Chylomicron remnants upregulate CD40 expression via the ERK pathway and a redox-sensitive mechanism in THP-1 cells.
Atherosclerosis
; 187(2): 257-64, 2006 Aug.
Article
em En
| MEDLINE
| ID: mdl-16356505
CD40 is a 48kDa phosphorylated transmembrane glycoprotein that belongs to the tumor necrosis factor receptor superfamily and may play a role in formation of atherosclerotic plaques. Here, we investigated the effect of chylomicron remnants on CD40 expression in the human premonocytic cell line, THP-1 cells. Chylomicron remnants upregulated the expression of CD40 protein and mRNA in a dose- and time-dependent manner. Further, chylomicron remnants increased the generation of reactive oxygen species as determined by an increasing level of 2',7'-dichlorofluorescein. Pretreatment with the antioxidant, N-acetylcysteine, inhibited chylomicron remnant-induced CD40 protein expression by 60%. On the other hand, chylomicron remnants transiently increased the phosphorylation of extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen-activated protein kinase (MAPK). Pretreatment with the MAPK kinase inhibitor, U0126, completely inhibited chylomicron remnants-induced CD40 protein expression, whereas the p38 MAPK inhibitor, SB203580, had no effect. Pretreatment with N-acetylcysteine had no effect on chylomicron remnant-induced ERK 1/2 phosphorylation. These data suggest that CD40 expression stimulated by chylomicron remnants in THP-1 cells is dependent on ERK 1/2-mediated pathway, which is followed by redox-sensitive mechanism-dependent and independent pathway. Thus, chylomicron remnants may contribute to the formation of atherosclerotic plaques via their immunological and proinflammatory effects.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
Limite:
Animals
/
Humans
/
Male
Idioma:
En
Ano de publicação:
2006
Tipo de documento:
Article