Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126662

RESUMO

Vanilla orchid, which is well-known for its flavor and fragrance, is cultivated in tropical and subtropical regions. This shade-loving plant is very sensitive to high irradiance. In this study, we show that vanilla chloroplasts started to have avoidance movement when blue light (BL) was higher than 20 µmol m-2s-1 and significant avoidance movement was observed under BL irradiation at 100 µmol m-2s-1 (BL100). The light response curve indicated that when vanilla was exposed to 1000 µmol m-2s-1, the electron transport rate (ETR) and photochemical quenching of fluorescence (qP) were significantly reduced to a negligible amount. We found that if a vanilla orchid was irradiated with BL100 for 12 days, it acquired BL-acclimation. Chloroplasts moved to the side of cells in order to reduce light-harvesting antenna size, and chloroplast photodamage was eliminated. Therefore, BL-acclimation enhanced vanilla orchid growth and tolerance to moderate (500 µmol m-2s-1) and high light (1000 µmol m-2s-1) stress conditions. It was found that under high irradiation, BL-acclimatized vanilla maintained higher ETR and qP capacity than the control without BL-acclimation. BL-acclimation induced antioxidant enzyme activities, reduced ROS accumulation, and accumulated more carbohydrates. Moreover, BL-acclimatized orchids upregulated photosystem-II-associated marker genes (D1 and PetC), Rubisco and PEPC transcripts and sustained expression levels thereof, and also maximized the photosynthesis rate. Consequently, BL-acclimatized orchids had higher biomass. In short, this study found that acclimating vanilla orchid with BL before transplantation to the field might eliminate photoinhibition and enhance vanilla growth and production.


Assuntos
Clorofila/metabolismo , Cloroplastos/metabolismo , Estiolamento , Luz , Fotossíntese , Vanilla/crescimento & desenvolvimento , Cloroplastos/efeitos da radiação , Fluorescência , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Vanilla/metabolismo , Vanilla/efeitos da radiação
2.
Plant Sci ; 317: 111207, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35193751

RESUMO

Photosynthetic induction after a sudden increase in illumination affects carbon gain. Photosynthetic dynamics under fluctuating light (FL) have been widely investigated in C3 and C4 plants but are little known in CAM plants. In our present study, the chlorophyll fluorescence, P700 redox state and electrochromic shift signals were measured to examine photosynthetic characteristics under FL in the CAM orchid Vanilla planifolia. The light use efficiency was maximized in the morning but was restricted in the afternoon, indicating that the pool of malic acid dried down in the afternoon. During photosynthetic induction in the morning, electron flow through photosystem I rapidly reached the 95% of the maximum value in 4-6 min, indicating that V. planifolia showed a fast photosynthetic induction when compared with C3 and C4 plants reported previously. Upon a sudden transition from dark to actinic light, a rapid re-oxidation of P700 was observed in V. planifolia, indicating the fast outflow of electrons from PSI to alternative electron acceptors, which was attributed to the O2 photo-reduction mediated by water-water cycle. The functioning of water-water cycle prevented photosystem I over-reduction after transitioning from low to high light and thus protected PSI under FL. In the afternoon, cyclic electron flow was stimulated under FL to fine-tune photosynthetic apparatus when photosynthetic CO2 was restricted. Therefore, water-water cycle cooperates with cyclic electron flow to regulate the photosynthesis under FL in the CAM orchid V. planifolia.


Assuntos
Luz , Fotossíntese , Vanilla , Clorofila , Transporte de Elétrons , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Vanilla/fisiologia , Vanilla/efeitos da radiação
3.
Food Chem ; 149: 54-61, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24295676

RESUMO

Vanillin yield, microscopic structure, antioxidant activity and overall odour of vanilla extracts obtained by different treatments were investigated. MAE showed the strongest extraction power, shortest time and highest antioxidant activity. Maceration gave higher vanillin yields than UAE and PAE, similar antioxidant activity with UAE, but longer times than UAE and PAE. Overall odour intensity of different vanilla extracts obtained by UAE, PAE and MAE were similar, while higher than maceration extracts. Then, powered vanilla bean with a sample/solvent ratio of 4 g/100 mL was selected as the optimum condition for MAE. Next, compared with other three equations, two-site kinetic equation with lowest RMSD and highest R²(adj) was shown to be more suitable in describing the kinetics of vanillin extraction. By fitting the parameters C(eq), k1, k2, and f, a kinetics model was constructed to describe vanillin extraction in terms of irradiation power, ethanol concentration, and extraction time.


Assuntos
Benzaldeídos/isolamento & purificação , Fracionamento Químico/métodos , Extratos Vegetais/isolamento & purificação , Vanilla/química , Benzaldeídos/química , Fracionamento Químico/instrumentação , Cromatografia Líquida de Alta Pressão , Cinética , Micro-Ondas , Extratos Vegetais/química , Vanilla/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA