RESUMO
Discerning the effect of pharmacological exposures on intestinal bacterial communities in cancer patients is challenging. Here, we deconvoluted the relationship between drug exposures and changes in microbial composition by developing and applying a new computational method, PARADIGM (parameters associated with dynamics of gut microbiota), to a large set of longitudinal fecal microbiome profiles with detailed medication-administration records from patients undergoing allogeneic hematopoietic cell transplantation. We observed that several non-antibiotic drugs, including laxatives, antiemetics, and opioids, are associated with increased Enterococcus relative abundance and decreased alpha diversity. Shotgun metagenomic sequencing further demonstrated subspecies competition, leading to increased dominant-strain genetic convergence during allo-HCT that is significantly associated with antibiotic exposures. We integrated drug-microbiome associations to predict clinical outcomes in two validation cohorts on the basis of drug exposures alone, suggesting that this approach can generate biologically and clinically relevant insights into how pharmacological exposures can perturb or preserve microbiota composition. The application of a computational method called PARADIGM to a large dataset of cancer patients' longitudinal fecal specimens and detailed daily medication records reveals associations between drug exposures and the intestinal microbiota that recapitulate in vitro findings and are also predictive of clinical outcomes.
Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Microbiota , Neoplasias , Humanos , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Metagenoma , Antibacterianos , Neoplasias/tratamento farmacológicoRESUMO
We use cryoelectron microscopy (cryo-EM) as a sequence- and culture-independent diagnostic tool to identify the etiological agent of an agricultural pandemic. For the past 4 years, American insect-rearing facilities have experienced a distinctive larval pathology and colony collapse of farmed Zophobas morio (superworm). By means of cryo-EM, we discovered the causative agent: a densovirus that we named Zophobas morio black wasting virus (ZmBWV). We confirmed the etiology of disease by fulfilling Koch's postulates and characterizing strains from across the United States. ZmBWV is a member of the family Parvoviridae with a 5,542 nt genome, and we describe intersubunit interactions explaining its expanded internal volume relative to human parvoviruses. Cryo-EM structures at resolutions up to 2.1 Å revealed single-strand DNA (ssDNA) ordering at the capsid inner surface pinned by base-binding pockets in the capsid inner surface. Also, we demonstrated the prophylactic potential of non-pathogenic strains to provide cross-protection in vivo.
Assuntos
Besouros , Microscopia Crioeletrônica , Animais , Besouros/virologia , Parvovirus/genética , Parvovirus/química , DNA de Cadeia Simples/química , Capsídeo/ultraestrutura , Capsídeo/química , Capsídeo/metabolismo , Genoma Viral , Densovirus/genética , Densovirus/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/epidemiologia , Modelos Moleculares , Filogenia , Larva/virologiaRESUMO
COVID-19 is characterized by excessive production of pro-inflammatory cytokines and acute lung damage associated with patient mortality. While multiple inflammatory cytokines are produced by innate immune cells during SARS-CoV-2 infection, we found that only the combination of TNF-α and IFN-γ induced inflammatory cell death characterized by inflammatory cell death, PANoptosis. Mechanistically, TNF-α and IFN-γ co-treatment activated the JAK/STAT1/IRF1 axis, inducing nitric oxide production and driving caspase-8/FADD-mediated PANoptosis. TNF-α and IFN-γ caused a lethal cytokine shock in mice that mirrors the tissue damage and inflammation of COVID-19, and inhibiting PANoptosis protected mice from this pathology and death. Furthermore, treating with neutralizing antibodies against TNF-α and IFN-γ protected mice from mortality during SARS-CoV-2 infection, sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other infectious and autoinflammatory diseases by limiting tissue damage/inflammation.
Assuntos
COVID-19/imunologia , COVID-19/patologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/patologia , Interferon gama/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Morte Celular , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/imunologia , Inflamação/patologia , Linfo-Histiocitose Hemofagocítica/induzido quimicamente , Masculino , Camundongos , Camundongos Transgênicos , Células THP-1RESUMO
Evolutionary pressures sculpt population genetics, whereas immune adaptation fortifies humans against life-threatening organisms. How the evolution of selective genetic variation in adaptive immune receptors orchestrates the adaptation of human populations to contextual perturbations remains elusive. Here, we show that the G396R coding variant within the human immunoglobulin G1 (IgG1) heavy chain presents a concentrated prevalence in Southeast Asian populations. We uncovered a 190-kb genomic linkage disequilibrium block peaked in close proximity to this variant, suggestive of potential Darwinian selection. This variant confers heightened immune resilience against various pathogens and viper toxins in mice. Mechanistic studies involving severe acute respiratory syndrome coronavirus 2 infection and vaccinated individuals reveal that this variant enhances pathogen-specific IgG1+ memory B cell activation and antibody production. This G396R variant may have arisen on a Neanderthal haplotype background. These findings underscore the importance of an IGHG1 variant in reinforcing IgG1 antibody responses against life-threatening organisms, unraveling the intricate interplay between human evolution and immune adaptation.
Assuntos
COVID-19 , Imunoglobulina G , Cadeias Pesadas de Imunoglobulinas , SARS-CoV-2 , Humanos , Animais , Imunoglobulina G/imunologia , COVID-19/imunologia , COVID-19/genética , SARS-CoV-2/imunologia , Camundongos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Desequilíbrio de Ligação , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Haplótipos , Células B de Memória/imunologia , Feminino , Variação Genética , MasculinoRESUMO
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Teorema de Bayes , COVID-19 , China/epidemiologia , Infecções por Coronavirus/virologia , Monitoramento Epidemiológico , Humanos , Funções Verossimilhança , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , ViagemRESUMO
The urgent need for an effective SARS-CoV-2 vaccine has forced development to progress in the absence of well-defined correlates of immunity. While neutralization has been linked to protection against other pathogens, whether neutralization alone will be sufficient to drive protection against SARS-CoV-2 in the broader population remains unclear. Therefore, to fully define protective humoral immunity, we dissected the early evolution of the humoral response in 193 hospitalized individuals ranging from moderate to severe. Although robust IgM and IgA responses evolved in both survivors and non-survivors with severe disease, non-survivors showed attenuated IgG responses, accompanied by compromised Fcɣ receptor binding and Fc effector activity, pointing to deficient humoral development rather than disease-enhancing humoral immunity. In contrast, individuals with moderate disease exhibited delayed responses that ultimately matured. These data highlight distinct humoral trajectories associated with resolution of SARS-CoV-2 infection and the need for early functional humoral immunity.
Assuntos
COVID-19 , Imunidade Humoral , Imunoglobulina A/imunologia , Imunoglobulina M/imunologia , Receptores de IgG/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/mortalidade , Feminino , Células HL-60 , Humanos , MasculinoRESUMO
Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.
Assuntos
Arabidopsis/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efeitos da radiação , Ascorbato Peroxidases/metabolismo , Ascorbato Peroxidases/efeitos da radiação , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Terapia a Laser/métodos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/efeitos da radiação , Microscopia Confocal , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos da radiação , Proteínas Quinases/metabolismo , Proteínas Quinases/efeitos da radiação , Receptores de Reconhecimento de Padrão/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Imagem com Lapso de TempoRESUMO
The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.
Assuntos
Lesão Pulmonar Aguda/patologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Animais , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Quimiocinas/sangue , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Pulmão/fisiologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pandemias , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/patologia , SARS-CoV-2 , Índice de Gravidade de Doença , Taxa de SobrevidaRESUMO
Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of â¼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.
Assuntos
Bacteriemia/sangue , Bacteriemia/mortalidade , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/patogenicidade , Animais , Bacteriemia/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Metabolômica/métodos , Camundongos , Pessoa de Meia-Idade , Prognóstico , Proteômica/métodos , Fatores de Risco , Infecções Estafilocócicas/metabolismoRESUMO
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Humanos , ImunofenotipagemRESUMO
Tumors can cause wasting and mortality, but the connection between these outcomes is unclear. In this issue of Immunity, Chen and colleagues find the outcomes are separable as the tumor-altered gut microbiota activates renal immunity and alters metabolism, leading to mortality independently of wasting.
Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , HumanosRESUMO
Tumor-induced host wasting and mortality are general phenomena across species. Many groups have previously demonstrated endocrinal impacts of malignant tumors on host wasting in rodents and Drosophila. Whether and how environmental factors and host immune response contribute to tumor-associated host wasting and survival, however, are largely unknown. Here, we report that flies bearing malignant yki3SA-gut tumors exhibited the exponential increase of commensal bacteria, which were mostly acquired from the environment, and systemic IMD-NF-κB activation due to suppression of a gut antibacterial amidase PGRP-SC2. Either gut microbial elimination or specific IMD-NF-κB blockade in the renal-like Malpighian tubules potently improved mortality of yki3SA-tumor-bearing flies in a manner independent of host wasting. We further indicate that renal IMD-NF-κB activation caused uric acid (UA) overload to reduce survival of tumor-bearing flies. Therefore, our results uncover a fundamental mechanism whereby gut commensal dysbiosis, renal immune activation, and UA imbalance potentiate tumor-associated host death.
