brain entry increased. Results suggest that during pregnancy, the use of combination therapy of valproate and lamotrigine may mitigate overall foetal exposure to valproate but potential risks to foetal brain development are less clear.


Assuntos
Anticonvulsivantes , Encéfalo , Epilepsia Tipo Ausência , Lamotrigina , Placenta , Triazinas , Ácido Valproico , Animais , Feminino , Gravidez , Anticonvulsivantes/administração & dosagem , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Ratos , Placenta/metabolismo , Placenta/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Triazinas/administração & dosagem , Troca Materno-Fetal , Masculino
17.
Drug Metab Dispos ; 52(6): 516-525, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38267095

RESUMO

The hepatitis C virus (HCV) poses a great risk to pregnant people and their developing fetus, yet no HCV antiviral treatment guidelines have been established. While there has been a substantial increase in the development of HCV antivirals, the effect they have on the developing fetus remains poorly defined. Many of these drugs are metabolized through the cytochrome P450 CYP3A pathway, which is mediated by cytochrome P450 3A7 (CYP3A7) in the fetus and developing infant. In this study, we sought to investigate the effect HCV antivirals have on CYP3A7 metabolism, as this CYP enzyme plays a vital role in proper fetal and neonatal development. Of the 13 HCV antivirals we investigated, 8 (∼62%) inhibited CYP3A7 metabolic activity by 50% or more at a concentration of 20 µM. Furthermore, paritaprevir, asunaprevir, simeprevir, danoprevir, and glecaprevir all had observed half-maximal inhibitory concentrations between the range of 10 and 20 µM, which is physiologically relevant in comparison with the Km of dehydroepiandrosterone-sulfate (DHEA-S) oxidation (reported to be between 5 and 20 µM). We also discovered that paritaprevir is a time-dependent inhibitor of CYP3A7, which shifts the IC50 ∼twofold from 11 µM to 5 µM. Upon further characterization, paritaprevir inactivates DHEA-S metabolism by CYP3A7, with KI and Kinact values of 4.66 µM and 0.00954 minute-1, respectively. Depending on treatment plan and off-label drug use, HCV treatment could adversely affect the fetal-maternal communication axis by blocking fetal CYP3A7 metabolism of important endogenous hormones. SIGNIFICANCE STATEMENT: The prevalence of HCV in pregnant people is estimated at between 1% and 8% of the global population, yet little to no information exists about the risk antiviral treatment poses to the developing fetus. There is a potential risk of drugs adversely affecting mother-fetal communication by inhibiting fetal hepatic CYP3A7, an integral enzyme for estriol production. We discovered that five HCV antivirals inhibited DHEA-S metabolism by CYP3A7, and paritaprevir inactivated the enzyme. Our studies demonstrate the potential threat these drugs pose to proper fetal development.


Assuntos
Antivirais , Citocromo P-450 CYP3A , Oxirredução , Humanos , Citocromo P-450 CYP3A/metabolismo , Feminino , Antivirais/farmacologia , Gravidez , Sulfato de Desidroepiandrosterona/metabolismo , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Inibidores do Citocromo P-450 CYP3A/farmacologia , Troca Materno-Fetal , Microssomos Hepáticos , Feto
18.
Am J Obstet Gynecol ; 230(5): B2-B5, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417536

RESUMO

Guidelines for the management of first-trimester spontaneous and induced abortion vary in terms of rhesus factor D (RhD) testing and RhD immune globulin (RhIg) administration. These existing guidelines are based on limited data that do not convincingly demonstrate the safety of withholding RhIg for first-trimester abortions or pregnancy losses. Given the adverse fetal and neonatal outcomes associated with RhD alloimmunization, prevention of maternal sensitization is essential in RhD-negative patients who may experience subsequent pregnancies. In care settings in which RhD testing and RhIg administration are logistically and financially feasible and do not hinder access to abortion care, we recommend offering both RhD testing and RhIg administration for spontaneous and induced abortion at <12 weeks of gestation in unsensitized, RhD-negative individuals. Guidelines for RhD testing and RhIg administration in the first trimester must balance the prevention of alloimmunization with the individual- and population-level harms of restricted access to abortion.


Assuntos
Aborto Induzido , Aborto Espontâneo , Troca Materno-Fetal , Feminino , Gravidez , Aborto Espontâneo/imunologia , Imunoglobulinas/imunologia , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Sociedades Médicas , Fatores de Tempo , Humanos
19.
Pharm Res ; 41(5): 899-910, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684563

RESUMO

BACKGROUND: Evaluating drug transplacental clearance is vital for forecasting fetal drug exposure. Ex vivo human placenta perfusion experiments are the most suitable approach for this assessment. Various in silico methods are also proposed. This study aims to compare these prediction methods for drug transplacental clearance, focusing on the large molecular weight drug vancomycin (1449.3 g/mol), using maternal-fetal physiologically based pharmacokinetic (m-f PBPK) modeling. METHODS: Ex vivo human placenta perfusion experiments, in silico approaches using intestinal permeability as a substitute (quantitative structure property relationship (QSPR) model and Caco-2 permeability in vitro-in vivo correlation model) and midazolam calibration model with Caco-2 scaling were assessed for determining the transplacental clearance (CLPD) of vancomycin. The m-f PBPK model was developed stepwise using Simcyp, incorporating the determined CLPD values as a crucial input parameter for transplacental kinetics. RESULTS: The developed PBPK model of vancomycin for non-pregnant adults demonstrated excellent predictive performance. By incorporating the CLPD parameterization derived from ex vivo human placenta perfusion experiments, the extrapolated m-f PBPK model consistently predicted maternal and fetal concentrations of vancomycin across diverse doses and distinct gestational ages. However, when the CLPD parameter was derived from alternative prediction methods, none of the extrapolated maternal-fetal PBPK models produced fetal predictions in line with the observed data. CONCLUSION: Our study showcased that combination of ex vivo human placenta perfusion experiments and m-f PBPK model has the capability to predict fetal exposure for the large molecular weight drug vancomycin, whereas other in silico approaches failed to achieve the same level of accuracy.


Assuntos
Feto , Troca Materno-Fetal , Modelos Biológicos , Placenta , Vancomicina , Humanos , Vancomicina/farmacocinética , Gravidez , Feminino , Placenta/metabolismo , Células CACO-2 , Feto/metabolismo , Simulação por Computador , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Perfusão , Adulto , Relação Quantitativa Estrutura-Atividade
20.
Environ Sci Technol ; 58(19): 8117-8134, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701366

RESUMO

Due to its widespread applications in various fields, antibiotics are continuously released into the environment and ultimately enter the human body through diverse routes. Meanwhile, the unreasonable use of antibiotics can also lead to a series of adverse outcomes. Pregnant women and developing fetuses are more susceptible to the influence of external chemicals than adults. The evaluation of antibiotic exposure levels through questionnaire surveys or prescriptions in medical records and biomonitoring-based data shows that antibiotics are frequently prescribed and used by pregnant women around the world. Antibiotics may be transmitted from mothers to their offspring through different pathways, which then adversely affect the health of offspring. However, there has been no comprehensive review on antibiotic exposure and mother-to-child transmission in pregnant women so far. Herein, we summarized the exposure levels of antibiotics in pregnant women and fetuses, the exposure routes of antibiotics to pregnant women, and related influencing factors. In addition, we scrutinized the potential mechanisms and factors influencing the transfer of antibiotics from mother to fetus through placental transmission, and explored the adverse effects of maternal antibiotic exposure on fetal growth and development, neonatal gut microbiota, and subsequent childhood health. Given the widespread use of antibiotics and the health threats posed by their exposure, it is necessary to comprehensively track antibiotics in pregnant women and fetuses in the future, and more in-depth biological studies are needed to reveal and verify the mechanisms of mother-to-child transmission, which is crucial for accurately quantifying and evaluating fetal health status.


Assuntos
Antibacterianos , Exposição Materna , Humanos , Feminino , Gravidez , Troca Materno-Fetal , Feto/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA