Your browser doesn't support javascript.
loading
The simulated silicification of bacteria--new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils.
Toporski, Jan K W; Steele, Andrew; Westall, Frances; Thomas-Keprta, Kathie L; McKay, David S.
Afiliação
  • Toporski JK; School of Earth, Environmental and Physical Sciences, Astrobiology Group, University of Portsmouth, Portsmouth, UK. j.toporski@gl.ciw.edu
Astrobiology ; 2(1): 1-26, 2002.
Article em En | MEDLINE | ID: mdl-12449852
ABSTRACT
Evidence of microbial life on Earth has been found in siliceous rock formations throughout the geological and fossil record. To understand the mechanisms of silicification and thus improve our search patterns for evidence of fossil microbial life in rocks, a series of controlled laboratory experiments were designed to simulate the silicification of microorganisms. The bacterial strains Pseudomonas fluorescens and Desulphovibrio indonensis were exposed to silicifying media. The experiments were designed to determine how exposure time to silicifying solutions and to silicifying solutions of different Si concentration affect the fossilization of microbial biofilms. The silicified biofilms were analyzed using transmission electron microscopy (TEM) in combination with energy-dispersive spectroscopy. Both bacterial species showed evidence of silicification after 24 h in 1,000 ppm silica solution, although D. indonensis was less prone to silicification. The degree of silicification of individual cells of the same sample varied, though such variations decreased with increasing exposure time. High Si concentration resulted in better preservation of cellular detail; the Si concentration was more important than the duration in Si solution. Even though no evidence of amorphous silica precipitation was observed, bacterial cells became permineralized. High-resolution TEM analysis revealed nanometer-sized crystallites characterized by lattice fringe-spacings that match the (10-11) d-spacing of quartz formed within bacterial cell walls after 1 week in 5,000 ppm silica solution. The mechanisms of silicification under controlled laboratory conditions and the implication for silicification in natural environments are discussed, along with the relevance of our findings in the search for early life on Earth and extraterrestrial life.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2002 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2002 Tipo de documento: Article