Assuntos
NF-kappa B , Neoplasias , Animais , Proteínas de Transporte , Drosophila , Homeostase , NF-kappa B/metabolismo , Ácido ÚricoRESUMO
The factors that influence survival during severe infection are unclear. Extracellular chromatin drives pathology, but the mechanisms enabling its accumulation remain elusive. Here, we show that in murine sepsis models, splenocyte death interferes with chromatin clearance through the release of the DNase I inhibitor actin. Actin-mediated inhibition was compensated by upregulation of DNase I or the actin scavenger gelsolin. Splenocyte death and neutrophil extracellular trap (NET) clearance deficiencies were prevalent in individuals with severe COVID-19 pneumonia or microbial sepsis. Activity tracing by plasma proteomic profiling uncovered an association between low NET clearance and increased COVID-19 pathology and mortality. Low NET clearance activity with comparable proteome associations was prevalent in healthy donors with low-grade inflammation, implicating defective chromatin clearance in the development of cardiovascular disease and linking COVID-19 susceptibility to pre-existing conditions. Hence, the combination of aberrant chromatin release with defects in protective clearance mechanisms lead to poor survival outcomes.
Assuntos
COVID-19 , Sepse , Animais , Camundongos , Actinas , Cromatina , Desoxirribonuclease I , DNA , Neutrófilos , ProteômicaRESUMO
Microbial exposures are crucial environmental factors that impact healthspan by sculpting the immune system and microbiota. Antibody profiling via Phage ImmunoPrecipitation Sequencing (PhIP-Seq) provides a high-throughput, cost-effective approach for detecting exposure and response to microbial protein products. We designed and constructed a library of 95,601 56-amino acid peptide tiles spanning 14,430 proteins with "toxin" or "virulence factor" keyword annotations. We used PhIP-Seq to profile the antibodies of â¼1,000 individuals against this "ToxScan" library. In addition to enumerating immunodominant antibody epitopes, we studied the age-dependent stability of the ToxScan profile and used a genome-wide association study to find that the MHC-II locus modulates bacterial epitope selection. We detected previously described anti-flagellin antibody responses in a Crohn's disease cohort and identified an association between anti-flagellin antibodies and juvenile dermatomyositis. PhIP-Seq with the ToxScan library is thus an effective tool for studying the environmental determinants of health and disease at cohort scale.
Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Sequência de Aminoácidos , Anticorpos , Formação de Anticorpos , Bacteriófagos/genética , Estudo de Associação Genômica Ampla , Humanos , Epitopos Imunodominantes , Prevalência , Fatores de Virulência/genéticaRESUMO
Current US lung cancer screening recommendations limit eligibility to adults with a pack-year (PY) history of ≥20 years and the first 15 years since quit (YSQ). The authors conducted a systematic review to better understand lung cancer incidence, risk and mortality among otherwise eligible individuals in this population beyond 15 YSQ. The PubMed and Scopus databases were searched through February 14, 2023, and relevant articles were searched by hand. Included studies examined the relationship between adults with both a ≥20-PY history and ≥15 YSQ and lung cancer diagnosis, mortality, and screening ineligibility. One investigator abstracted data and a second confirmed. Two investigators independently assessed study quality and certainty of evidence (COE) and resolved discordance through consensus. From 2636 titles, 22 studies in 26 articles were included. Three studies provided low COE of elevated lung cancer incidence beyond 15 YSQ, as compared with people who never smoked, and six studies provided moderate COE that the risk of a lung cancer diagnosis after 15 YSQ declines gradually, but with no clinically significant difference just before and after 15 YSQ. Studies examining lung cancer-related disparities suggest that outcomes after 15 YSQ were similar between African American/Black and White participants; increasing YSQ would expand eligibility for African American/Black individuals, but for a significantly larger proportion of White individuals. The authors observed that the risk of lung cancer not only persists beyond 15 YSQ but that, compared with individuals who never smoked, the risk may remain significantly elevated for 2 or 3 decades. Future research of nationally representative samples with consistent reporting across studies is needed, as are better data from which to examine the effects on health disparities across different populations.
Assuntos
Neoplasias Pulmonares , Humanos , Detecção Precoce de Câncer , Incidência , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiologiaRESUMO
This article presents global cancer statistics by world region for the year 2022 based on updated estimates from the International Agency for Research on Cancer (IARC). There were close to 20 million new cases of cancer in the year 2022 (including nonmelanoma skin cancers [NMSCs]) alongside 9.7 million deaths from cancer (including NMSC). The estimates suggest that approximately one in five men or women develop cancer in a lifetime, whereas around one in nine men and one in 12 women die from it. Lung cancer was the most frequently diagnosed cancer in 2022, responsible for almost 2.5 million new cases, or one in eight cancers worldwide (12.4% of all cancers globally), followed by cancers of the female breast (11.6%), colorectum (9.6%), prostate (7.3%), and stomach (4.9%). Lung cancer was also the leading cause of cancer death, with an estimated 1.8 million deaths (18.7%), followed by colorectal (9.3%), liver (7.8%), female breast (6.9%), and stomach (6.8%) cancers. Breast cancer and lung cancer were the most frequent cancers in women and men, respectively (both cases and deaths). Incidence rates (including NMSC) varied from four-fold to five-fold across world regions, from over 500 in Australia/New Zealand (507.9 per 100,000) to under 100 in Western Africa (97.1 per 100,000) among men, and from over 400 in Australia/New Zealand (410.5 per 100,000) to close to 100 in South-Central Asia (103.3 per 100,000) among women. The authors examine the geographic variability across 20 world regions for the 10 leading cancer types, discussing recent trends, the underlying determinants, and the prospects for global cancer prevention and control. With demographics-based predictions indicating that the number of new cases of cancer will reach 35 million by 2050, investments in prevention, including the targeting of key risk factors for cancer (including smoking, overweight and obesity, and infection), could avert millions of future cancer diagnoses and save many lives worldwide, bringing huge economic as well as societal dividends to countries over the forthcoming decades.
Assuntos
Saúde Global , Neoplasias , Humanos , Neoplasias/epidemiologia , Neoplasias/mortalidade , Masculino , Feminino , Incidência , Saúde Global/estatística & dados numéricos , Adulto , Pessoa de Meia-Idade , Idoso , Criança , Adolescente , Pré-Escolar , Lactente , Adulto Jovem , Distribuição por Sexo , Recém-Nascido , Idoso de 80 Anos ou maisRESUMO
The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.
Assuntos
Ebolavirus/genética , Ebolavirus/isolamento & purificação , Genoma Viral , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Mutação , Evolução Biológica , Surtos de Doenças , Ebolavirus/classificação , Doença pelo Vírus Ebola/transmissão , Humanos , Serra Leoa/epidemiologia , Manejo de EspécimesRESUMO
Alleles that introgress between species can influence the evolutionary and ecological fate of species exposed to novel environments. Hybrid offspring of different species are often unfit, and yet it has long been argued that introgression can be a potent force in evolution, especially in plants. Over the last two decades, genomic data have increasingly provided evidence that introgression is a critically important source of genetic variation and that this additional variation can be useful in adaptive evolution of both animals and plants. Here, we review factors that influence the probability that foreign genetic variants provide long-term benefits (so-called adaptive introgression) and discuss their potential benefits. We find that introgression plays an important role in adaptive evolution, particularly when a species is far from its fitness optimum, such as when they expand their range or are subject to changing environments.
Assuntos
Evolução Biológica , Genoma , Animais , Genômica , Hibridização Genética , Plantas/genética , PrevalênciaRESUMO
We conducted a serological study to define correlates of immunity against SARS-CoV-2. Compared to those with mild coronavirus disease 2019 (COVID-19) cases, individuals with severe disease exhibited elevated virus-neutralizing titers and antibodies against the nucleocapsid (N) and the receptor binding domain (RBD) of the spike protein. Age and sex played lesser roles. All cases, including asymptomatic individuals, seroconverted by 2 weeks after PCR confirmation. Spike RBD and S2 and neutralizing antibodies remained detectable through 5-7 months after onset, whereas α-N titers diminished. Testing 5,882 members of the local community revealed only 1 sample with seroreactivity to both RBD and S2 that lacked neutralizing antibodies. This fidelity could not be achieved with either RBD or S2 alone. Thus, inclusion of multiple independent assays improved the accuracy of antibody tests in low-seroprevalence communities and revealed differences in antibody kinetics depending on the antigen. We conclude that neutralizing antibodies are stably produced for at least 5-7 months after SARS-CoV-2 infection.
Assuntos
Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Imunidade Humoral , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Arizona/epidemiologia , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Prevalência , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto JovemRESUMO
Studies of the human microbiome share both technical and conceptual similarities with genome-wide association studies and genetic epidemiology. However, the microbiome has many features that differ from genomes, such as its temporal and spatial variability, highly distinct genetic architecture and person-to-person variation. Moreover, there are various potential mechanisms by which distinct aspects of the human microbiome can relate to health outcomes. Recent advances, including next-generation sequencing and the proliferation of multi-omic data types, have enabled the exploration of the mechanisms that connect microbial communities to human health. Here, we review the ways in which features of the microbiome at various body sites can influence health outcomes, and we describe emerging opportunities and future directions for advanced microbiome epidemiology.