Your browser doesn't support javascript.
loading
Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy.
Cell Stem Cell ; 9(5): 433-46, 2011 Nov 04.
Article em En | MEDLINE | ID: mdl-22056140
ABSTRACT
Nodal and Activin belong to the TGF-ß superfamily and are important regulators of embryonic stem cell fate. Here we investigated whether Nodal and Activin regulate self-renewal of pancreatic cancer stem cells. Nodal and Activin were hardly detectable in more differentiated pancreatic cancer cells, while cancer stem cells and stroma-derived pancreatic stellate cells markedly overexpressed Nodal and Activin, but not TGF-ß. Knockdown or pharmacological inhibition of the Nodal/Activin receptor Alk4/7 in cancer stem cells virtually abrogated their self-renewal capacity and in vivo tumorigenicity, and reversed the resistance of orthotopically engrafted cancer stem cells to gemcitabine. However, engrafted primary human pancreatic cancer tissue with a substantial stroma showed no response due to limited drug delivery. The addition of a stroma-targeting hedgehog pathway inhibitor enhanced delivery of the Nodal/Activin inhibitor and translated into long-term, progression-free survival. Therefore, inhibition of the Alk4/7 pathway, if combined with hedgehog pathway inhibition and gemcitabine, provides a therapeutic strategy for targeting cancer stem cells.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2011 Tipo de documento: Article