Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Bioprocess Biosyst Eng ; 44(10): 2217-2228, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34142205

RESUMO

Phytase is used in poultry diets to hydrolyze and release of phytate-bound phosphorus. Immobilization on nanomaterials optimizes enzyme's thermal stability and reusability. This study aimed to immobilize the recombinant phytase from Yersinia intermedia on the surface of amino-multi-walled carbon nanotubes (amino-MWCNTs) by physical adsorption. For this, zeta potential measurement, FTIR spectroscopic analysis, scanning electron microscope (SEM), kinetic as well as thermodynamic parameters were used to characterize immobilized phytase on amino-MWCNTs. According to results, the optimum temperature of the immobilized phytase increased from 50 to 70 °C and also thermal and pH stability improved considerably. Moreover, immobilization led to an increase in the value of Km and kcat from 0.13 to 0.33 mM and 2220 to 2776 s-1, respectively. In addition, the changes in activation energy of thermal inactivation (ΔE#a (D)), the free energy of thermal inactivation (ΔG#D) and the enthalpy of thermal inactivation (ΔH#D) for immobilized phytase increased by +11.05, +24.7 and +11.4 kj/mole, respectively, while the value of the change in the entropy of thermal inactivation (ΔS#D) decreased by - 0.04 kj/mole.K. Overall, our results showed that adsorption immobilization of phytase on amino-MWCNTs increases thermal, pH and storage stability as well as some of kinetic parameters.


Assuntos
6-Fitase/metabolismo , Nanotubos de Carbono/química , Yersinia/enzimologia , 6-Fitase/isolamento & purificação , Adsorção , Estabilidade Enzimática , Cinética , Microscopia Eletrônica de Varredura , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica
2.
Biotechnol Bioeng ; 117(1): 49-61, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549734

RESUMO

Enzyme immobilization is extensively studied to improve enzyme properties in catalysis and analytical applications. Here, we introduce a simple and versatile enzyme immobilization platform based on adhesion-promoting peptides, namely Matter-tags. Matter-tags immobilize enzymes in an oriented way as a dense monolayer. The immobilization platform was established with three adhesion-promoting peptides; Cecropin A (CecA), liquid chromatography peak I (LCI), and Tachystatin A2 (TA2), that were genetically fused to enhanced green fluorescent protein and to two industrially important enzymes: a phytase (from Yersinia mollaretii) and a cellulase (CelA2 from a metagenomic library). Here, we report a universal and simple Matter-tag-based immobilization platform for enzymes on various materials including polymers (polystyrene, polypropylene, and polyethylene terephthalate), metals (stainless steel and gold), and silicon-based materials (silicon wafer). The Matter-tag-based enzyme immobilization is performed at ambient temperature within minutes (<10 min) in an aqueous solution harboring the phytase or cellulase by immersing the targeted material. The peptide LCI was identified as universal adhesion promoter; LCI immobilized both enzymes on all investigated materials. The attachment of phytase-LCI onto gold was characterized with surface plasmon resonance spectroscopy obtaining a dissociation constant value (KD ) of 2.9·10-8 M and a maximal surface coverage of 504 ng/cm².


Assuntos
Enzimas Imobilizadas , Proteínas Recombinantes de Fusão , Adsorção , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Metais/química , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Polímeros/química , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Silício/química , Propriedades de Superfície , Yersinia/enzimologia , Yersinia/genética
3.
Nucleic Acids Res ; 45(9): 5013-5025, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28398546

RESUMO

Contact-dependent growth inhibition (CDI) is an important mechanism of inter-bacterial competition found in many Gram-negative pathogens. CDI+ cells express cell-surface CdiA proteins that bind neighboring bacteria and deliver C-terminal toxin domains (CdiA-CT) to inhibit target-cell growth. CDI+ bacteria also produce CdiI immunity proteins, which specifically neutralize cognate CdiA-CT toxins to prevent self-inhibition. Here, we present the crystal structure of the CdiA-CT/CdiIYkris complex from Yersinia kristensenii ATCC 33638. CdiA-CTYkris adopts the same fold as angiogenin and other RNase A paralogs, but the toxin does not share sequence similarity with these nucleases and lacks the characteristic disulfide bonds of the superfamily. Consistent with the structural homology, CdiA-CTYkris has potent RNase activity in vitro and in vivo. Structure-guided mutagenesis reveals that His175, Arg186, Thr276 and Tyr278 contribute to CdiA-CTYkris activity, suggesting that these residues participate in substrate binding and/or catalysis. CdiIYkris binds directly over the putative active site and likely neutralizes toxicity by blocking access to RNA substrates. Significantly, CdiA-CTYkris is the first non-vertebrate protein found to possess the RNase A superfamily fold, and homologs of this toxin are associated with secretion systems in many Gram-negative and Gram-positive bacteria. These observations suggest that RNase A-like toxins are commonly deployed in inter-bacterial competition.


Assuntos
Toxinas Bacterianas/química , Endorribonucleases/química , Ribonuclease Pancreático/química , Yersinia/enzimologia , Toxinas Bacterianas/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , RNA/metabolismo , Ribonuclease Pancreático/metabolismo
4.
Biochemistry ; 57(36): 5315-5326, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30110154

RESUMO

To study factors that affect WPD-loop motion in protein tyrosine phosphatases (PTPs), a chimera of PTP1B and YopH was created by transposing the WPD loop from PTP1B to YopH. Several subsequent mutations proved to be necessary to obtain a soluble, active enzyme. That chimera, termed chimera 3, retains productive WPD-loop motions and general acid catalysis with a pH dependency similar to that of the native enzymes. Kinetic isotope effects show the mechanism and transition state for phosphoryl transfer are unaltered. Catalysis of the chimera is slower than that of either of its parent enzymes, although its rate is comparable to those of most native PTPs. X-ray crystallography and nuclear magnetic resonance were used to probe the structure and dynamics of chimera 3. The chimera's structure was found to sample an unproductive hyper-open conformation of its WPD loop, a geometry that has not been observed in either of the parents or in other native PTPs. The reduced catalytic rate is attributed to the protein's sampling of this conformation in solution, reducing the fraction in the catalytically productive loop-closed conformation.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Yersinia/enzimologia , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Recombinantes de Fusão/genética , Homologia de Sequência
5.
RNA Biol ; 15(1): 9-12, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099294

RESUMO

Bovine pancreatic ribonuclease (RNase A) is the founding member of the RNase A superfamily. Members of this superfamily of ribonucleases have high sequence diversity, but possess a similar structural fold, together with a conserved His-Lys-His catalytic triad and structural disulfide bonds. Until recently, RNase A proteins had exclusively been identified in eukaryotes within vertebrae. Here, we discuss the discovery by Batot et al. of a bacterial RNase A superfamily member, CdiA-CTYkris: a toxin that belongs to an inter-bacterial competition system from Yersinia kristensenii. CdiA-CTYkris exhibits the same structural fold as conventional RNase A family members and displays in vitro and in vivo ribonuclease activity. However, CdiA-CTYkris shares little to no sequence similarity with RNase A, and lacks the conserved disulfide bonds and catalytic triad of RNase A. Interestingly, the CdiA-CTYkris active site more closely resembles the active site composition of various eukaryotic endonucleases. Despite lacking sequence similarity to eukaryotic RNase A family members, CdiA-CTYkris does share high sequence similarity with numerous Gram-negative and Gram-positive bacterial proteins/domains. Nearly all of these bacterial homologs are toxins associated with virulence and bacterial competition, suggesting that the RNase A superfamily has a distinct bacterial subfamily branch, which likely arose by way of convergent evolution. Finally, RNase A interacts directly with the immunity protein of CdiA-CTYkris, thus the cognate immunity protein for the bacterial RNase A member could be engineered as a new eukaryotic RNase A inhibitor.


Assuntos
Toxinas Bacterianas/química , Endonucleases/química , Ribonuclease Pancreático/química , Sequência de Aminoácidos , Animais , Toxinas Bacterianas/genética , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Endonucleases/antagonistas & inibidores , Endonucleases/genética , Família Multigênica , Domínios Proteicos , Dobramento de Proteína , Ribonuclease Pancreático/genética , Yersinia/enzimologia
6.
Appl Microbiol Biotechnol ; 102(22): 9607-9620, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30141080

RESUMO

Phytases are phosphohydrolases that initiate the sequential hydrolysis of phosphate from phytate, which is the main storage form of phosphorous in numerous plant seeds, especially in cereals and grains. Phytate is indigestible for most monogastric animals, such as poultry, swine, fish, and humans; therefore, microbial phytases have been widely used in plant (specially soy)-based animal feeding to improve nutrition by enhanced phosphorus, mineral, and trace element absorption, and reducing phosphorus pollution by animal waste. Most phytases used as animal feed additives have an acid pH optimum (pH 2.5 and 5.5 for Aspergillus and pH 4.5 for E. coli phytases) and show a sharp decrease in performance at neutral pH, correlating with intestinal digestion. Directed evolution of phytases has been previously reported to improve enzyme thermostability, pH, or specific activity. In this manuscript, we report a directed evolution campaign of the highly active bacterial phytase from Yersinia mollaretii (YmPh) towards a broadened pH activity spectrum. Directed evolution identified the key positions T44 and K45 for increased YmPh activity at neutral pH. Both positions are located in the active site loop of the phytase and have a synergistic effect on activity with a broadened pH spectrum. Kinetic characterization of the improved variants, YmPh-M10 and -M16, showed up to sevenfold increased specific activity and up to 2.2-fold reduced Khalf at pH 6.6 under screening conditions compared to Yersinia mollaretii phytase wild type (YmPhWT).


Assuntos
6-Fitase/química , 6-Fitase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Yersinia/enzimologia , 6-Fitase/metabolismo , Proteínas de Bactérias/metabolismo , Evolução Molecular Direcionada , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Yersinia/química , Yersinia/genética
7.
Appl Environ Microbiol ; 82(4): 1004-1014, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637601

RESUMO

N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed.


Assuntos
6-Fitase/química , 6-Fitase/metabolismo , Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Glicosilação , Pepsina A/metabolismo , Yersinia/enzimologia , 6-Fitase/genética , Fosfatase Ácida/genética , Estabilidade Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pichia/genética , Pichia/metabolismo , Proteólise
8.
BMC Cancer ; 16: 89, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26867931

RESUMO

BACKGROUND: E.coli type II L-asparaginase is widely used for treatment of acute lymphoblastic leukemia. However, serious side effects such as allergic or hypersensitivity reactions are common for L-asparaginase treatment. Methods for minimizing immune response on L-asparaginase treatment in human include bioengeneering of less immunogenic version of the enzyme or utilizing the homologous enzymes of different origin. To rationalize these approaches we compared immunogenicity of L-asparaginases from five bacterial organisms and performed sequence-structure analysis of the presumable epitope regions. METHODS: IgG and IgM immune response in C57B16 mice after immunization with Wollinella succinogenes type II (WsA), Yersinia pseudotuberculosis type II (YpA), Erwinia carotovora type II (EwA), and Rhodospirillum rubrum type I (RrA) and Escherichia coli type II (EcA) L-asparaginases was evaluated using standard ELISA method. The comparative bioinformatics analysis of structure and sequence of the bacterial L-asparaginases presumable epitope regions was performed. RESULTS: We showed different immunogenic properties of five studied L-asparaginases and confirmed the possibility of replacement of EcA with L-asparaginase from different origin as a second-line treatment. Studied L-asparaginases might be placed in the following order based on the immunogenicity level: YpA > RrA, WsA ≥ EwA > EcA. Most significant cross-immunogenicity was shown between EcA and YpA. We propose that a long N-terminus of YpA enzyme enriched with charged aminoacids and tryptophan could be a reason of higher immunogenicity of YpA in comparison with other considered enzymes. Although the recognized structural and sequence differences in putative epitope regions among five considered L-asparaginases does not fully explain experimental observation of the immunogenicity of the enzymes, the performed analysis set the foundation for further research in this direction. CONCLUSIONS: The performed studies showed different immunogenic properties of L-asparaginases and confirmed the possibility of replacement of EcA with L-asparaginase from different origin. The preferable enzymes for the second line treatment are WsA, RrA, or EwA.


Assuntos
Asparaginase/imunologia , Hipersensibilidade a Drogas/imunologia , Epitopos/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Sequência de Aminoácidos/genética , Animais , Asparaginase/administração & dosagem , Asparaginase/efeitos adversos , Asparaginase/química , Linhagem Celular Tumoral , Hipersensibilidade a Drogas/genética , Epitopos/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Engenharia Genética , Humanos , Camundongos , Pectobacterium carotovorum/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Rhodospirillum rubrum/enzimologia , Yersinia/enzimologia
9.
Cell Microbiol ; 17(4): 473-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25298072

RESUMO

Pathogenic Yersinia species evolved a type III secretion system that injects a set of effectors into the host cell cytosol to promote infection. One of these effectors, Yersinia protein kinase A (YpkA), is a multidomain effector that harbours a Ser/Thr kinase domain and a guanine dissociation inhibitor (GDI) domain. The intercellular targets of the kinase and GDI domains of YpkA were identified to be Gαq and the small GTPases RhoA and Rac1, respectively, which synergistically induce cytotoxic effects on infected cells. In this study, we demonstrate that vasodilator-stimulated phosphoprotein (VASP), which is critical for regulation of actin assembly, cell adhesion and motility, is a direct substrate of YpkA kinase activity. Ectopic co-expression of YpkA and VASP in HEK293T cells leads to the phosphorylation of VASP at S157, and YpkA kinase activity is essential for VASP phosphorylation at this site. Moreover, YpkA directly phosphorylates VASP in in vitro kinase assay. YpkA-mediated VASP phosphorylation significantly inhibits actin polymerization and promotes the disruption of actin cytoskeleton, which inhibits the phagocytosis. Taken together, our study found a novel molecular mechanism used by YpkA to disrupt cytoskeleton dynamics, thereby promoting the anti-phagocytosis ability of pathogenic Yersiniae.


Assuntos
Proteínas de Bactérias/metabolismo , Moléculas de Adesão Celular/metabolismo , Citoesqueleto/metabolismo , Interações Hospedeiro-Patógeno , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Yersinia/enzimologia , Animais , Linhagem Celular , Humanos , Camundongos , Fosforilação
10.
Appl Microbiol Biotechnol ; 100(1): 227-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26403922

RESUMO

Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE,  an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes.


Assuntos
6-Fitase/genética , 6-Fitase/metabolismo , Evolução Molecular Direcionada/métodos , Engenharia de Proteínas/métodos , Yersinia/enzimologia , Yersinia/genética , 6-Fitase/química , Substituição de Aminoácidos , Estabilidade Enzimática , Simulação de Dinâmica Molecular , Temperatura
11.
World J Microbiol Biotechnol ; 32(10): 163, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27562597

RESUMO

Yersinia sp. bacteria owe their viability and pathogenic virulence to the YopH factor, which is a highly active bacterial protein tyrosine phosphatase. Inhibition of YopH phosphatase results in the lack of Yersinia sp. pathogenicity. We have previously described that aurintricarboxylic acid inhibits the activity of YopH at nanomolar concentrations and represents a unique mechanism of YopH inactivation due to a redox process. This work is a continuation of our previous studies. Here we show that modifications of the structure of aurintricarboxylic acid reduce the ability to inactivate YopH and lead to higher cytotoxicity. In the present paper we examine the inhibitory properties of aurintricarboxylic acid analogues, such as eriochrome cyanine R (ECR) and pararosaniline. Computational docking studies we report here indicate that ATA analogues are not precluded to bind in the YopH active site and in all obtained binding conformations ECR and pararosaniline bind to YopH active site. The free binding energy calculations show that ECR has a stronger binding affinity to YopH than pararosaniline, which was confirmed by experimental YopH enzymatic activity studies. We found that ATA analogues can reversibly reduce the enzymatic activity of YopH, but possess weaker inhibitory properties than ATA. The ATA analogues induced inactivation of YopH is probably due to oxidative mechanism, as pretreatment with catalase prevents from inhibition. We also found that ATA analogues significantly decrease the viability of macrophage cells, especially pararosaniline, while ATA reveals only slight effect on cell viability.


Assuntos
Ácido Aurintricarboxílico/análogos & derivados , Proteínas da Membrana Bacteriana Externa/química , Benzenossulfonatos/química , Proteínas Tirosina Fosfatases/química , Corantes de Rosanilina/química , Toluidinas/química , Yersinia/efeitos dos fármacos , Animais , Ácido Aurintricarboxílico/química , Ácido Aurintricarboxílico/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Benzenossulfonatos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Corantes de Rosanilina/farmacologia , Toluidinas/farmacologia , Yersinia/enzimologia
12.
Biochemistry ; 54(42): 6490-500, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26445170

RESUMO

Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Domínio Catalítico/genética , Sequência Conservada , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Eletricidade Estática , Triptofano/química , Vanadatos/química , Yersinia/enzimologia , Yersinia/genética
13.
Chembiochem ; 16(5): 811-8, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25703443

RESUMO

Nitroreductases (NRs) and ene-reductases (ERs) both utilize flavin mononucleotide cofactors but catalyze distinct reactions. NRs reduce nitroaromatics, whereas ERs reduce unsaturated C=C double bonds, and these functionalities are known to somewhat overlap. Recent studies on the ER xenobiotic reductase A (XenA) from Pseudomonas putida demonstrated the possibility of increasing NR activity with active site modifications. Structural comparison between NRs and ERs led us to hypothesize that active site cavity size plays an important role in determining enzyme functionality. Residues of ER KYE1 from Kluyveromyces lactis were selected to increase the binding pocket size, compensate for hydrogen bonding pattern changes, and eliminate ER activity. Single variants were screened, and promising mutations were combined. Variant F296A/Y275A showed a 100-fold improvement in NR specific activity over wild-type, and variant H191A/F296A/Y375A exhibited complete conversion to a NR.


Assuntos
Oxirredutases/metabolismo , Engenharia de Proteínas , Domínio Catalítico , Ligação de Hidrogênio , Lactococcus lactis/enzimologia , Modelos Moleculares , Mutação , Oxirredutases/química , Oxirredutases/genética , Pseudomonas putida/enzimologia , Yersinia/enzimologia
14.
Bioorg Med Chem Lett ; 23(4): 1056-62, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23294700

RESUMO

The bacterial protein tyrosine phosphatase YopH is an essential virulence determinant in Yersinia pestis and a potential antibacterial drug target. Here we report our studies of screening for small molecule inhibitors of YopH using both high throughput and in silico approaches. The identified inhibitors represent a diversity of chemotypes and novel pTyr mimetics, providing a starting point for further development and fragment-based design of multi-site binding inhibitors. We demonstrate that the applications of high throughput and virtual screening, when guided by structural binding mode analysis, is an effective approach for identifying potent and selective inhibitors of YopH and other protein phosphatases for rational drug design.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Yersinia/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala/métodos , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Yersinia/efeitos dos fármacos
15.
Appl Microbiol Biotechnol ; 95(2): 405-18, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22159661

RESUMO

Phytase improves as a feed supplement the nutritional quality of phytate-rich diets (e.g., cereal grains, legumes, and oilseeds) by hydrolyzing indigestible phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and increasing abdominal absorption of inorganic phosphates, minerals, and trace elements. Directed phytase evolution was reported for improving industrial relevant properties such as thermostability (pelleting process) or activity. In this study, we report the cloning, characterization, and directed evolution of the Yersinia mollaretii phytase (Ymphytase). Ymphytase has a tetrameric structure with positive cooperativity (Hill coefficient was 2.3) and a specific activity of 1,073 U/mg which is ∼10 times higher than widely used fungal phytases. High-throughput prescreening methods using filter papers or 384-well microtiter plates were developed. Precise subsequent screening for thermostable and active phytase variants was performed by combining absorbance and fluorescence-based detection system in 96-well microtiter plates. Directed evolution yielded after mutant library generation (SeSaM method) and two-step screening (in total ∼8,400 clones) a phytase variant with ∼20% improved thermostability (58°C for 20 min; residual activity wild type ∼34%; variant ∼53%) and increased melting temperature (1.5°C) with a slight loss of specific activity (993 U/mg).


Assuntos
6-Fitase/genética , 6-Fitase/metabolismo , Evolução Molecular Direcionada , Yersinia/enzimologia , 6-Fitase/química , Clonagem Molecular , Estabilidade Enzimática , Ensaios de Triagem em Larga Escala , Multimerização Proteica , Temperatura
16.
J Biol Chem ; 285(26): 19927-34, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20430892

RESUMO

Plague, one of the most devastating diseases in human history, is caused by the bacterium Yersinia pestis. The bacteria use a syringe-like macromolecular assembly to secrete various toxins directly into the host cells they infect. One such Yersinia outer protein, YopJ, performs the task of dampening innate immune responses in the host by simultaneously inhibiting the MAPK and NFkappaB signaling pathways. YopJ catalyzes the transfer of acetyl groups to serine, threonine, and lysine residues on target proteins. Acetylation of serine and threonine residues prevents them from being phosphorylated thereby preventing the activation of signaling molecules on which they are located. In this study, we describe the requirement of a host-cell factor for full activation of the acetyltransferase activity of YopJ and identify this activating factor to be inositol hexakisphosphate (IP(6)). We extend the applicability of our results to show that IP(6) also stimulates the acetyltransferase activity of AvrA, the YopJ homologue from Salmonella typhimurium. Furthermore, an IP(6)-induced conformational change in AvrA suggests that IP(6) acts as an allosteric activator of enzyme activity. Our results suggest that YopJ-family enzymes are quiescent in the bacterium where they are synthesized, because bacteria lack IP(6); once injected into mammalian cells by the pathogen these toxins bind host cell IP(6), are activated, and deregulate the MAPK and NFkappaB signaling pathways thereby subverting innate immunity.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Fítico/metabolismo , Yersinia/enzimologia , Acetiltransferases/química , Acetiltransferases/genética , Regulação Alostérica , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Cromatografia em Gel , Dicroísmo Circular , Citosol/metabolismo , Citosol/microbiologia , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Ácido Fítico/isolamento & purificação , Plasmídeos/genética , Conformação Proteica , Yersinia/fisiologia
17.
J Exp Med ; 202(10): 1327-32, 2005 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-16301742

RESUMO

The bacterial pathogens of the genus Yersinia, the causative agents of plague, septicemia, and gastrointestinal syndromes, use a type III secretion system to inject virulence factors into host target cells. One virulence factor, YopJ, is essential for the death of infected macrophages and can block host proinflammatory responses by inhibiting both the nuclear factor kappaB (NF-kappaB) and mitogen-activated protein kinase pathways, which might be important for evasion of the host immune response and aid in establishing a systemic infection. Here, we show that YopJ is a promiscuous deubiquitinating enzyme that negatively regulates signaling by removing ubiquitin moieties from critical proteins, such as TRAF2, TRAF6, and IkappaBalpha. In contrast to the cylindromatosis tumor suppressor CYLD, which attenuates NF-kappaB signaling by selectively removing K63-linked polyubiquitin chains that activate IkappaB kinase, YopJ also cleaves K48-linked chains and thereby inhibits proteasomal degradation of IkappaBalpha. YopJ, but not a catalytically inactive YopJ mutant, promoted deubiquitination of cellular proteins and cleaved both K48- and K63-linked polyubiquitin. Moreover, an in vitro assay was established to demonstrate directly the deubiquitinating activity of purified YopJ.


Assuntos
Proteínas de Bactérias/fisiologia , Endopeptidases/fisiologia , NF-kappa B/antagonistas & inibidores , Ubiquitina/metabolismo , Fatores de Virulência/fisiologia , Yersiniose/enzimologia , Yersinia/enzimologia , Proteínas de Bactérias/química , Linhagem Celular , Enzima Desubiquitinante CYLD , Regulação para Baixo , Endopeptidases/química , Humanos , NF-kappa B/metabolismo , Proteína SUMO-1/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Fatores de Virulência/química , Yersinia/patogenicidade
18.
BMC Microbiol ; 11: 261, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22152010

RESUMO

BACKGROUND: Accumulation of gyrase cleavage complex in Escherichia coli from the action of quinolone antibiotics induces an oxidative damage cell death pathway. The oxidative cell death pathway has also been shown to be involved in the lethality following accumulation of cleavage complex formed by bacterial topoisomerase I with mutations that result in defective DNA religation. METHODS: A high copy number plasmid clone spanning the upp-purMN region was isolated from screening of an E. coli genomic library and analyzed for conferring increased survival rates following accumulation of mutant topoisomerase I proteins as well as treatment with the gyrase inhibitor norfloxacin. RESULTS: Analysis of the intergenic region upstream of purM demonstrated a novel mechanism of resistance to the covalent protein-DNA cleavage complex through titration of the cellular transcription regulators FNR and PurR responsible for oxygen sensing and repression of purine nucleotide synthesis respectively. Addition of adenine to defined growth medium had similar protective effect for survival following accumulation of topoisomerase cleavage complex, suggesting that increase in purine level can protect against cell death. CONCLUSIONS: Perturbation of the global regulator FNR and PurR functions as well as increase in purine nucleotide availability could affect the oxidative damage cell death pathway initiated by topoisomerase cleavage complex.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Proteínas Ferro-Enxofre , Norfloxacino/farmacologia , Quinolonas/farmacologia , Proteínas Repressoras , Fatores de Transcrição/genética , Yersinia/enzimologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Estresse Oxidativo , Yersinia/genética
19.
J Biotechnol ; 339: 14-21, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34271055

RESUMO

Being able to recombine more than two genes with four or more crossover points in a sequence independent manner is still a challenge in protein engineering and limits our capabilities in tailoring enzymes for industrial applications. By computational analysis employing multiple sequence alignments and homology modeling, five fragments of six phytase genes (sequence identities 31-64 %) were identified and efficiently recombined through phosphorothioate-based cloning using the PTRec method. By combinatorial recombination, functional phytase chimeras containing fragments of up to four phytases were obtained. Two variants (PTRec 74 and PTRec 77) with up to 32 % improved residual activity (90 °C, 60 min) and retained specific activities of > 1100 U/mg were identified. Both variants are composed of fragments from the phytases of Citrobacter braakii, Hafnia alvei and Yersinia mollaretii. They exhibit sequence identities of ≤ 80 % to their parental enzymes, highlighting the great potential of DNA recombination strategies to generate new enzymes with low sequences identities that offer opportunities for property right claims.


Assuntos
6-Fitase , 6-Fitase/genética , Citrobacter/enzimologia , Estabilidade Enzimática , Hafnia alvei/enzimologia , Concentração de Íons de Hidrogênio , Proteínas Recombinantes de Fusão , Yersinia/enzimologia
20.
Sci Adv ; 6(11): eaaz2094, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195351

RESUMO

We identified a glucosyltransferase (YGT) and an ADP-ribosyltransferase (YART) in Yersinia mollaretii, highly related to glucosylating toxins from Clostridium difficile, the cause of antibiotics-associated enterocolitis. Both Yersinia toxins consist of an amino-terminal enzyme domain, an autoprotease domain activated by inositol hexakisphosphate, and a carboxyl-terminal translocation domain. YGT N-acetylglucosaminylates Rab5 and Rab31 at Thr52 and Thr36, respectively, thereby inactivating the Rab proteins. YART ADP-ribosylates Rab5 and Rab31 at Gln79 and Gln64, respectively. This activates Rab proteins by inhibiting GTP hydrolysis. We determined the crystal structure of the glycosyltransferase domain of YGT (YGTG) in the presence and absence of UDP at 1.9- and 3.4-Å resolution, respectively. Thereby, we identified a previously unknown potassium ion-binding site, which explains potassium ion-dependent enhanced glycosyltransferase activity in clostridial and related toxins. Our findings exhibit a novel type of inverse regulation of Rab proteins by toxins and provide new insights into the structure-function relationship of glycosyltransferase toxins.


Assuntos
ADP Ribose Transferases , Proteínas de Bactérias , Toxinas Bacterianas , Glicosiltransferases , Yersinia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cristalografia por Raios X , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Células HeLa , Humanos , Domínios Proteicos , Difosfato de Uridina/química , Difosfato de Uridina/metabolismo , Yersinia/química , Yersinia/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA