Detalhe da pesquisa
1.
Cryo-EM Structure of Chikungunya Virus in Complex with the Mxra8 Receptor.
Cell
; 177(7): 1725-1737.e16, 2019 06 13.
Artigo
em Inglês
| MEDLINE | ID: mdl-31080061
2.
Molecular Basis of Arthritogenic Alphavirus Receptor MXRA8 Binding to Chikungunya Virus Envelope Protein.
Cell
; 177(7): 1714-1724.e12, 2019 06 13.
Artigo
em Inglês
| MEDLINE | ID: mdl-31080063
3.
Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress.
Cell
; 163(5): 1095-1107, 2015 Nov 19.
Artigo
em Inglês
| MEDLINE | ID: mdl-26553503
4.
Discovery of Widespread Host Protein Interactions with the Pre-replicated Genome of CHIKV Using VIR-CLASP.
Mol Cell
; 78(4): 624-640.e7, 2020 05 21.
Artigo
em Inglês
| MEDLINE | ID: mdl-32380061
5.
Capping pores of alphavirus nsP1 gate membranous viral replication factories.
Nature
; 589(7843): 615-619, 2021 01.
Artigo
em Inglês
| MEDLINE | ID: mdl-33328629
6.
Global distribution and environmental suitability for chikungunya virus, 1952 to 2015.
Euro Surveill
; 21(20)2016 May 19.
Artigo
em Inglês
| MEDLINE | ID: mdl-27239817
7.
FHL1 is a major host factor for chikungunya virus infection.
Nature
; 574(7777): 259-263, 2019 10.
Artigo
em Inglês
| MEDLINE | ID: mdl-31554973
8.
A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium.
Cell
; 139(7): 1268-78, 2009 Dec 24.
Artigo
em Inglês
| MEDLINE | ID: mdl-20064373
9.
Mxra8 is a receptor for multiple arthritogenic alphaviruses.
Nature
; 557(7706): 570-574, 2018 05.
Artigo
em Inglês
| MEDLINE | ID: mdl-29769725
10.
Novel modulators of p53-signaling encoded by unknown genes of emerging viruses.
PLoS Pathog
; 17(1): e1009033, 2021 01.
Artigo
em Inglês
| MEDLINE | ID: mdl-33411764
11.
Chikungunya virus in the Americas--what a vectorborne pathogen can do.
N Engl J Med
; 371(10): 887-9, 2014 Sep 04.
Artigo
em Inglês
| MEDLINE | ID: mdl-25184860
12.
MyD88-dependent influx of monocytes and neutrophils impairs lymph node B cell responses to chikungunya virus infection via Irf5, Nos2 and Nox2.
PLoS Pathog
; 16(1): e1008292, 2020 01.
Artigo
em Inglês
| MEDLINE | ID: mdl-31999809
13.
JNK pathway restricts DENV2, ZIKV and CHIKV infection by activating complement and apoptosis in mosquito salivary glands.
PLoS Pathog
; 16(8): e1008754, 2020 08.
Artigo
em Inglês
| MEDLINE | ID: mdl-32776975
14.
Arbovirus coinfection and co-transmission: A neglected public health concern?
PLoS Biol
; 17(1): e3000130, 2019 01.
Artigo
em Inglês
| MEDLINE | ID: mdl-30668574
15.
Structural insights into RNA recognition by the Chikungunya virus nsP2 helicase.
Proc Natl Acad Sci U S A
; 116(19): 9558-9567, 2019 05 07.
Artigo
em Inglês
| MEDLINE | ID: mdl-31000599
16.
Chikungunya Virus Evades Antiviral CD8+ T Cell Responses To Establish Persistent Infection in Joint-Associated Tissues.
J Virol
; 94(9)2020 04 16.
Artigo
em Inglês
| MEDLINE | ID: mdl-32102875
17.
A Factor I-Like Activity Associated with Chikungunya Virus Contributes to Its Resistance to the Human Complement System.
J Virol
; 94(7)2020 03 17.
Artigo
em Inglês
| MEDLINE | ID: mdl-31941783
18.
Mutations in Hypervariable Domain of Venezuelan Equine Encephalitis Virus nsP3 Protein Differentially Affect Viral Replication.
J Virol
; 94(3)2020 01 17.
Artigo
em Inglês
| MEDLINE | ID: mdl-31694937
19.
The Capsid Protein of Semliki Forest Virus Antagonizes RNA Interference in Mammalian Cells.
J Virol
; 94(3)2020 01 17.
Artigo
em Inglês
| MEDLINE | ID: mdl-31694940
20.
Palmitoylated Cysteines in Chikungunya Virus nsP1 Are Critical for Targeting to Cholesterol-Rich Plasma Membrane Microdomains with Functional Consequences for Viral Genome Replication.
J Virol
; 94(10)2020 05 04.
Artigo
em Inglês
| MEDLINE | ID: mdl-32132240