Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Mol Cell ; 77(5): 1032-1043.e4, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31924447

RESUMO

An attractive approach to reduce gene expression is via the use of antisense oligonucleotides (ASOs) that harness the RNase H1 mechanism. Here we show that RNase H ASOs targeted to introns or exons robustly reduce the level of spliced RNA associated with chromatin. Surprisingly, intron-targeted ASOs reduce the level of pre-mRNA associated with chromatin to a greater extent than exon-targeted ASOs. This indicates that exon-targeted ASOs achieve full activity after the pre-mRNA has undergone splicing, but before the mRNA is released from chromatin. Even though RNase H ASOs can reduce the level of RNA associated with chromatin, the effect of ASO-directed RNA degradation on transcription has never been documented. Here we show that intron-targeted ASOs and, to a lesser extent, exon-targeted ASOs cause RNA polymerase II (Pol II) transcription termination in cultured cells and mice. Furthermore, ASO-directed transcription termination is mediated by the nuclear exonuclease XRN2.


Assuntos
Cromatina/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonuclease H/metabolismo , Terminação da Transcrição Genética , Animais , Cromatina/genética , Éxons , Exorribonucleases/genética , Exorribonucleases/metabolismo , Feminino , Células HCT116 , Humanos , Íntrons , Camundongos Endogâmicos C57BL , Modelos Genéticos , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Oligonucleotídeos Antissenso/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Precursores de RNA/genética , RNA Mensageiro/genética , Ribonuclease H/genética , Fatores de Tempo
2.
Genes Dev ; 34(17-18): 1177-1189, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32792353

RESUMO

Dysregulation of the ubiquitin-proteasomal system (UPS) enables pathogenic accumulation of disease-driving proteins in neurons across a host of neurological disorders. However, whether and how the UPS contributes to oligodendrocyte dysfunction and repair after white matter injury (WMI) remains undefined. Here we show that the E3 ligase VHL interacts with Daam2 and their mutual antagonism regulates oligodendrocyte differentiation during development. Using proteomic analysis of the Daam2-VHL complex coupled with conditional genetic knockout mouse models, we further discovered that the E3 ubiquitin ligase Nedd4 is required for developmental myelination through stabilization of VHL via K63-linked ubiquitination. Furthermore, studies in mouse demyelination models and white matter lesions from patients with multiple sclerosis corroborate the function of this pathway during remyelination after WMI. Overall, these studies provide evidence that a signaling axis involving key UPS components contributes to oligodendrocyte development and repair and reveal a new role for Nedd4 in glial biology.


Assuntos
Diferenciação Celular , Proteínas dos Microfilamentos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Regeneração Nervosa/genética , Doenças do Sistema Nervoso/genética , Oligodendroglia/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/genética , Doenças do Sistema Nervoso/fisiopatologia , Oligodendroglia/citologia , Estabilidade Proteica , Ubiquitinação/genética
3.
PLoS Pathog ; 20(9): e1012485, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39259704

RESUMO

Hepatitis B virus (HBV) exploits the endosomal sorting complexes required for transport (ESCRT)/multivesicular body (MVB) pathway for virion budding. In addition to enveloped virions, HBV-replicating cells nonlytically release non-enveloped (naked) capsids independent of the integral ESCRT machinery, but the exact secretory mechanism remains elusive. Here, we provide more detailed information about the existence and characteristics of naked capsid, as well as the viral and host regulations of naked capsid egress. HBV capsid/core protein has two highly conserved Lysine residues (K7/K96) that potentially undergo various types of posttranslational modifications for subsequent biological events. Mutagenesis study revealed that the K96 residue is critical for naked capsid egress, and the intracellular egress-competent capsids are associated with ubiquitinated host proteins. Consistent with a previous report, the ESCRT-III-binding protein Alix and its Bro1 domain are required for naked capsid secretion through binding to intracellular capsid, and we further found that the ubiquitinated Alix binds to wild type capsid but not K96R mutant. Moreover, screening of NEDD4 E3 ubiquitin ligase family members revealed that AIP4 stimulates the release of naked capsid, which relies on AIP4 protein integrity and E3 ligase activity. We further demonstrated that AIP4 interacts with Alix and promotes its ubiquitination, and AIP4 is essential for Alix-mediated naked capsid secretion. However, the Bro1 domain of Alix is non-ubiquitinated, indicating that Alix ubiquitination is not absolutely required for AIP4-induced naked capsid secretion. Taken together, our study sheds new light on the mechanism of HBV naked capsid egress in viral life cycle.


Assuntos
Capsídeo , Vírus da Hepatite B , Ubiquitina-Proteína Ligases Nedd4 , Ubiquitina-Proteína Ligases , Liberação de Vírus , Humanos , Proteínas de Ligação ao Cálcio , Capsídeo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Hepatite B/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Liberação de Vírus/fisiologia
4.
Mol Cell ; 71(4): 526-539.e8, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30118678

RESUMO

Nuclear receptors induce both transcriptional activation and repression programs responsible for development, homeostasis, and disease. Here, we report a previously overlooked enhancer decommissioning strategy underlying a large estrogen receptor alpha (ERα)-dependent transcriptional repression program. The unexpected signature for this E2-induced program resides in indirect recruitment of ERα to a large cohort of pioneer factor basally active FOXA1-bound enhancers that lack cognate ERα DNA-binding elements. Surprisingly, these basally active estrogen-repressed (BAER) enhancers are decommissioned by ERα-dependent recruitment of the histone demethylase KDM2A, functioning independently of its demethylase activity. Rather, KDM2A tethers the E3 ubiquitin-protein ligase NEDD4 to ubiquitylate/dismiss Pol II to abrogate eRNA transcription, with consequent target gene downregulation. Thus, our data reveal that Pol II ubiquitylation/dismissal may serve as a potentially broad strategy utilized by indirectly bound nuclear receptors to abrogate large programs of pioneer factor-mediated, eRNA-producing enhancers.


Assuntos
Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/genética , Proteínas F-Box/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Histona Desmetilases com o Domínio Jumonji/genética , Ubiquitina-Proteína Ligases Nedd4/genética , RNA Polimerase II/genética , Sequência de Bases , Sítios de Ligação , Sistemas CRISPR-Cas , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Proteínas F-Box/metabolismo , Edição de Genes/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células MCF-7 , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ligação Proteica , RNA/genética , RNA/metabolismo , RNA Polimerase II/metabolismo , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
5.
J Biol Chem ; 300(3): 105715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309503

RESUMO

NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Canal de Sódio Disparado por Voltagem NAV1.5 , Ubiquitina-Proteína Ligases Nedd4 , Ubiquitinação , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina/metabolismo , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Células HEK293
6.
J Biol Chem ; 300(1): 105593, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145746

RESUMO

Neural precursor cell expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, is commonly upregulated in human hepatocellular carcinoma (HCC) and functions as an oncogenic factor in the progression of HCC, but the molecular mechanism needs be further explored. In this study, we found that NEDD4 could facilitate the proliferation of HCC cells, which was associated with regulating the ERK signaling. Further investigation showed that protocadherin 17 (PCDH17) was a potential substrate of NEDD4, and restoration of PCDH17 could block the facilitation of ERK signaling and HCC cells proliferation induced by NEDD4 overexpression. Whereafter, we confirmed that NEDD4 interacted with PCDH17 and promoted the Lys33-linked polyubiquitination and degradation of it via the proteasome pathway. Finally, NEDD4 protein level was found to be inversely correlated with that of PCDH17 in human HCC tissues. In conclusion, these results suggest that NEDD4 acts as an E3 ubiquitin ligase for PCDH17 ubiquitination and degradation thereby promoting the proliferation of HCC cells through regulating the ERK signaling, which may provide novel evidence for NEDD4 to be a promising therapeutic target for HCC.


Assuntos
Caderinas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ubiquitina-Proteína Ligases Nedd4 , Humanos , Carcinoma Hepatocelular/patologia , Proliferação de Células , Neoplasias Hepáticas/patologia , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitinação , Caderinas/metabolismo
7.
Physiology (Bethesda) ; 39(1): 18-29, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962894

RESUMO

The Nedd4 family of E3 ubiquitin ligases, consisting of a C2-WW(n)-HECT domain architecture, includes the closely related Nedd4/Nedd4-1 and Nedd4L/Nedd4-2, which play critical roles in human physiology and pathophysiology.This review focuses on the regulation of enzymatic activity of these Nedd4 proteins, as well as on their roles in regulating stability and function of membrane and other signaling proteins, such as ion channels, ion transporters, and growth factor receptors. The diseases caused by impairment of such regulation are discussed, as well as opportunities and challenges for targeting these enzymes for therapy.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Ubiquitina , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Mol Syst Biol ; 20(6): 676-701, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664594

RESUMO

Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA. Using Shapley and out-of-bag analyses we also predicted the identity of specific SFs whose binding to pre-mRNA is blocked by SSOs. This step adds considerable transparency to AI/ML-driven drug discovery and informs biological insights useful in further validation steps. We applied this approach to previously established functional SSOs to retrospectively identify the SFs likely to regulate those events. We then took a prospective validation approach using a novel target in triple negative breast cancer (TNBC), NEDD4L exon 13 (NEDD4Le13). Targeting NEDD4Le13 with an AI/ML-designed SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the TGFß pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from RNA-seq data.


Assuntos
Processamento Alternativo , Inteligência Artificial , Aprendizado de Máquina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Oligonucleotídeos Antissenso/genética , Movimento Celular/genética , Spliceossomos/metabolismo , Spliceossomos/genética , Oligonucleotídeos/genética , Feminino
9.
Proc Natl Acad Sci U S A ; 119(30): e2122495119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858421

RESUMO

Regulation of catalytic activity of E3 ubiquitin ligases is critical for their cellular functions. We identified an unexpected mode of regulation of E3 catalytic activity by ions and osmolarity; enzymatic activity of the HECT family E3 Nedd4-2/Nedd4L is enhanced by increased intracellular Na+ ([Na+]i) and by hyperosmolarity. This stimulated activity is mediated by activation of p38-MAPK and is inhibited by WNKs. Moreover, protease (Furin)-mediated activation of the epithelial Na+ channel ENaC (a bona fide Nedd4-2 substrate), which leads to increased [Na+]i and osmolarity, results in enhanced Nedd4-2 catalytic activity. This enhancement is inhibited by a Furin inhibitor, by a protease-resistant ENaC mutant, or by treatment with the ENaC inhibitor amiloride. Moreover, WNK inhibition, which stimulates catalytic activity of Nedd4-2, leads to reduced levels of cell-surface ENaC and reduced channel activity. ENaC activity does not affect Nedd4-2:ENaC binding. Therefore, these results demonstrate activation of a ubiquitin ligase by Na+ and osmotic changes. Importantly, they reveal a negative feedback loop in which active ENaC leads to stimulation of catalytic activity of its own suppressor, Nedd4-2, to protect cells from excessive Na+ loading and hyperosmotic stress and to protect the animal from hypertension.


Assuntos
Ubiquitina-Proteína Ligases Nedd4 , Sódio , Animais , Catálise , Cátions/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Furina/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Concentração Osmolar , Sódio/metabolismo
10.
J Cell Mol Med ; 28(18): e70062, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39317954

RESUMO

Oesophageal squamous cell carcinoma (ESCC) contributes to high mortality. Modulating ferroptosis may reverse resistance to radiotherapy. This article was to explore the ubiquitination modification of KLF5 and its effect on ferroptosis in ESCC. KLF5 was under-expressed by shRNA plasmids in the cells and ROS levels were analysed by flow cytometry, ferroptotic gene expression was detected by qRT-PCR, MDA and GSH levels were determined by ELISA, cell morphology was observed by transmission electron microscopy, and Fe ion levels were analysed by immunofluorescence. Cells were treated with Ferrostatin-1 and NAC and analysed for cell proliferation by colony formation assay, cell migration and invasion by Transwell assays, and apoptosis by flow cytometry. DNA damage in cells was also analysed using comet assay, EdU doping assay, γH2AX fluorescence, DNA-PKcs and PCR. NEDD4L and KLF5 binding was analysed by immunoprecipitation. Changes in ferroptosis, DNA damage and resistance were analysed in cells with both silencing NEDD4L and KLF5. Changes in tumour resistance to radiation were analysed in mice underexpressing NEDD4L and KLF5. Low expression of KLF5 significantly promotes cellular lipid peroxidation levels, with decreased expression of SOD and GPX4, and increased expression of ACSL4. Concurrently, MDA levels deplete GSH, and cells exhibit typical ferroptotic morphology with increased Fe2+ content. KLF5 inhibition results in enhanced cellular clonogenicity, migration and invasion activities, reduced apoptosis, increased tail DNA, nuclear EdU incorporation, nuclear γH2AX foci and elevated expression of DNA-PKcs, LIG4, RAD9B and BMI1. Ferrostatin-1 and NAC reverse these effects. NEDD4L ubiquitination modifies and degrades KLF5, with NEDD4L/KLF5 inhibition mitigating cellular ferroptosis and DNA damage, thereby promoting radiosensitivity both in vitro and in vivo. NEDD4L increases radiosensitivity by accelerating cellular ferroptosis via ubiquitination modification of KLF5.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Fatores de Transcrição Kruppel-Like , Ubiquitina-Proteína Ligases Nedd4 , Tolerância a Radiação , Ubiquitinação , Ferroptose/genética , Humanos , Animais , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/radioterapia , Camundongos , Tolerância a Radiação/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Linhagem Celular Tumoral , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Dano ao DNA , Movimento Celular , Apoptose , Camundongos Nus , Estabilidade Proteica/efeitos da radiação
11.
J Neurochem ; 168(9): 2479-2494, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38497582

RESUMO

Stressful life events contribute to the onset of major depressive disorder (MDD). We recently demonstrated abnormalities in ubiquitination in the pathophysiology of MDD. However, the underlying molecular mechanisms remain unclear. We investigated the involvement of the ubiquitination system-mediated glutamatergic dysfunction in social impairment induced by chronic social defeat stress (CSDS). Adult C57BL/6J mice were exposed to aggressor ICR male mice for 10 consecutive days. Social impairment was induced by CSDS in the social interaction test 1 days after the last stress exposure. In terms of brain microdialysis, CSDS reduced depolarization-evoked glutamate release in the prefrontal cortex (PFC), which was reversed by a glutamate transporter 1 (GLT-1) inhibitor. Interestingly, the expression of ubiquitinated, but not total GLT-1, was decreased in the PFC of mice exposed to CSDS. The expression of neural precursor cells expressing developmentally downregulated gene 4-like (Nedd4L: E3 ligase for GLT-1), and ubiquitin-conjugating enzyme E2D2 (Ube2d2: E2 ubiquitin-conjugating enzyme for Nedd4L) was also reduced in CSDS mice. Furthermore, the downregulation of the Nedd4L-GLT-1 ubiquitination pathway decreased SIT ratio, but up-regulation increased it even in non-CSDS mice. Taken together, the decrease in GLT-1 ubiquitination may reduce the release of extracellular glutamate induced by high-potassium stimulation, which may lead to social impairment, while we could not find differences in GLT-1 ubiquitination between susceptible and resistant CSDS mice. In conclusion, GLT-1 ubiquitination could play a crucial role in the pathophysiology of MDD and is an attractive target for the development of novel antidepressants.


Assuntos
Regulação para Baixo , Transportador 2 de Aminoácido Excitatório , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ubiquitina-Proteína Ligases Nedd4 , Córtex Pré-Frontal , Derrota Social , Estresse Psicológico , Ubiquitinação , Animais , Córtex Pré-Frontal/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Masculino , Camundongos , Estresse Psicológico/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Transdução de Sinais/fisiologia
12.
EMBO J ; 39(3): e102771, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31867777

RESUMO

The intestinal stem cell (ISC) marker LGR5 is a receptor for R-spondin (RSPO) that functions to potentiate Wnt signalling in the proliferating crypt. It has been recently shown that Wnt plays a priming role for ISC self-renewal by inducing RSPO receptor LGR5 expression. Despite its pivotal role in homeostasis, regeneration and cancer, little is known about the post-translational regulation of LGR5. Here, we show that the HECT-domain E3 ligases NEDD4 and NEDD4L are expressed in the crypt stem cell regions and regulate ISC priming by degrading LGR receptors. Loss of Nedd4 and Nedd4l enhances ISC proliferation, increases sensitivity to RSPO stimulation and accelerates tumour development in Apcmin mice with increased numbers of high-grade adenomas. Mechanistically, we find that both NEDD4 and NEDD4L negatively regulate Wnt/ß-catenin signalling by targeting LGR5 receptor and DVL2 for proteasomal and lysosomal degradation. Our findings unveil the previously unreported post-translational control of LGR receptors via NEDD4/NEDD4L to regulate ISC priming. Inactivation of NEDD4 and NEDD4L increases Wnt activation and ISC numbers, which subsequently enhances tumour predisposition and progression.


Assuntos
Intestinos/citologia , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Receptores Acoplados a Proteínas G/química , Adenoma , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Células HCT116 , Células HEK293 , Humanos , Masculino , Camundongos , Organoides , Processamento de Proteína Pós-Traducional , Proteólise , Células-Tronco/citologia , Células-Tronco/metabolismo , Via de Sinalização Wnt
13.
Mol Med ; 30(1): 69, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783226

RESUMO

BACKGROUND: The Enoyl-CoA hydratase/isomerase family plays a crucial role in the metabolism of tumors, being crucial for maintaining the energy balance and biosynthetic needs of cancer cells. However, the enzymes within this family that are pivotal in gastric cancer (GC) remain unclear. METHODS: We employed bioinformatics techniques to identify key Enoyl-CoA hydratase/isomerase in GC. The expression of ECHDC2 and its clinical significance were validated through tissue microarray analysis. The role of ECHDC2 in GC was further assessed using colony formation assays, CCK8 assay, EDU assay, Glucose and lactic acid assay, and subcutaneous tumor experiments in nude mice. The mechanism of action of ECHDC2 was validated through Western blotting, Co-immunoprecipitation, and immunofluorescence experiments. RESULTS: Our analysis of multiple datasets indicates that low expression of ECHDC2 in GC is significantly associated with poor prognosis. Overexpression of ECHDC2 notably inhibits aerobic glycolysis and proliferation of GC cells both in vivo and in vitro. Further experiments revealed that overexpression of ECHDC2 suppresses the P38 MAPK pathway by inhibiting the protein level of MCCC2, thereby restraining glycolysis and proliferation in GC cells. Ultimately, it was discovered that ECHDC2 promotes the ubiquitination and subsequent degradation of MCCC2 protein by binding with NEDD4. CONCLUSIONS: These findings underscore the pivotal role of the ECHDC2 in regulating aerobic glycolysis and proliferation in GC cells, suggesting ECHDC2 as a potential therapeutic target in GC.


Assuntos
Proliferação de Células , Ubiquitina-Proteína Ligases Nedd4 , Neoplasias Gástricas , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Enoil-CoA Hidratase/metabolismo , Enoil-CoA Hidratase/genética , Regulação Neoplásica da Expressão Gênica , Glicólise , Camundongos Nus , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ligação Proteica , Proteólise , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Ubiquitinação , Efeito Warburg em Oncologia
14.
Mol Carcinog ; 63(5): 803-816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411267

RESUMO

Ovarian cancer is a major cause of death among cancer patients. Recent research has shown that the transmembrane emp24 domain (TMED) protein family plays a role in the progression of various types of cancer. In this study, we investigated the expression of TMED3 in ovarian cancer tumors compared to nontumor tissues using immunohistochemical staining. We found that TMED3 was overexpressed in ovarian cancer tumors, and its high expression was associated with poor disease-free and overall survival. To understand the functional implications of TMED3 overexpression in ovarian cancer, we conducted experiments to knockdown TMED3 using short hairpin RNA (shRNA). We observed that TMED3 knockdown resulted in reduced cell viability and migration, as well as increased cell apoptosis. Additionally, in subcutaneous xenograft models in BALB-c nude mice, TMED3 knockdown inhibited tumor growth. Further investigation revealed that SMAD family member 2 (SMAD2) was a downstream target of TMED3, driving ovarian cancer progression. TMED3 stabilized SMAD2 by inhibiting the E3 ligase NEDD4-mediated ubiquitination of SMAD2. To confirm the importance of SMAD2 in TMED3-mediated ovarian cancer, we performed functional rescue experiments and found that SMAD2 played a critical role in this process. Moreover, we discovered that the PI3K-AKT pathway was involved in the promoting effects of TMED3 overexpression on ovarian cancer cells. Overall, our study identifies TMED3 as a prognostic indicator and tumor promoter in ovarian cancer. Its function is likely mediated through the regulation of the SMAD2 and PI3K-AKT signaling pathway. These findings contribute to our understanding of the molecular mechanisms underlying ovarian cancer progression and provide potential targets for therapeutic intervention.


Assuntos
Neoplasias Ovarianas , Proteínas de Transporte Vesicular , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad2/farmacologia , Ubiquitinação , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo
15.
J Transl Med ; 22(1): 465, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755664

RESUMO

Disturbance in mitochondrial homeostasis within proximal tubules is a critical characteristic associated with diabetic kidney disease (DKD). CaMKKß/AMPK signaling plays an important role in regulating mitochondrial homeostasis. Despite the downregulation of CaMKKß in DKD pathology, the underlying mechanism remains elusive. The expression of NEDD4L, which is primarily localized to renal proximal tubules, is significantly upregulated in the renal tubules of mice with DKD. Coimmunoprecipitation (Co-IP) assays revealed a physical interaction between NEDD4L and CaMKKß. Moreover, deletion of NEDD4L under high glucose conditions prevented rapid CaMKKß protein degradation. In vitro studies revealed that the aberrant expression of NEDD4L negatively influences the protein stability of CaMKKß. This study also explored the role of NEDD4L in DKD by using AAV-shNedd4L in db/db mice. These findings confirmed that NEDD4L inhibition leads to a decrease in urine protein excretion, tubulointerstitial fibrosis, and oxidative stress, and mitochondrial dysfunction. Further in vitro studies demonstrated that si-Nedd4L suppressed mitochondrial fission and reactive oxygen species (ROS) production, effects antagonized by si-CaMKKß. In summary, the findings provided herein provide strong evidence that dysregulated NEDD4L disturbs mitochondrial homeostasis by negatively modulating CaMKKß in the context of DKD. This evidence underscores the potential of therapeutic interventions targeting NEDD4L and CaMKKß to safeguard renal tubular function in the management of DKD.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Nefropatias Diabéticas , Regulação para Baixo , Homeostase , Mitocôndrias , Ubiquitina-Proteína Ligases Nedd4 , Animais , Humanos , Masculino , Camundongos , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Estresse Oxidativo , Estabilidade Proteica , Proteólise , Espécies Reativas de Oxigênio/metabolismo
16.
Respir Res ; 25(1): 326, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210401

RESUMO

OBJECTIVES: In this study, we investigated whether neural precursor cell-expressed developmentally down-regulated gene 4-like (NEDD4L) is the E3 enzyme of angiotensin-converting enzyme 2 (ACE2) and whether NEDD4L degrades ACE2 via ubiquitination, leading to the progression of pulmonary arterial hypertension (PAH). METHODS: Bioinformatic analyses were used to explore the E3 ligase that ubiquitinates ACE2. Cultured pulmonary arterial smooth muscle cells (PASMCs) and specimens from patients with PAH were used to investigate the crosstalk between NEDD4L and ACE2 and its ubiquitination in the context of PAH. RESULTS: The inhibition of ubiquitination attenuated hypoxia-induced proliferation of PASMCs. The levels of NEDD4L were increased, and those of ACE2 were decreased in lung tissues from patients with PAH and in PASMCs. NEDD4L, the E3 ligase of ACE2, inhibited the expression of ACE2 in PASMCs, possibly through ubiquitination-mediated degradation. PAH was associated with upregulation of NEDD4L expression and downregulation of ACE2 expression. CONCLUSIONS: NEDD4L, the E3 ubiquitination enzyme of ACE2, promotes the proliferation of PASMCs, ultimately leading to PAH.


Assuntos
Enzima de Conversão de Angiotensina 2 , Ubiquitina-Proteína Ligases Nedd4 , Hipertensão Arterial Pulmonar , Ubiquitinação , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/biossíntese , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Humanos , Células Cultivadas , Masculino , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/enzimologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Animais , Proliferação de Células/fisiologia , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/biossíntese , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/enzimologia , Feminino , Ratos , Ratos Sprague-Dawley
17.
Clin Sci (Lond) ; 138(14): 883-900, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959295

RESUMO

Hypertension is a leading risk factor for disease burden worldwide. Vascular contraction and remodeling contribute to the development of hypertension. Glutathione S-transferase P1 (Gstp1) plays several critical roles in both normal and neoplastic cells. In this study, we investigated the effect of Gstp1 on hypertension as well as on vascular smooth muscle cell (VSMC) contraction and phenotypic switching. We identified the higher level of Gstp1 in arteries and VSMCs from hypertensive rats compared with normotensive rats for the first time. We then developed Adeno-associated virus 9 (AAV9) mediated Gstp1 down-regulation and overexpression in rats and measured rat blood pressure by using the tail-cuff and the carotid catheter method. We found that the blood pressure of spontaneously hypertensive rats (SHR) rose significantly with Gstp1 down-regulation and reduced apparently after Gstp1 overexpression. Similar results were obtained from the observations of 2-kidney-1-clip renovascular (2K1C) hypertensive rats. Gstp1 did not influence blood pressure of normotensive Wistar-Kyoto (WKY) rats and Sprague-Dawley (SD) rats. Further in vitro study indicated that Gstp1 knockdown in SHR-VSMCs promoted cell proliferation, migration, dedifferentiation and contraction, while Gstp1 overexpression showed opposite effects. Results from bioinformatic analysis showed that the Apelin/APLNR system was involved in the effect of Gstp1 on SHR-VSMCs. The rise in blood pressure of SHR induced by Gstp1 knockdown could be reversed by APLNR antagonist F13A. We further found that Gstp1 enhanced the association between APLNR and Nedd4 E3 ubiquitin ligases to induce APLNR ubiquitination degradation. Thus, in the present study, we discovered a novel anti-hypertensive role of Gstp1 in hypertensive rats and provided the experimental basis for designing an effective anti-hypertensive therapeutic strategy.


Assuntos
Pressão Sanguínea , Glutationa S-Transferase pi , Hipertensão , Músculo Liso Vascular , Ubiquitina-Proteína Ligases Nedd4 , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Ubiquitinação , Animais , Masculino , Ratos , Proliferação de Células , Glutationa S-Transferase pi/metabolismo , Glutationa S-Transferase pi/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética
18.
J Biomed Sci ; 31(1): 88, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237902

RESUMO

BACKGROUND: Dysregulation of vascular homeostasis can induce cardiovascular diseases and increase global mortality rates. Although lineage tracing studies have confirmed the pivotal role of modulated vascular smooth muscle cells (VSMCs) in the progression of pathological vascular remodeling, the underlying mechanisms are still unclear. METHODS: The expression of Tudor-SN was determined in VSMCs of artery stenosis, PDGF-BB-treated VSMCs and atherosclerotic plaque. Loss- and gain-of-function approaches were used to explore the role of Tudor-SN in the modulation of VSMCs phenotype both in vivo and in vitro. RESULTS: In this study, we demonstrate that Tudor-SN expression is significantly elevated in injury-induced arteries, atherosclerotic plaques, and PDGF-BB-stimulated VSMCs. Tudor-SN deficiency attenuates, but overexpression aggravates the synthetic phenotypic switching of VSMCs and pathological vascular remodeling. Loss of Tudor-SN also reduces atherosclerotic plaque formation and increases plaque stability. Mechanistically, PTEN, the major regulator of the MAPK and PI3K-AKT signaling pathways, plays a vital role in Tudor-SN-mediated regulation on proliferation and migration of VSMCs. Tudor-SN facilitates the polyubiquitination and degradation of PTEN via NEDD4-1, thus exacerbating vascular remodeling under pathological conditions. BpV (HOpic), a specific inhibitor of PTEN, not only counteracts the protective effect of Tudor-SN deficiency on proliferation and migration of VSMCs, but also abrogates the negative effect of carotid artery injury-induced vascular remodeling in mice. CONCLUSIONS: Our findings reveal that Tudor-SN deficiency significantly ameliorated pathological vascular remodeling by reducing NEDD4-1-dependent PTEN polyubiquitination, suggesting that Tudor-SN may be a novel target for preventing vascular diseases.


Assuntos
Ubiquitina-Proteína Ligases Nedd4 , PTEN Fosfo-Hidrolase , Ubiquitinação , Remodelação Vascular , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Animais , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Músculo Liso Vascular/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Camundongos Endogâmicos C57BL
19.
Cell Commun Signal ; 22(1): 302, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831335

RESUMO

The ubiquitination-mediated protein degradation exerts a vital role in the progression of multiple tumors. NEDD4L, which belongs to the E3 ubiquitin ligase NEDD4 family, is related to tumor genesis, metastasis and drug resistance. However, the anti-tumor role of NEDD4L in esophageal carcinoma, and the potential specific recognition substrate remain unclear. Based on public esophageal carcinoma database and clinical sample data, it was discovered in this study that the expression of NEDD4L in esophageal carcinoma was apparently lower than that in atypical hyperplastic esophageal tissue and esophageal squamous epithelium. Besides, patients with high expression of NEDD4L in esophageal carcinoma tissue had longer progression-free survival than those with low expression. Experiments in vivo and in vitro also verified that NEDD4L suppressed the growth and metastasis of esophageal carcinoma. Based on co-immunoprecipitation and proteome analysis, the NEDD4L ubiquitination-degraded protein ITGB4 was obtained. In terms of the mechanism, the HECT domain of NEDD4L specifically bound to the Galx-ß domain of ITGB4, which modified the K915 site of ITGB4 in an ubiquitination manner, and promoted the ubiquitination degradation of ITGB4, thus suppressing the malignant phenotype of esophageal carcinoma.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Integrina beta4 , Ubiquitina-Proteína Ligases Nedd4 , Proteólise , Ubiquitinação , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Humanos , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Animais , Linhagem Celular Tumoral , Integrina beta4/metabolismo , Integrina beta4/genética , Camundongos Nus , Camundongos , Proliferação de Células , Masculino , Regulação Neoplásica da Expressão Gênica , Feminino
20.
Cell Commun Signal ; 22(1): 397, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138495

RESUMO

BACKGROUND: Gastric cancer (GC) is a prevalent malignancy with limited therapeutic options for advanced stages. This study aimed to identify novel therapeutic targets for GC by profiling HSP90 client kinases. METHODS: We used mass spectrometry-based activity-based protein profiling (ABPP) with a desthiobiotin-ATP probe, combined with sensitivity analysis of HSP90 inhibitors, to profile kinases in a panel of GC cell lines. We identified kinases regulated by HSP90 in inhibitor-sensitive cells and investigated the impact of MASTL knockdown on GC cell behavior. Global proteomic analysis following MASTL knockdown was performed, and bioinformatics tools were used to analyze the resulting data. RESULTS: Four kinases-MASTL, STK11, CHEK1, and MET-were identified as HSP90-regulated in HSP90 inhibitor-sensitive cells. Among these, microtubule-associated serine/threonine kinase-like (MASTL) was upregulated in GC and associated with poor prognosis. MASTL knockdown decreased migration, invasion, and proliferation of GC cells. Global proteomic profiling following MASTL knockdown revealed NEDD4-1 as a potential downstream mediator of MASTL in GC progression. NEDD4-1 was also upregulated in GC and associated with poor prognosis. Similar to MASTL inhibition, NEDD4-1 knockdown suppressed migration, invasion, and proliferation of GC cells. CONCLUSIONS: Our multi-proteomic analyses suggest that targeting MASTL could be a promising therapy for advanced gastric cancer, potentially through the reduction of tumor-promoting proteins including NEDD4-1. This study enhances our understanding of kinase signaling pathways in GC and provides new insights for potential treatment strategies.


Assuntos
Proliferação de Células , Proteínas Serina-Treonina Quinases , Proteoma , Proteômica , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Humanos , Linhagem Celular Tumoral , Proteômica/métodos , Proteoma/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Movimento Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Regulação Neoplásica da Expressão Gênica , Terapia de Alvo Molecular , Proteínas Associadas aos Microtúbulos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA