Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876520

RESUMO

Single-dose vaccines with the ability to restrict SARS-CoV-2 replication in the respiratory tract are needed for all age groups, aiding efforts toward control of COVID-19. We developed a live intranasal vector vaccine for infants and children against COVID-19 based on replication-competent chimeric bovine/human parainfluenza virus type 3 (B/HPIV3) that express the native (S) or prefusion-stabilized (S-2P) SARS-CoV-2 S spike protein, the major protective and neutralization antigen of SARS-CoV-2. B/HPIV3/S and B/HPIV3/S-2P replicated as efficiently as B/HPIV3 in vitro and stably expressed SARS-CoV-2 S. Prefusion stabilization increased S expression by B/HPIV3 in vitro. In hamsters, a single intranasal dose of B/HPIV3/S-2P induced significantly higher titers compared to B/HPIV3/S of serum SARS-CoV-2-neutralizing antibodies (12-fold higher), serum IgA and IgG to SARS-CoV-2 S protein (5-fold and 13-fold), and IgG to the receptor binding domain (10-fold). Antibodies exhibited broad neutralizing activity against SARS-CoV-2 of lineages A, B.1.1.7, and B.1.351. Four weeks after immunization, hamsters were challenged intranasally with 104.5 50% tissue-culture infectious-dose (TCID50) of SARS-CoV-2. In B/HPIV3 empty vector-immunized hamsters, SARS-CoV-2 replicated to mean titers of 106.6 TCID50/g in lungs and 107 TCID50/g in nasal tissues and induced moderate weight loss. In B/HPIV3/S-immunized hamsters, SARS-CoV-2 challenge virus was reduced 20-fold in nasal tissues and undetectable in lungs. In B/HPIV3/S-2P-immunized hamsters, infectious challenge virus was undetectable in nasal tissues and lungs; B/HPIV3/S and B/HPIV3/S-2P completely protected against weight loss after SARS-CoV-2 challenge. B/HPIV3/S-2P is a promising vaccine candidate to protect infants and young children against HPIV3 and SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Cricetinae , Vetores Genéticos , Imunização , Vírus da Parainfluenza 3 Bovina/genética , Vírus da Parainfluenza 3 Humana/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
2.
Microb Pathog ; 185: 106444, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951410

RESUMO

Bovine parainfluenza virus type 3 (BPIV3) is a viral respiratory pathogen of cattle that causes substantial economic losses. A replicating-defective recombinant human adenovirus type 5 (HAd5), carrying a fusion protein of BPIV3 genotype C (HAd5-F), was constructed and evaluated for its immunogenicity and protective efficacy in mice. After intramuscular injection with the HAd5-F, the IgG titers against F proteins increased to 1:102,400, and virus-neutralizing titers increased to 1:256, significantly higher than those in the group injected with inactivated BPIV3C in mice (p<0.05). The splenic CD4+/CD8+T lymphocytes and IFN-γ+/IL-4+ cytokine percentages were more significant in the HAd5-F group than those in the control group. A BPIV3C challenge in a mouse model was used to assess protective efficacy of the HAd5-F. The viral loads in the lungs and tracheas of mice immunized with the HAd5-F were significantly lower than those in the control group (p<0.0001). There were no significant histopathological alterations in the lungs of mice vaccinated with the HAd5-F. These findings suggested that the HAd5-F elicited excellent immunity against BPIV3C infection.


Assuntos
Adenoviridae , Vírus da Parainfluenza 3 Humana , Animais , Bovinos , Humanos , Camundongos , Adenoviridae/genética , Anticorpos Antivirais , Vírus da Parainfluenza 3 Bovina/genética , Proteínas Recombinantes/genética , Genótipo
3.
Microbiol Immunol ; 67(4): 204-209, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609846

RESUMO

Bovine parainfluenza virus type 3 (BPIV3) is a promising vaccine vector against various respiratory virus infections, including the human PIV3, respiratory syncytial virus, and severe acute respiratory syndrome-coronavirus 2 infections. In this study, we combined the Magnet system and reverse genetic approach to generate photocontrollable BPIV3. An optically controllable Magnet gene was inserted into the H2 region of the BPIV3 large protein gene, which encodes an RNA-dependent RNA polymerase. The generated photocontrollable BPIV3 grew in specific regions of the cell sheet only when illuminated with blue light, suggesting that spatiotemporal control can aid in safe clinical applications of BPIV3.


Assuntos
COVID-19 , Vírus Sincicial Respiratório Humano , Animais , Bovinos , Humanos , Vírus da Parainfluenza 3 Humana/genética , Linhagem Celular , Replicação Viral , Vírus da Parainfluenza 3 Bovina/genética
4.
Vet Pathol ; 56(2): 277-281, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30244663

RESUMO

Bovine parainfluenza virus-3 (BPIV-3) is a recognized respiratory pathogen of cattle, and it has also been identified in aborted fetuses. However, little is known of this agent as a reproductive pathogen and detailed descriptions of fetal pathology on natural cases are lacking in the scientific literature. This article describes and illustrates lesions in a fetus spontaneously aborted by a first-calving Holstein heifer, naturally infected with BPIV-3 genotype A, broadening the current knowledge on fetal pathology by this virus. Fetal autopsy revealed diffusely reddened, rubbery and unexpanded lungs. Histologically, there was necrotizing bronchiolitis/alveolitis with intraluminal fibrin exudate and syncytial cells in the bronchiolar/alveolar spaces, and non-suppurative peribronchiolitis and perivascular interstitial pneumonia. In the small intestine there was multifocal necrotizing cryptitis and occasional necrotic syncytial enterocytes. Intralesional and extralesional BPIV-3 antigen was detected by immunohistochemistry in the lung and small intestine, and BPIV-3a was identified in fetal tissues by RT-PCR and sequencing.


Assuntos
Aborto Animal/patologia , Doenças dos Bovinos/patologia , Doenças Fetais/veterinária , Vírus da Parainfluenza 3 Bovina , Infecções por Respirovirus/veterinária , Aborto Animal/etiologia , Aborto Animal/virologia , Animais , Bovinos , Doenças dos Bovinos/virologia , Feminino , Doenças Fetais/patologia , Doenças Fetais/virologia , Feto/patologia , Feto/virologia , Vírus da Parainfluenza 3 Bovina/genética , Filogenia , Gravidez , Infecções por Respirovirus/complicações , Infecções por Respirovirus/patologia , Infecções por Respirovirus/virologia
5.
J Virol ; 90(21): 10022-10038, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581977

RESUMO

Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. IMPORTANCE: Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.


Assuntos
Anticorpos Neutralizantes/genética , Vetores Genéticos/genética , Vírus da Parainfluenza 3 Bovina/genética , Vírus da Parainfluenza 3 Humana/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Capsídeo/metabolismo , Bovinos , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Humanos , Macaca mulatta , Vírus da Parainfluenza 3 Bovina/imunologia , Vírus da Parainfluenza 3 Humana/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/virologia , Células Vero , Proteínas Virais de Fusão/imunologia , Replicação Viral/genética
6.
Arch Virol ; 162(8): 2409-2413, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28451903

RESUMO

The bovine parainfluenza virus type 3 BN-CE vaccine strain was obtained by serial passage of the BN-1 strain in chicken embryonic fibroblasts (CEF). We previously identified a substitution (L288I) in the fusion (F) protein between the two strains. To examine the effect of the substitution on CEF adaptation and attenuation, we generated a recombinant BN-1 strain with the L288I substitution in the F protein (FL288I-EGFP). FL288I-EGFP replicated more efficiently than a recombinant BN-1 strain (wt-EGFP) in semi-suitable cell lines, suggesting that the L288I substitution was established in the BN-1 strain during the process of adaptation in CEF.


Assuntos
Adaptação Fisiológica/genética , Substituição de Aminoácidos , Vírus da Parainfluenza 3 Bovina/genética , Vírus da Parainfluenza 3 Bovina/fisiologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/fisiologia , Animais , Bovinos , Linhagem Celular , Células HeLa , Humanos , Vírus da Parainfluenza 3 Bovina/crescimento & desenvolvimento , Proteínas Virais de Fusão/química , Replicação Viral
7.
J Virol ; 88(8): 4237-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24478424

RESUMO

UNLABELLED: A recombinant chimeric bovine/human parainfluenza type 3 virus (rB/HPIV3) vector expressing the respiratory syncytial virus (RSV) fusion F glycoprotein previously exhibited disappointing levels of RSV F immunogenicity and genetic stability in children (D. Bernstein et al., Pediatr. Infect. Dis. J. 31:109-114, 2012; C.-F. Yang et al., Vaccine 31:2822-2827, 2013). To investigate parameters that might affect vaccine performance and stability, we constructed and characterized rB/HPIV3 viruses expressing RSV F from the first (pre-N), second (N-P), third (P-M), and sixth (HN-L) genome positions. There was a 30- to 69-fold gradient in RSV F expression from the first to the sixth position. The inserts moderately attenuated vector replication in vitro and in the upper and lower respiratory tracts of hamsters: this was not influenced by the level of RSV F expression and syncytium formation. Surprisingly, inserts in the second, third, and sixth positions conferred increased temperature sensitivity: this was greatest for the third position and was the most attenuating in vivo. Each rB/HPIV3 vector induced a high titer of neutralizing antibodies in hamsters against RSV and HPIV3. Protection against RSV challenge was greater for position 2 than for position 6. Evaluation of insert stability suggested that RSV F is under selective pressure to be silenced during vector replication in vivo, but this was not exacerbated by a high level of RSV F expression and generally involved a small percentage of recovered vector. Vector passaged in vitro accumulated mutations in the HN open reading frame, causing a dramatic increase in plaque size that may have implications for vaccine production and immunogenicity. IMPORTANCE: The research findings presented here will be instrumental for improving the design of a bivalent pediatric vaccine for respiratory syncytial virus and parainfluenza virus type 3, two major causes of severe respiratory tract infection in infants and young children. Moreover, this knowledge has general application to the development and clinical evaluation of other mononegavirus vectors and vaccines.


Assuntos
Vírus da Parainfluenza 3 Bovina/genética , Vírus da Parainfluenza 3 Humana/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Antivirais/imunologia , Cricetinae , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Mesocricetus , Vírus da Parainfluenza 3 Bovina/fisiologia , Vírus da Parainfluenza 3 Humana/fisiologia , Engenharia de Proteínas , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/química , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sinciciais Respiratórios/genética , Proteínas Virais de Fusão/administração & dosagem , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Replicação Viral
8.
BMC Vet Res ; 11: 112, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25976921

RESUMO

BACKGROUND: Bovine parainfluenza 3 viruses (BPI3V) are respiratory pathogens of cattle that cause disease singly but are often associated with bovine respiratory disease complex (BRDC) in conjunction with other viral and bacterial agents. Bovine vaccines currently contain BPI3V to provide protection against the virus, but there is no current information regarding the BPI3V strains that are circulating in the U.S. RESULTS: A project was initiated to sequence archival BPI3V isolates to study viral evolution over time. This was done with a deep sequencing protocol that generated sequences of multiple RNA virus genomes simultaneously. Analysis of the BPI3V sequences revealed that, in addition to the genotype A (BPI3Va) viruses previously described in the United States, there were two additional genotypes of BPI3V circulating that had been described only in Australia (BPI3Vb) and Asia (BPI3Vc). The U.S. BPI3Vb and BPI3Vc isolates showed some divergence from the Australian and Asian strains; the BPI3Vb were 93 % similar to the Australian Q5592 strain and the BPI3Vc viruses were 98 % similar to the 12Q061 strain that was described in South Korea. Overall, the three genotypes were 82 to 84 % identical to each other and 80 % identical to the most similar human PI3V. Cross-neutralization studies using an APHIS/NVSL BPI3V reference serum showed that neutralization titers against the genotype B and C viruses were 4- to ≥16-fold less then the titer against the APHIS BPI3Va reference strain, SF-4. CONCLUSIONS: This study clearly demonstrated that BPI3Vb and BPI3Vc strains, previously thought to be foreign to the U.S., are indeed circulating in domestic livestock herds. Based on virus neutralization using polyclonal antisera, there were antigenic differences between viruses from these genotypes and the BPI3Va viruses that are included in currently marketed bovine vaccines. Further study of these viruses is warranted to determine pathogenic potential and cross-protection afforded by vaccination.


Assuntos
Genótipo , Vírus da Parainfluenza 3 Bovina/genética , Infecções por Respirovirus/veterinária , Animais , Bovinos , Regulação Viral da Expressão Gênica/fisiologia , Genoma Viral , Genômica , Vírus da Parainfluenza 3 Bovina/isolamento & purificação , Filogenia , Infecções por Respirovirus/epidemiologia , Infecções por Respirovirus/virologia , Estados Unidos/epidemiologia
9.
Viruses ; 16(3)2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543767

RESUMO

Bovine parainfluenza virus type 3 (BPIV-3) is one of the major pathogens of the bovine respiratory disease complex (BRDC). BPIV-3 surveillance in China has been quite limited. In this study, we used PCR to test 302 cattle in China, and found that the positive rate was 4.64% and the herd-level positive rate was 13.16%. Six BPIV-3C strains were isolated and confirmed by electron microscopy, and their titers were determined. Three were sequenced by next-generation sequencing (NGS). Phylogenetic analyses showed that all isolates were most closely related to strain NX49 from Ningxia; the genetic diversity of genotype C strains was lower than strains of genotypes A and B; the HN, P, and N genes were more suitable for genotyping and evolutionary analyses of BPIV-3. Protein variation analyses showed that all isolates had mutations at amino acid sites in the proteins HN, M, F, and L. Genetic recombination analyses provided evidence for homologous recombination of BPIV-3 of bovine origin. The virulence experiment indicated that strain Hubei-03 had the highest pathogenicity and could be used as a vaccine candidate. These findings apply an important basis for the precise control of BPIV-3 in China.


Assuntos
Vírus da Parainfluenza 3 Bovina , Vírus da Parainfluenza 3 Humana , Animais , Bovinos , Virulência , Filogenia , Prevalência , Vírus da Parainfluenza 3 Bovina/genética , China/epidemiologia
10.
Infect Genet Evol ; 113: 105483, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482235

RESUMO

Bovine Parainfluenza Type 3 virus (BPIV-3) is an enveloped, non-segmented single-stranded, negative-sense RNA virus belonging to the Paramyxoviridae family (genus Respirovirus) with a well-known role in Bovine Respiratory Disease (BRD) onset. Being isolated for the first time in 1959, BPIV-3 currently circulates worldwide in cattle herds and is routinely tested in suspected BRD cases. Different commercial vaccines are available to prevent infection and/or to reduce the clinical signs associated with BPIV-3 infection, which are essential to prevent secondary infections. Despite years of molecular surveillance, a very limited number of complete genome sequences were made publicly available, preventing thus the understanding of the genetic diversity of the circulating strains in the field. In addition, no data about the genetic identity between field and vaccine strains is currently available. In this study, we sequenced the full-genome and genetically characterized BPIV-3 strains isolated from animals displaying respiratory illness in France and Sweden, as well as the vaccine strains contained in three different commercialized vaccines. Our results show that the sequences from France and Sweden belong to genotype C. However, a third sequence from Sweden from 2017 clustered within genotype A. The sequencing of vaccine strains revealed that two of the vaccine strains clustered within genotype C, whereas the third vaccine strain belonged to genotype A. Altogether, our findings suggest that both genotypes A and C circulate in Europe and that BPIV-3 field and vaccine strains are genetically divergent. Our sequencing results could be useful to better understand the genetic differences between the circulating field and vaccine BPIV-3 strains. This is crucial for a correct interpretation of diagnostic findings and for the assessment of BPIV-3 prevalence in cattle population.


Assuntos
Doenças dos Bovinos , Infecções por Paramyxoviridae , Vacinas Virais , Bovinos , Animais , Respirovirus/genética , Vírus da Parainfluenza 3 Bovina/genética , Vacinas Virais/genética , Europa (Continente) , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle
11.
Virus Genes ; 45(3): 542-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22923090

RESUMO

In 2009, a bovine parainfluenza virus (BPIV3), named as NM09, was isolated using MDBK cell culture from the nasal swabs of normal cattle in China. The NM09 isolate was characterized by RT-PCR and nucleotide sequence analysis. Its complete genome was 15,456 nucleotides in length. Similar to other sequenced PIV strains, the NM09 virus consisted of six non-overlapping genes, which were predicted to encode nine proteins with conserved and complementary 3' leader and 5' trailer regions, conserved gene starts, gene stops, and trinucleotide intergenic sequences. Nucleotide phylogenetic analysis of matrix and hemagglutinin-neuraminidase gene demonstrated that this NM09 isolate belonged to BPIV3 genotype A instead of the previously reported BPIV3 genotype C in China. It is implicated that the different genotypes A and C might coexist infection for a long time in China.


Assuntos
Bovinos/virologia , Genótipo , Vírus da Parainfluenza 3 Bovina/genética , Filogenia , Animais , Sequência de Bases , Linhagem Celular , China , Genes Virais , Tamanho do Genoma , Proteína HN/genética , Vírus da Parainfluenza 3 Bovina/classificação , Vírus da Parainfluenza 3 Bovina/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas da Matriz Viral/genética , Cultura de Vírus/métodos
12.
BMC Vet Res ; 8: 83, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22716217

RESUMO

BACKGROUND: Parainfluenza virus type 3 (PIV3) was isolated from dairy buffaloes (Bubalus bubalis) naturally affected with respiratory and reproductive clinical conditions. RESULTS: Examination of nasal and vaginal swabs collected from 12 diseased buffaloes led to the isolation of three paramyxovirus isolates from two animals. Antigenic, morphological and biological characteristics of these three isolates were essentially similar to those of members of the Paramyxoviridae family. Antigenic analysis by direct immunofluorescence and cross neutralization test placed these isolates together with bovine parainfluenza virus type 3 (BPIV3). Nucleotide and amino acid phylogenetic analysis of partial matrix gene sequences of the buffalo isolates and six field BPIV3 isolates from bovines in Argentina were studied. Buffalo isolates were similar to genotype B (BPIV3b) while the six BPIV3 isolates were similar to genotypes A (BPIV3a) and C (BPIV3c). CONCLUSIONS: This is the first characterization of BPIV3 in water buffalo.According to the samples analyzed, in Argentina, the genotype B was found in buffalo and the genotypes A and C were found in cattle.


Assuntos
Búfalos , Vírus da Parainfluenza 3 Bovina/isolamento & purificação , Infecções por Respirovirus/veterinária , Animais , Argentina/epidemiologia , Sequência de Bases , Bovinos , Feminino , Genótipo , Dados de Sequência Molecular , Vírus da Parainfluenza 3 Bovina/classificação , Vírus da Parainfluenza 3 Bovina/genética , Filogenia , RNA Viral/genética , Infecções por Respirovirus/epidemiologia , Infecções por Respirovirus/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Viruses ; 14(10)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36298776

RESUMO

Bovine parainfluenza virus 3 (BPIV3) is one of several viruses that contribute to bovine respiratory disease complex (BRDC). During this study, isolation of BPIV3 was attempted from 20 PCR-positive swabs by Madin-Darby Bovine Kidney (MDBK) cells. Nine samples showed obvious cytopathic lesions identified as BPIV3 by reverse-transcription polymerase chain reaction amplification and sequencing. The genomes of isolates XJ21032-1 and XJ20055-3 were sequenced using Illumina sequencing technology and determined to have lengths of 15,512 bp and 15,479 bp, respectively. Phylogenetic analysis revealed that isolate XJ21032-1 was genotype B, and isolate XJ20055-3 was genotype C. In addition, the two isolates had multiple amino acid changes in nucleocapsid protein, fusion protein, and hemagglutinin/neuraminidase, major antigenic proteins. This allows the further recognition of the presence of BPIV3 type B in Chinese cattle herds. We hope this will help trace the origin of BPIV3, improve the understanding of differences between genotypes, and provide data support for vaccine development.


Assuntos
Vírus da Parainfluenza 3 Bovina , Infecções por Paramyxoviridae , Bovinos , Animais , Vírus da Parainfluenza 3 Bovina/genética , Filogenia , Hemaglutininas , Neuraminidase/genética , Genótipo , Proteínas do Nucleocapsídeo/genética , Aminoácidos/genética
14.
Vet Med Sci ; 7(5): 1625-1632, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34031994

RESUMO

Bovine parainfluenza virus-3 (BPIV-3), also known as bovine respirovirus 3, causes serious respiratory infection in ungulates, often involving other pathogens, such as viruses, bacteria and mycoplasmas. In this study, we evaluated antibody titers against virus genotypes A (BPIV-3a) and C (BPIV-3c). We conducted a serological survey and comparison analysis of archived serum samples from small and large ruminants reared in four Turkish provinces. A total of 1,307 samples, consisting of sheep (n = 444), cattle (n = 402), water buffalo (n = 261) and goat (n = 200) sera, were randomly selected from stock samples collected between 2015 and 2019 and screened by standard virus neutralisation assay. We found that 49.9% (653/1307) of all samples were positive for neutralising antibody titers. Goats had the highest titer, with total seropositivity of 63% (126/200), followed in descending order by cattle, sheep and water buffalo at 56.2% (226/402), 32.2% (143/444) and 26% (68/261) total seropositivity, respectively. BPIV-3c had the highest neutralising antibody rate at 34.3% (448/1307), whereas BPIV-3a had a 24.3% (317/1307) seropositivity rate. Neutralising antibody titers for positive samples ranged between 1/4 and 1/512 per the SN50 test. Seropositivity rates ranged from a low of 8.9% to a high of 18.3%. Our study was the first to compare antibody seroprevalence for two BPIV-3 genotypes in small and large domestic ruminants, which were shown to be more commonly exposed to BPIV-3c than BPIV-3a. This finding could have significant implications as current vaccines mainly use the BPIV-3a genotype. Further research can determine if current vaccines protect against different BPIV-3 virus genotypes.


Assuntos
Cabras , Vírus da Parainfluenza 3 Bovina , Animais , Búfalos , Bovinos , Genótipo , Vírus da Parainfluenza 3 Bovina/genética , Estudos Soroepidemiológicos , Ovinos
15.
Vet Microbiol ; 261: 109185, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34364015

RESUMO

Bovine parainfluenza-3 virus (BPIV-3) is one of the main viruses associated with bovine respiratory disease complex (BRDC) worldwide. BPIV-3 infect the bovine respiratory tract causing from subclinical infections to severe pneumonia with significant economic losses in the cattle industry. BPIV-3 is a RNA virus with high genetic variability, nevertheless, the contribution of recombination events to its variability has not been assessed so far. In this study the 25 complete genome sequences (CGS) reported so far and 215 partial sequences of different viral genes of BPIV-3 were analyzed to determine their genotypes and subgenotypes, distribution, and the existence of potential recombination events. Based on the analysis of the HN, M, N, and P genes one hypothetical subgenotype was found (subgenotype A4). Four recombination events between sequences of swine and cattle were detected by RDP4 analysis in conjunction with phylogenetic incongruences in the L gene. In addition, 9 sequences reported from Argentina were found to be miss-classified. These results reveal that homologous recombination events have a relevant role in the evolution of BPIV-3 and highlight the importance of implement advanced molecular characterization to better understand the variability and evolution of BPIV-3 as a component of BRDC.


Assuntos
Variação Genética/genética , Recombinação Homóloga/genética , Vírus da Parainfluenza 3 Bovina/genética , Proteínas Virais/genética , Animais , Bovinos , Doenças dos Bovinos/virologia , Genótipo , Vírus da Parainfluenza 3 Bovina/classificação , Filogenia , Infecções por Respirovirus/virologia , Ovinos , Doenças dos Ovinos/virologia
16.
Pol J Vet Sci ; 23(4): 481-489, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33480488

RESUMO

Bovine parvovirus (BPV), bovine coronavirus (BCoV) and bovine parainfluenza virus (BPIV) are common etiologies causing gastrointestinal and respiratory diseases in dairy herds. However, there are few reports on the synchronous detection of BPV, BCoV and BPIV. The present article aimed to develop a quick and accurate RT-PCR assay to synchronously detect BPV, BCoV and BPIV based on their specific probes. One pair universal primers, one pair specific primers and one specific probe was designed and synthesized. After the concentrations of primer and probe and annealing temperature were strictly optimized, the specificity, sensitivity and repeatability of the established triplex probe qRT-PCR were evaluated, respectively. The results showed the recombinant plasmids of pMD18-T-BPV, pMD18-T-BCoV and pMD18-T-BPIV were 554bp, 699bp and 704bp, respectively. The optimal annealing temperature was set at 45.0°C for triplex qRT-PCR. The triplex probe qRT-PCR can only synchronously detect BPV, BCoV and BPIV. Detection sensitivities were 2.0×102, 2.0×102 and 2.0×101 copies/µL for BPV, BCoV and BPIV, being 1000-fold greater than that in the conventional PCR. Detection of clinical samples demonstrated that triplex probe qRT-PCR had a higher sensitivity and specificity. The intra-assay and inter-assay coefficient of variation were lower than 2.0%. Clinical specimens verified that the triplex qRT-PCR had a higher sensitivity and specificity than universal PCR. In conclusion, this triplex probe qRT-PCR could detect only BPV, BCoV and BPIV. Minimum detection limits were 2.0×102 copies/µL for BPV and BCoV, and 2.0×101 copies/µL for BPIV. The sensitivity of this triplex probe qRT-PCR was 1000-fold greater than that in the conventional PCR. The newly qRT-PCR could be used to monitor or differentially diagnose virus infection.


Assuntos
Bocavirus/isolamento & purificação , Coronavirus Bovino/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/veterinária , Vírus da Parainfluenza 3 Bovina/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Animais , Bocavirus/genética , Bovinos , Coronavirus Bovino/genética , DNA Viral/isolamento & purificação , Vírus da Parainfluenza 3 Bovina/genética , Plasmídeos/genética , RNA Viral/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Trop Biomed ; 36(3): 803-809, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33597501

RESUMO

Bovine parainfluenza 3 virus (BPI3V)is one of the most important respiratory pathogens and a leading cause of serious respiratory illnesses in cattle, both independent of and in connection with other pathogens involved in the bovine respiratory disease complex (BRDC). In this study, we aimed to identify the historical circulation of genotype C bovine BPI3V (BPI3Vc) in Turkey using the archival serum samples of domestic ruminants that had been collected from six provinces of northern Anatolia in Turkey between 2009-2010. A total of 896 sera from cattle (n=442), sheep (n=330), and goats (n=124) were randomly selected and screened with a virus neutralization test in order to detect antibodies for BPI3Vc. The overall seropositivity rate was 21.09%, with seropositivity rates for cattle, sheep, and goats of 21.04%, 20.00%, and 24.19%, respectively. Neutralizing antibody titers for selected samples ranged between 1/4 to 1/512. This study represents the first serological study conducted using the first BPI3V isolate of Turkey.


Assuntos
Vírus da Parainfluenza 3 Bovina/genética , Infecções por Paramyxoviridae/veterinária , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Genótipo , Doenças das Cabras/epidemiologia , Doenças das Cabras/virologia , Cabras , Testes de Neutralização , Vírus da Parainfluenza 3 Bovina/isolamento & purificação , Infecções por Paramyxoviridae/epidemiologia , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/virologia , Turquia
18.
Viruses ; 11(6)2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146368

RESUMO

Bovine parainfluenza virus type 3 (BPIV3) is one of the most important known viral respiratory pathogens of both young and adult cattle. It is also named "heat stress in transport", causing morbidity and mass death. New variants of BPIV3 have been detected or isolated in China since 2008. Here, we isolate one BPIV3 strain (named BPIV3 BJ) in Madin-Darby bovine kidney (MDBK) cells from nasal samples collected in China. Phylogenetic analysis showed that our isolate is related to BPIV3 of the genotype A. The comparison of BPIV3-BJ and the reference Chinese isolate NM09 showed that these strains are highly divergent. We found many differences in the amino acid composition in the nucleocapsid (NP) protein among these genotype A strains. Since the NP protein has been implicated in immunization studies, our BPIV3 isolate will be useful for the development of immune assays and vaccine studies. The diversity of BPIV3 lineages that we found in China indicated ongoing evolution for immune escape. Our study highlights the importance of genetic surveillance for determining the effect of BPIV3 variability on pathogen evolution and population-scale immunity.


Assuntos
Doenças dos Bovinos/virologia , Genoma Viral , Nariz/virologia , Vírus da Parainfluenza 3 Bovina/genética , Vírus da Parainfluenza 3 Bovina/isolamento & purificação , Infecções por Respirovirus/veterinária , Animais , Bovinos/virologia , China , Cães , Variação Genética , Genótipo , Células Madin Darby de Rim Canino , Proteínas do Nucleocapsídeo/genética , Filogenia , Infecções por Respirovirus/virologia , Análise de Sequência de DNA
19.
Pediatr Infect Dis J ; 27(10 Suppl): S123-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18820572

RESUMO

Parainfluenza viruses (PIV) have been generally disregarded as pathogens in spite of their importance in pediatric lower respiratory illness. Because PIVs account for 17% of hospitalized illness associated virus isolation, the development of PIV vaccine would be a major advance in preventing lower respiratory tract infection in infants and young children. We will review in detail several PIV vaccine candidates and recent newer approaches to PIV vaccine development. Intranasally administered bovine PIV3 (bPIV3) vaccine and cold-adapted PIV3 vaccine have been evaluated throughout the pediatric age spectrum. BPIV3 does not give a robust response to the heterotypic human strain although seroconversion rate to bPIV3 is 57-65%. However, bPIV3 vaccine is being used as an attenuated backbone for insertion of human PIV3 hemagglutinin-neuraminidase and fusion (F) proteins and a surface protein, F, of respiratory syncytial virus. The effectiveness of this vaccine against both PIV3 and RSV challenge has been demonstrated in African green monkeys. The cold-adapted PIV3 vaccine has been extensively evaluated and is safe and immunogenic in seronegative children with a seroconversion rate of 79%. These promising candidates deserve to enter into efficacy trials both for their ability to prevent PIV3 disease and as a model of protection against respiratory illness by mucosal vaccination.


Assuntos
Vacinas contra Parainfluenza , Vírus da Parainfluenza 3 Humana/imunologia , Infecções por Respirovirus/prevenção & controle , Adulto , Criança , Temperatura Baixa , Crupe/prevenção & controle , Humanos , Lactente , Mutação , Vacinas contra Parainfluenza/genética , Vacinas contra Parainfluenza/imunologia , Vírus da Parainfluenza 1 Humana/imunologia , Vírus da Parainfluenza 2 Humana/imunologia , Vírus da Parainfluenza 3 Bovina/genética , Vírus da Parainfluenza 3 Bovina/imunologia , Vírus da Parainfluenza 3 Humana/genética , Vírus da Parainfluenza 4 Humana/imunologia , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/virologia , Infecções por Rubulavirus/imunologia , Infecções por Rubulavirus/prevenção & controle , Infecções por Rubulavirus/virologia
20.
Nucleic Acids Res ; 33(6): e65, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15817564

RESUMO

A method for the isolation of genomic fragments of RNA virus based on cDNA representational difference analysis (cDNA RDA) was developed. cDNA RDA has been applied for the subtraction of poly(A)(+) RNAs but not for poly(A)(-) RNAs, such as RNA virus genomes, owing to the vast quantity of ribosomal RNAs. We constructed primers for inefficient reverse transcription of ribosomal sequences based on the distribution analysis of hexanucleotide patterns in ribosomal RNA. The analysis revealed that distributions of hexanucleotide patterns in ribosomal RNA and virus genome were different. We constructed 96 hexanucleotides (non-ribosomal hexanucleotides) and used them as mixed primers for reverse transcription of cDNA RDA. A synchronous analysis of hexanucleotide patterns in known viral sequences showed that all the known genomic-size viral sequences include non-ribosomal hexanucleotides. In a model experiment, when non-ribosomal hexanucleotides were used as primers, in vitro transcribed plasmid RNA was efficiently reverse transcribed when compared with ribosomal RNA of rat cells. Using non-ribosomal primers, the cDNA fragments of severe acute respiratory syndrome coronavirus and bovine parainfluenza virus 3 were efficiently amplified by subtracting the cDNA amplicons derived from uninfected cells from those that were derived from virus-infected cells. The results suggest that cDNA RDA with non-ribosomal primers can be used for species-independent detection of viruses, including new viruses.


Assuntos
Reação em Cadeia da Polimerase/métodos , Vírus de RNA/isolamento & purificação , RNA Viral/análise , Animais , Sequência de Bases , Bovinos , Linhagem Celular , DNA Complementar/biossíntese , DNA Complementar/química , Genoma Viral , Nucleotídeos/análise , Vírus da Parainfluenza 3 Bovina/genética , Vírus da Parainfluenza 3 Bovina/isolamento & purificação , Vírus de RNA/genética , RNA Ribossômico/química , RNA Viral/química , Ratos , Transcrição Reversa , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA